Natural antioxidants play important roles in maintaining chicken health, productive and reproductive performance of breeders, layers, rearing birds, and growing broilers. There is a wide range of antioxidant molecules in the body: vitamin E, carotenoids, selenium, ascorbic acid, coenzyme Q, carnitine, taurine, antioxidant enzymes, etc. In the body all antioxidants work together to create the antioxidant network called “antioxidant systems” with Se being the “chief-executive.” Analysis of the current data on selenium roles in antioxidant defenses in poultry clearly showed its modulatory effect at the level of breeders, developing embryos, newly hatched chicks, and postnatal chickens. On the one hand, Se is involved in the expression and synthesis of 25 selenoproteins, including GSH-Px, TrxR, and SepP. On the other hand, Se affects nonenzymatic (vitamin E, CoQ, and GSH) and enzymatic (SOD) antioxidant defense mechanisms helping build strong antioxidant defenses. Se efficiency depends on the level of supplementation and form of dietary Se, organic Se sources being more effective modulators of the antioxidant systems in poultry than sodium selenite. Moreover, Se levels in eggs from some wild avian species are close to those found in chicken eggs after 0.3 ppm organic Se supplementation and a search for most effective dietary form of organic Se is a priority in poultry nutrition. Antioxidant/prooxidant (redox) balance of the gut and the role/interactions of Se and microbiota in maintaining gut health would be a priority for future poultry research.
Key words: Antioxidants, chicken, poultry, selenium.
Alehagen, U., and J. Aaseth. 2015. Selenium and coenzyme Q10 interrelationship in cardiovascular diseases–a clinician’s point of view. J. Trace Elem. Med. Biol. 31:157–162.
Arai, T., M. Sugawara, T. Sako, S. Motoyoshi, T. Shimura, N.
Tsutsui, and T. Konno. 1994. Glutathione peroxidase activity in tissues of chickens supplemented with dietary selenium. Comp.
Biochem. Physiol. 107A: 245–248.
Brennan, K. M., C. A. Crowdus, A. H. Cantor, A. J. Pescatore, J.
L. Barger, K. Horgan, R. Xiao, R. F. Power, and K. A. Dawson. 2011. Effects of organic and inorganic dietary selenium supplementation on gene expression profiles in oviduct tissue from broiler-breeder hens. Anim. Reprod. Sci. 125:180–188.
Bennett, D. C., and K. M. Cheng. 2010. Selenium enrichment of table eggs. Poult. Sci. 89:2166–2172.
Chantiratikul, A., O. Chinrasri, and P. Chantiratikul. 2008. Effect of sodium selenite and zinc-l-selenomethionine on performance and selenium concentrations in eggs of laying hens. Asian Australas.
J. Anim. Sci 21:1048–1052.
Delezie, E., M. Rovers, A. Van der Aa, A. Ruttens, S. Wittocx, and L. Segers. 2014. Comparing responses to different selenium sources and dosages in laying hens. Poult. Sci. 93: 3083–3090.
Flohe, L., and R. Brigelius-Flohe. 2016. Basics and news on glutathione peroxidases. Pages 211–222 in Selenium. Its Molecular
Biology and Role in Human Health. 4th edn, D. L. Hatfield, U.
Schweizer, P. A. Tsui, and V. N. Gladyshev, eds. Springer, New
York.
Gladyshev, V. N. 2016. Eukaryotic proteomes. Pages 127–139 in Selenium. Its Molecular Biology and Role in Human Health. 4th edn, D. L. Hatfield, U. Schweizer, P. A. Tsui, and V. N. Gladyshev, eds. Springer, New York.
Gowdy, K. M. 2004. Selenium Supplementation and Antioxidant
Protection in Broiler Chickens. M. Sci. Thesis, The Graduate
School, North Carolina State University, Raleigh, NC 27695,
USA.
Habibian, M., G. Sadeghi, S. Ghazi, and M. M. Moeini. 2015. Selenium as a feed supplement for heat-stressed poultry: a review.
Biol. Trace Elem. Res. 165:183–193.
Hoac, T., C. Daun, U. Trafikowska, J. Zackrisson, and B. ˚Akesson.
2006. Influence of heat treatment on lipid oxidation and glutathione peroxidase activity in chicken and duck meat. Innov.
Food Sci. Emerg. Technol. 7:88–93.
Invernizzi, G., A. Agazzi, M. Ferroni, R. Rebucci, A. Fanelli, A.
