Author details:
Simple Summary: Salmonella enterica subsp. enterica serovar Infantis (S. Infantis) has emerged as a relevant serovar commonly reported in poultry products, which represents a potential public threat. Microalgae synthesize molecules that exert positive effects both on chicken performance and health. Tetraselmis chuii produces fermentable polysaccharides capable of influencing caecal diversity. We tested if the administration of T. chuii could alter caecal microbiota in favor of a reduced S. Infantis load. Animals were fed a microalgae-based diet and challenged with bacteria on day 4. Two days after infection, caecal samples were taken and the viable load of S. Infantis was estimated utilizing a PMAxxTM-based qPCR method, which was developed and tested for assessing the differences between groups. Dietary inclusion of the chlorophyte did not alter bacterial viable load; however, the method proved to be efficient, sensitive, and repeatable. Certainly, the approach used herein could be applied in studies evaluating the effects of different treatments on Salmonella caecal colonization.
Abstract: Salmonella enterica serovars cause infections in humans. S. enterica subsp. enterica serovar Infantis is considered relevant and is commonly reported in poultry products. Evaluating innovative approaches for resisting colonization in animals could contribute to the goal of reducing potential human infections. Microalgae represent a source of molecules associated with performance and health improvement in chickens. Tetraselmis chuii synthesizes fermentable polysaccharides as part of their cell wall content; these sugars are known for influencing caecal bacterial diversity. We hypothesized if its dietary administration could exert a positive effect on caecal microbiota in favor of a reduced S. Infantis load. A total of 72 one-day-old broiler chickens (COBB 500) were randomly allocated into three groups: a control, a group infected with bacteria (day 4), and a group challenged with S. Infantis but fed a microalgae-based diet. Caecal samples (n = 8) were collected two days post-infection. A PMAxxTM-based qPCR approach was developed to assess differences regarding bacterial viable load between groups. The inclusion of the microalga did not modify S. Infantis content, although the assay proved to be efficient, sensitive, and repeatable. The utilized scheme could serve as a foundation for developing novel PCR-based methodologies for estimating Salmonella colonization.
Keywords: PMAxxTM-based qPCR; Salmonella enterica subsp. enterica serovar Infantis; bacterial viability; caecal content; broiler chickens; Tetraselmis chuii
1. James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Alvis Guzman, N. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [CrossRef]
2. Ahaduzzaman, M.; Groves, P.J.; Walkden-Brown, S.W.; Gerber, P.F. A molecular based method for rapid detection of Salmonella spp. in poultry dust samples. MethodsX 2021, 8, 101356. [CrossRef]
3. Voss-Rech, D.; Vaz, C.S.L.; Alves, L.; Coldebella, A.; Leao, J.A.; Rodrigues, D.P.; Back, A. A temporal study of Salmonella enterica serotypes from broiler farms in Brazil. Poult. Sci. 2015, 94, 433–441. [CrossRef]
4. Smith, S.; Seriki, A.; Ajayi, A. Typhoidal and non-typhoidal Salmonella infections in Africa. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1913–1922. [CrossRef]
5. Schultz, B.M.; Melo-Gonzalez, F.; Salazar, G.A.; Porto, B.N.; Riedel, C.A.; Kalergis, A.M.; Bueno, S.M. New Insights on the Early Interaction Between Typhoid and Non-typhoid Salmonella Serovars and the Host Cells. Front. Microbiol. 2021, 12, 647044. [CrossRef]
6. WHO. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiolgy Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015. [CrossRef]
7. Antunes, P.; Mourão, J.; Campos, J.; Peixe, L. Salmonellosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 110–121. [CrossRef] [PubMed]
8. EFSA. Multi-country outbreak of Salmonella Enteritidis sequence type (ST)11 infections linked to poultry products in the EU/EEA and the United Kingdom. EFSA Support. Publ. 2021, 18, 1–29. [CrossRef]
9. Vinueza-Burgos, C.; Cevallos, M.; Ron-Garrido, L.; Bertrand, S.; De Zutter, L. Prevalence and diversity of Salmonella serotypes in ecuadorian broilers at slaughter age. PLoS ONE 2016, 11, e0159567. [CrossRef] [PubMed]
