Abstract
Salmonella is a common foodborne pathogen in the poultry production systems. Its presence in this food industry is determined by the fact that it can survive and pass throughout the different steps in the poultry production. In this study we aimed to study the occurrence, genotypes and antimicrobial resistance of Salmonella collected from the broiler production chain within an integrated poultry company.
Three hundred fourteen samples were collected in the feeding plant, farms and the slaughterhouse. Samples were cultured for Salmonella isolation according to the ISO6579/Amd 1. Isolates were further typed by Kauffmann-White scheme and pulse field gel electrophoresis (PFGE). Antimicrobial resistance to 11 antimicrobials was studied by disk diffusion tests and sequencing of ESBL genes.
From the collected samples 70 (22%) were found to be Salmonella positive. The lowest Salmonella rates were found in feed samples while in farm and slaughterhouse samples Salmonella presence ranged from 5% to 88%. S. Infantis was the most common serotype (94%, 66/70). PFGE demonstrated that isolates belonged to 11 genotypes. Some genotypes were continuously identified throughout the production chain. 97% of the isolates showed resistance to at least one antimicrobial. Moreover, all S. Infantis isolates and one auto-agglutinable isolate showed resistance to at least 6 antimicrobials. 30 and 8 isolates were positive to blaCTX-M-65 and blaCTX-M-14 genes respectively. No blaKPC resistance genes were identified in any isolate.
This study highlights the predominance of S. Infantis in the integrated poultry company. Genotypes showed that cross-contamination between stages of poultry production can occur, stressing the importance of implementing good hygiene practices in every level of the production. Moreover, multidrug resistance patterns and the presence of important ESBL genes have public health implications that need to be deeply discussed with a one health approach.
Abstract published in International Journal of Food Microbiology, Volume 299, 16 June 2019, Pages 1-7. https://doi.org/10.1016/j.ijfoodmicro.2019.03.014.