Baldi, and G. Savoini. 2013. Effects of inclusion of seleniumenriched yeast in the diet of laying hens on performance, eggshell quality, and selenium tissue deposition. Ital. J. Anim. Sci.
12:e1.
Jiakui, L., and W. Xiaolong. 2004. Effect of dietary organic versus inorganic selenium in laying hens on the productivity, selenium distribution in egg and selenium content in blood, liver and kidney. J. Trace Elem. Med. Biol. 18:65–68.
Jin, X., S. W. Kennedy, T. Di Muccio, and T. W. Moon. 2001.
Role of oxidative stress and antioxidant defense in 3,3’,4,4’,5-
Pentachlorobiphenyl-Induced toxicity and Species-Differential sensitivity in chicken and duck embryos. Toxicol. Appl. Pharmacol. 172:241–248.
Jing, C. L., X. F. Dong, Z. M. Wang, S. Liu, and J. M. Tong. 2015.
Comparative study of DL-selenomethionine vs sodium selenite and seleno-yeast on antioxidant activity and selenium status in laying hens. Poult. Sci. 94: 965–975.
Jlali, M., M. Briens, F. Rouffineau, F. Mercerand, P. A. Geraert, and Y. Mercier. 2013. Effect of 2-hydroxy-4-methylselenobutanoic acid as a dietary selenium supplement to improve the selenium concentration of table eggs. J. Anim. Sci. 91: 1745–1752.
Karadas, F., P. F. Surai, and NH. Sparks. 2011. Changes in broiler chick tissue concentrations of lipid-soluble antioxidants immediately post-hatch. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 160: 68–71.
Khan, M. T., A. Mahmud, I. Zahoor, and K. Javed. 2017. Organic and inorganic selenium in Aseel chicken diets: effect on hatching traits. Poult. Sci. 96:1466–1472.
Kretz-Remy, C., and A. P. Arrigo. 2003. Modulation of the chymotrypsin-like activity of the 20S proteasome by intracellular redox status: effects of glutathione peroxidase-1 overexpression and antioxidant drugs. Biol. Chem. 384:589–595.
Lei, X. 2017. Avian selenogenome: response to dietary Se and protection against oxidative insults. Poult. Sci. 96:220.
Li, S., F. Gao, J Huang, Y. Wu, S. Wu, and X. G. Lei.
2018. Regulation and function of avian selenogenome. Biochim.
Biophys. Acta (In Press) pii: S0304-4165(18)30091-6. doi:
10.1016/j.bbagen.2018.03.029.
Lin, S. L., C. W. Wang, S. R. Tan, Y. Liang, H. D. Yao, Z. W. Zhang, and S. W. Xu. 2014. Selenium deficiency inhibits the conversion of thyroidal thyroxine (T4) to triiodothyronine (T3) in chicken thyroids. Biol. Trace Elem. Res. 161: 263–271.
Lipiec, E., G. Siara, K. Bierla, L. Ouerdane, and J. Szpunar. 2010.
Determination of selenomethionine, selenocysteine, and inorganic selenium in eggs by HPLC–inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 397: 731–741.
Lu, J., and A. Holmgren. 2014. The thioredoxin antioxidant system.
Free Radic. Biol. Med. 66:75–87.
Luan, Y., J. Zhao, H. Yao, X. Zhao, R. Fan, W. Zhao, Z. Zhang, and S. Xu. 2016. Selenium deficiency influences the mRNA expression of selenoproteins and cytokines in chicken erythrocytes.
Biol. Trace Elem. Res. 171:427–436.
Mohiti-Asli, M., F. Shariatmadari, and H. Lotfollahian. 2010. The influence of dietary vitamin E and selenium on egg production parameters, serum and yolk cholesterol and antibody response of laying hen exposed to high environmental temperature. Arch.
Geflugelk. 74:43–50.
Pan, C., Y. Zhao, S. F. Liao, F. Chen, S. Qin, X. Wu, H. Zhou, and K. Huang. 2011. Effect of selenium-enriched probiotics on laying performance, egg quality, egg selenium content, and egg glutathione peroxidase activity. J. Agric. Food Chem. 59:11424–
11431.
Pappas, A. C., T. Acamovic, N. H. C. Sparks, F. F. Surai, and R. M.
McDevitt. 2005a. Effects of supplementing broiler breeder diets with organic selenium and polyunsaturated fatty acids on egg quality during storage. Poult. Sci. 84:865–874.