10. Vinueza-Burgos, C.; Baquero, M.; Medina, J.; De Zutter, L. Occurrence, genotypes and antimicrobial susceptibility of Salmonella collected from the broiler production chain within an integrated poultry company. Int. J. Food Microbiol. 2019, 299, 1–7. [CrossRef]
11. Nagy, T.; Szmolka, A.; Wilk, T.; Kiss, J.; Szabó, M.; Pászti, J.; Nagy, B.; Olasz, F. Comparative Genome Analysis of Hungarian and Global Strains of Salmonella Infantis. Front. Microbiol. 2020, 11, 539. [CrossRef] [PubMed]
12. Medina-Santana, J.L.; Ortega-Paredes, D.; de Janon, S.; Burnett, E.; Ishida, M.; Sauders, B.; Stevens, M.; Vinueza-Burgos, C. Investigating the dynamics of Salmonella contamination in Integrated Poultry Companies. Poult. Sci. 2022, 101, 101611. [CrossRef]
13. Torres-Elizalde, L.; Ortega-Paredes, D.; Loaiza, K.; Fernández-Moreira, E.; Larrea-Álvarez, M. In Silico Detection of Antimicrobial Resistance Integrons in Salmonella enterica Isolates from Countries of the Andean Community. Antibiotics 2021, 10, 1388. [CrossRef] [PubMed]
14. Ricke, S.C. Strategies to improve poultry food safety, a landscape review. Annu. Rev. Anim. Biosci. 2021, 9, 379–400. [CrossRef] [PubMed]
15. Schneitz, C.; Koivunen, E.; Tuunainen, P.; Valaja, J. The effects of a competitive exclusion product and two probiotics on Salmonella colonization and nutrient digestibility in broiler chickens. J. Appl. Poult. Res. 2016, 25, 396–406. [CrossRef]
16. Shanmugasundaram, R.; Applegate, T.J.; Selvaraj, R.K. Effect of Bacillus subtilis and Bacillus licheniformis probiotic supplementation on cecal Salmonella load in broilers challenged with salmonella. J. Appl. Poult. Res. 2020, 29, 808–816. [CrossRef]
17. Omar, A.E.; Al-Khalaifah, H.S.; Mohamed, W.A.M.; Gharib, H.S.A.; Osman, A.; Al-Gabri, N.A.; Amer, S.A. Effects of Phenolic-Rich Onion (Allium cepa L.) Extract on the Growth Performance, Behavior, Intestinal Histology, Amino Acid Digestibility, Antioxidant Activity, and the Immune Status of Broiler Chickens. Front. Vet. Sci. 2020, 7, 582612. [CrossRef]
18. Liu, W.C.; Zhu, Y.R.; Zhao, Z.H.; Jiang, P.; Yin, F.Q. Effects of dietary supplementation of algae-derived polysaccharides on morphology, tight junctions, antioxidant capacity and immune response of duodenum in broilers under heat stress. Animals 2021, 11, 2279. [CrossRef] [PubMed]
19. Šefcová, M.A.; Larrea-Álvarez, M.; Larrea-Álvarez, C.M.; Karaffová, V.; Ortega-Paredes, D.; Vinueza-Burgos, C.; Ševˇcíková, Z.; Levkut, M.; Herich, R.; Revajová, V. The probiotic Lactobacillus fermentum Biocenol CCM 7514 moderates Campylobacter jejuni-induced body weight impairment by improving gut morphometry and regulating cecal cytokine abundance in broiler chickens. Animals 2021, 11, 235. [CrossRef] [PubMed]
20. Šefcová, M.; Larrea-Álvarez, M.; Larrea-Álvarez, C.; Karaffová, V.; Revajová, V.; Gancarˇcíková, S.; Ševˇcíková, Z.; Herich, R. Lactobacillus fermentum administration modulates cytokine expression and lymphocyte subpopulation levels in broiler chickens challenged with Campylobacter coli. Foodborne Pathog. Dis. 2020, 17, 485–493. [CrossRef] [PubMed]
21. Šefcová, M.; Larrea-Álvarez, M.; Larrea-Álvarez, C.; Revajová, V.; Karaffová, V.; Košˇcová, J.; Nemcová, R.; Ortega-Paredes, D.; Vinueza-Burgos, C.; Levkut, M.; et al. Effects of Lactobacillus fermentum supplementation on body weight and pro-inflammatory cytokine expression in Campylobacter jejuni-challenged chickens. Vet. Sci. 2020, 7, 121. [CrossRef]
22. Coudert, E.; Baéza, E.; Berri, C. Use of algae in poultry production: A review. Worlds Poult. Sci. J. 2020, 4, 767–786. [CrossRef]
23. Šefcová, M.A.; Santacruz, F.; Larrea-Álvarez, C.M.; Vinueza-Burgos, C.; Ortega-Paredes, D.; Molina-Cuasapaz, G.; Rodríguez, J.; Calero-Cáceres, W.; Revajová, V.; Fernández-Moreira, E.; et al. Administration of Dietary Microalgae Ameliorates Intestinal Parameters, Improves Body Weight, and Reduces Thawing Loss of Fillets in Broiler Chickens: A Pilot Study. Animals 2021, 11, 3601. [CrossRef]
24. De Jesus Raposo, M.F.; Costa de Morais, R.M.S.; Bernando de Morais, A.M.M. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar. Drugs 2013, 11, 233–252. [CrossRef] [PubMed]
25. Bernaerts, T.M.; Gheysen, L.; Kyomugasho, C.; Kermani, Z.J.; Vandionant, S.; Foubert, I.; Hendrickx, M.E.; Van Loey, A.M. Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides. Algal Res. 2018, 32, 150–161. [CrossRef]