Pappas, A. C., T. Acamovic, N. H. Sparks, P. F. Surai, and R. M.
McDevitt. 2006a. Effects of supplementing broiler breeder diets with organoselenium compounds and polyunsaturated fatty acids on hatchability. Poult. Sci. 85:1584–1593.
Pappas, A. C., F. Karadas, P. F. Surai, and B. K. Speake. 2005b.
The selenium intake of the female chicken influences the selenium status of her progeny. Comp. Biochem. Physiol. B Biochem. Mol.
Biol. 142:465–474.
Pappas, A. C., F. Karadas, P. F. Surai, N. Wood, P. Cassey, and B.
K. Speake. 2006b. Interspecies variation in yolk selenium concentrations among eggs of free-living birds: The effect of phylogeny.
J. Trace Elem. Med. Biol. 20:155–160.
Pappas, A. C., E. Zoidis, P. F. Surai, and G. Zervas. 2008. Selenoproteins and maternal nutrition. Comp. Biochem. Physiol.
B Biochem. Mol. Biol. 151: 361–372.
Paton, N. D., A. H. Cantor, A. J. Pescatore, M. J. Ford, and C. A.
Smith. 2002. The effect of dietary selenium source and level on the uptake of selenium by developing chick embryos. Poult. Sci.
81:1548–1554.
Pavlovi´c, Z., I. Mileti´c, Z. Joki´ ˇ c, Z. Pavlovski, Z. Skrbi´ ˇ c, and S.
Sobaji´ ˇ c. 2010. The effect of level and source of dietary selenium supplementation on eggshell quality. Biol. Trace Elem. Res.
133:197–202.
Payne, R. L., T. K. Lavergne, and L. L. Southern. 2005. Effect of inorganic versus organic selenium on hen production and egg selenium concentration. Poult. Sci. 84:232–237.
Placha, I., J. Takacova, M. Ryzner, K. Cobanova, A. Laukova, V.
Strompfova, K. Venglovska, and S. Faix. 2014. Effect of thyme essential oil and selenium on intestine integrity and antioxidant status of broilers. Br. Poult. Sci. 55:105–114.
Rajashree, K., T. Muthukumar, and N. Karthikeyan. 2014. Comparative study of the effects of organic selenium on hen performance and productivity of broiler breeders. Br. Poult. Sci. 55:367–374.
Reczek, C. R., and N. S. Chandel. 2015. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 33:8–13.
Saito, Y., T. Hayashi, A. Tanaka, Y. Watanabe, M. Suzuki, E. Saito, and K. Takahashi. 1999. Selenoprotein P in human plasma as an extracellular phospholipid hydroperoxide glutathione peroxidase.
Isolation and enzymatic characterization of human selenoprotein.
P. J. Biol. Chem. 274:2866–2871.
Scheideler, S. E., P. Weber, and D. Monsalve. 2010. Supplemental vitamin E and selenium effects on egg production, egg quality, and egg deposition of -tocopherol and selenium. J. Appl. Poult.
Res. 19:354–360.
Schrauzer, G. N., and P. F. Surai. 2009. Selenium in human and animal nutrition: resolved and unresolved issues. A partly historical treatise in commemoration of the fiftieth anniversary of the discovery of the biological essentiality of selenium, dedicated to the memory of Klaus Schwarz (1914–1978) on the occasion of the thirtieth anniversary of his death. Crit. Rev. Biotechnol. 29:2–9.
Schweizer, U., L. Schomburg, and J. K¨ohrle. 2016. Selenoprotein P and selenium distribution in mammals. Pages 261–274 in Selenium. Its Molecular Biology and Role in Human Health. 4th ed,
D. L. Hatfield, U. Schweizer, P. A. Tsui, and V. N. Gladyshev, eds. Springer, New York.
Skrivan, M., M. Marounek, G. Dlouh´a, and S. Sevc´ıkov´a. 2008.
Dietary selenium increases vitamin E contents of egg yolk and chicken meat. Br. Poult. Sci. 49:482–486.
Speake, B. K., A. M. Murray, and R. C. Noble. 1998. Transport and transformations of yolk lipids during development of the avian embryo. Prog. Lipid Res. 37:1–32.
Starrs, A. P., S. Orgeig, C. B. Daniels, M. Davies, and O. V. Lopatko.
2001. Antioxidant enzymes in the developing lungs of egg-laying and metamorphosing vertebrates. J. Exp. Biol. 204:3973–3981.
Steinbrenner, H., L. Alili, E. Bilgic, H. Sies, and P. Brenneisen. 2006.
Involvement of selenoprotein P in protection of human astrocytes from oxidative damage. Free Radic. Biol. Med. 40:1513–1523.
Surai, P. F. 1999a. Vitamin E in avian reproduction. Poult. Avian
Biol. Rev. 10:1–60.
Surai, P. F. 1999b. Tissue-specific changes in the activities of antioxidant enzymes during the development of the chicken embryo. Br.
Poult. Sci. 40:397–405.
Surai, P. F. 2000. Effect of selenium and vitamin E content of the maternal diet on the antioxidant system of the yolk and the developing chick. Br. Poult. Sci. 41:235–243.
Surai, P. F. 2002. Natural Antioxidants in Avian Nutrition and Reproduction. Nottingham University Press, Nottingham.
Surai, P. F., 2006. Selenium in Nutrition and Health. Nottingham
University Press, Nottingham, UK.
Surai, P. F. 2012a. The antioxidant properties of canthaxanthin and its potential effects in the poultry eggs and on embryonic development of the chick. Part 1. Worlds Poult. Sci. J. 68:
465–476.
Surai, P. F. 2012b. The antioxidant properties of canthaxanthin and its potential effects in the poultry eggs and on embryonic development of the chick. Part 2. Worlds Poult. Sci. J. 68:717–726.
Surai, P. F. 2015a. Carnitine enigma: from antioxidant action to vitagene regulation. Part 1. Absorption, metabolism and antioxidant activities. J. Vet. Sci. Med. 3: 14.
Surai, P. F. 2015b. Carnitine enigma: from antioxidant action to vitagene regulation. Part 2. Transcription factors and practical applications. J. Vet. Sci. Med. 3: 17.
Surai, P. F. 2016. Antioxidant systems in poultry biology: Superoxide dismutase. J. Anim. Res. Nutr. 1:8.
Surai, P. F. 2017. Antioxidant defences: Food for thoughts. EC Nutrition 10:65–66.
Surai, P. F. 2018. Selenium in Poultry Nutrition and Haalth. Wageningen Academic Publishers, Wageningen, The Netherlands.
Surai, P. F., and V. I. Fisinin. 2014. Selenium in poultry breeder nutrition: an update. Anim. Feed Sci. Technol. 191:1–15.
Surai, P. F., and V. I. Fisinin. 2015. Antioxidant-prooxidant balance in the intestine: applications in chick placement and pig weaning.
J. Vet. Sci. Med. 3:16.
Surai, P. F., and V. I. Fisinin. 2016a. Vitagenes in poultry production: Part 1. Technological and environmental stresses. Worlds
Poult. Sci. J. 72:721–734.
Surai, P. F., and V. I. Fisinin. 2016b. Vitagenes in poultry production: Part 2. Nutritional and internal stresses. Worlds Poult. Sci.
J. 72:761–772.
Surai, P. F., and V. I. Fisinin. 2016c. Vitagenes in poultry production: Part 3. Vitagene concept development. Worlds Poult. Sci.
J. 72:793–804.
Surai, P. F., and V. I. Fisinin. 2016d. Natural antioxidants and stresses in poultry production: from vitamins to vitagenes. Pages
116–121, The Proceedings of XXV World’s Poultry Congress
2016, Invited Lecture Papers, September 5–9, 2016, Beijing,
China.
Surai, P. F., and V. I. Fisinin. 2016e. Selenium in livestock and other domestic animals. Pages 595–606 in Selenium. Its Molecular
Biology and Role in Human Health. D. L. Hatfield, U. Schweizer,
P. A. Tsuji, and V. N. Gladyshev, eds. Springer International
Publishing, New York.
Surai, P. F., I. I. Kochish, D. K. Griffin, I. N. Nikonov, and M. N.
Romanov. 2017. Microbiome and antioxidant system of the gut in chicken: Food for thoughts. Insights Nutr. Metab. 1:34.
Surai, P. F., R. C. Noble, and B. K. Speake. 1996. Tissue-specific differences in antioxidant distribution and susceptibility to lipid peroxidation during development of the chick embryo. Biochim.
Biophys. Acta 304:1–10.
Surai, P. F., and B. K. Speake. 1998a. Selective excretion of yolkderived tocotrienols into the bile of the chick embryo. Comp.