26. Sardari, R.R.; Nordberg Karlsson, E. Marine poly-and oligosaccharides as prebiotics. J. Agric. Food Chem. 2018, 66, 11544–11549. [CrossRef] [PubMed]
27. Kulshreshtha, G.; Rathgeber, B.; MacIsaac, J.; Boulianne, M.; Brigitte, L.; Stratton, G.; Thomas, N.A.; Critchley, A.T.; Hafting, J.; Prithiviraj, B. Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, reduce Salmonella Enteritidis in laying hens. Front. Microbiol. 2017, 8, 567. [CrossRef]
28. Kulshreshtha, G.; Borza, T.; Rathgeber, B.; Stratton, G.S.; Thomas, N.A.; Critchley, A.; Hafting, J.; Prithiviraj, B. Red seaweeds Sarcodiotheca gaudichaudii and Chondrus crispus down regulate virulence factors of Salmonella enteritidis and induce immune responses in Caenorhabditis elegans. Front. Microbiol. 2016, 7, 421. [CrossRef]
29. Lu, L.; Wang, J.; Yang, G.; Zhu, B.; Pan, K. Heterotrophic growth and nutrient productivities of Tetraselmis chuii using glucose as a carbon source under different C/N ratios. J. Appl. Phycol. 2017, 29, 15–21. [CrossRef]
30. Isfahani, N.H.; Rahimi, S.; Rasaee, M.J.; Torshizi, M.A.K.; Salehi, T.Z.; Grimes, J.L. The effect of capsulated and noncapsulated egg-yolk–specific antibody to reduce colonization in the intestine of Salmonella enterica ssp. enterica serovar Infantis–challenged broiler chickens. Poult. Sci. 2020, 99, 1387–1394. [CrossRef]
31. Awang, M.S.; Bustami, Y.; Hamzah, H.H.; Zambry, N.S.; Najib, M.A.; Khalid, M.F.; Aziah, I.; Abd Manaf, A. Advancement in Salmonella Detection Methods: From Conventional to Electrochemical-Based Sensing Detection. Biosensors 2021, 11, 346. [CrossRef]
32. Paniel, N.; Noguer, T. Detection of Salmonella in Food Matrices, from Conventional Methods to Recent Aptamer-Sensing Technologies. Foods 2019, 8, 371. [CrossRef] [PubMed]
33. Connolly, C. Use of Viability qPCR for Quantification of Salmonella Typhimurium and Listeria Monocytogenes in Food Safety Challenge Studies; Pennsylvania State University: State College, PA, USA, 2021.
34. Xiao, L.; Zhang, Z.; Sun, X.; Pan, Y.; Zhao, Y. Development of a quantitative real-time PCR assay for viable Salmonella spp. without enrichment. Food Control. 2015, 57, 185–189. [CrossRef]
35. Zhang, J.; Khan, S.; Chousalkar, K.K. Development of PMAxxTM-Based qPCR for the Quantification of Viable and Non-viable Load of Salmonella from Poultry Environment. Front. Microbiol. 2020, 11, 581201. [CrossRef] [PubMed]
36. Geneious Prime. Available online: https://www.geneious.com/ (accessed on 31 August 2021).
37. Rahn, K.; De Grandis, S.A.; Clarke, R.C.; McEwen, S.A.; Galan, J.E.; Ginocchio, C.; Curtiss, R.; Gyles, C.L. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probes. 1992, 6, 271–279. [CrossRef]
38. Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [CrossRef]
39. Strain-Specific Bacterial Viability PCR Kits. Biotium. Available online: https://biotium.com/wp-content/uploads/2016/12/PIStrain-Specific-Bacterial-Viability-PCR-Kits.pdf (accessed on 17 August 2021).
40. Lazic, S.E.; Clarke-Williams, C.J.; Munafò, M.R. What exactly is ‘N’ in cell culture and animal experiments? PLoS Biol. 2018, 16, e2005282. [CrossRef]
41. Cobb500 Broiler Performance and Nutrition Supplement. Available online: https://www.cobb-vantress.com/resource/featured? q=nutrition (accessed on 3 September 2021).
42. Kang, H.K.; Salim, H.M.; Akter, N.; Kim, D.W.; Kim, J.H.; Bang, H.T.; Kim, M.J.; Na, J.C.; Hwangbo, J.; Choi, H.C.; et al. Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens. J. Appl. Poult. Res. 2013, 22, 100–108. [CrossRef]
43. He, T.; Zhu, Y.H.; Yu, J.; Xia, B.; Liu, X.; Yang, G.Y.; Su, J.H.; Guo, L.; Wang, M.L.; Wang, J.F. Lactobacillus johnsonii L531 reduces pathogen load and helps maintain short-chain fatty acid levels in the intestines of pigs challenged with Salmonella enterica Infantis. Vet. Microbiol. 2019, 230, 187–194. [CrossRef] [PubMed]
44. Torok, V.A.; Ophel-Keller, K.; Loo, M.; Hughes, R.J. Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Appl. Environ. Microbiol. 2008, 74, 783–791. [CrossRef]
45. Shah, M.K.; Bradshaw, R.; Nyarko, E.; Handy, E.T.; East, C.; Millner, P.D.; Bergholz, T.M.; Sharma, M. Salmonella enterica in soils amended with heat-treated poultry pellets survived longer than bacteria in unamended soils and more readily transferred to and persisted on spinach. Appl. Environ. Microbiol. 2019, 85, e00334-19. [CrossRef] [PubMed]