Biochem. Physiol. B Biochem. Mol. Biol. 121:393–396.
Surai, P. F., and B. K. Speake. 1998b. Distribution of carotenoids from the yolk to the tissues of the chick embryo. J. Nutr. Biochem.
9:645–651.
Surai, P. F., B. K. Speake, R. C. Noble, and N. H. C. Sparks. 1999.
Tissue-specific antioxidant profiles and susceptibility to lipid peroxidation of the newly hatched chick. Biol. Trace Elem. Res.
68:63–78.
Surai, P. F., B. K. Speake, and N. H. C. Sparks. 2001a. Carotenoids in avian nutrition and embryonic development. 1. Absorption, availability and levels in plasma and egg yolk. J. Poult. Sci. 38:
1–27.
Surai, P. F., B. K. Speake, and N. H. C. Sparks. 2001b. Carotenoids in avian nutrition and embryonic development. 2. Antioxidant properties and discrimination in embryonic tissues. J. Poult. Sci.
38:117–145.
Tufarelli, V., E. Ceci, and V. Laudadio. 2016. 2-Hydroxy-4-
Methylselenobutanoic acid as new organic selenium dietary supplement to produce selenium-enriched eggs. Biol. Trace Elem.
Res. 171: 453–458.
Urso, U. R., F. Dahlke, A. Maiorka, I. J. Bueno, A. F. Schneider,
D. Surek, and C. Rocha. 2015. Vitamin E and selenium in broiler breeder diets: Effect on live performance, hatching process, and chick quality. Poult. Sci. 94:976–983.
Varela-L´opez, A., F. Giampieri, M. Battino, and J. L. Quiles. 2016.
Coenzyme Q and its role in the dietary therapy against aging.
Molecules 21:373.
Wang, Z. G., X. J. Pan, Z. Q. Peng, E. Q. Zhao, and G. H. Zhou.
2009. Methionine and selenium yeast supplementation of the maternal diets affects color, water-holding capacity, and oxidative stability of their male offspring meat at the early stage. Poult.
Sci. 88:1096–1101.
Wang, Z. G., X. J. Pan, W. Q. Zhang, Z. Q. Peng, R. Q. Zhao, and G.
H. Zhou. 2010. Methionine and selenium yeast supplementation of the maternal diets affects antioxidant activity of breeding eggs.
Poult. Sci. 89:931–937.
Wang, Y., H. M. Yang, W. Cao, and Y. B. Li. 2017. Effect of selenium supplementation on pigeon reproductive performance, selenium concentration and antioxidant status. Poult. Sci. 96:3407–
3413.
Wang, Y., X. Zhan, D. Yuan, X. Zhang, and R. Wu. 2011. Influence of dietary selenomethionine supplementation on performance and selenium status of broiler breeders and their subsequent progeny.
Biol. Trace Elem. Res. 143:1497–1507.
Xiao, X., D. Yuan, Y. X. Wang, and X. A. Zhan. 2016. The protective effects of different sources of maternal selenium on oxidative stressed chick embryo liver. Biol. Trace Elem. Res. 172:
201–208.
Yuan, D., X. A. Zhan, and Y. X. Wang. 2012. Effect of selenium sources on the expression of cellular glutathione peroxidase and cytoplasmic thioredoxin reductase in the liver and kidney of broiler breeders and their offspring. Poult. Sci. 91:936–
942.
Yuan, D., L. Zheng, X. Y. Guo, Y. X. Wang, and X. A. Zhan. 2013.
Regulation of selenoprotein P concentration and expression by different sources of selenium in broiler breeders and their offspring. Poult. Sci. 92:2375–2380.
Zhang, L., Y. X. Wang, Y. Zhou, L. Zheng, X. A. Zhan, and
Q. H. Pu. 2014a. Different sources of maternal selenium affect selenium retention, antioxidant status, and meat quality of 56-day-old offspring of broiler breeders. Poult. Sci. 93:
2210–2219.
Zhao, L., L. H. Sun, J. Q. Huang, M. Briens, D. S. Qi, S. W. Xu, and X. G. Lei. 2017. A novel organic selenium compound exerts unique regulation of selenium speciation, selenogenome, and selenoproteins in broiler chicks. J. Nutr. 147:789–797.
Zhao, X., H. Yao, R. Fan, Z. Zhang, and S. Xu. 2014. Selenium deficiency influences nitric oxide and selenoproteins in pancreas of chickens. Biol Trace Elem Res 161: 341–349.