Author details:
The study of non-typhoid Salmonella in broiler integrations has been limited by the resolution of typing techniques. Although serotyping of Salmonella isolates is used as a traditional approach, it is not of enough resolution to clearly understand the dynamics of this pathogen within poultry companies. The aim of this research was to investigate the epidemiology and population dynamics of Salmonella serotypes in 2 poultry integrations using a whole genome sequencing approach. Two hundred and forty-three Salmonella isolates recovered from the broiler production chain of 2 integrated poultry companies were whole genome sequenced and analyzed with dedicated databases and bioinformatic software. The analyses of sequences revealed that S. Infantis was the most frequent serotype (82.3%). Most isolates showed a potential for resistance against medically important antibiotics and disinfectants. Furthermore, 97.5% of isolates harbored the pESI-like mega plasmid, that plays an important role in the global dissemination of AMR. SNP tree analysis showed that there were clones that are niche-specific while other ones were distributed throughout the broiler production chains. In this study, we demonstrated the potential of whole genome sequencing analysis for a comprehensive understanding of Salmonella distribution in integrated poultry companies. Data obtained with these techniques allow determination of the presence of genetic factors that play an important role in the environmental fitness and pathogenicity of Salmonella.
Key words: Salmonella Infantis, poultry production chain, WGS, antimicrobial resistance, pESI-like
Acar, S., E. Bulut, M. J. Stasiewicz, and Y. Soyer. 2019. Genome analysis of antimicrobial resistance, virulence, and plasmid presence in Turkish Salmonella serovar Infantis isolates. Int. J. Food Microbiol. 307:108275.
Achtman, M., Z. Zhou, N.-F. Alikhan, W. Tyne, J. Parkhill, M. Cormican, C.-S. Chiou, M. Torpdahl, E. Litrup, D. M. Prendergast, J. E. Moore, S. Strain, C. Kornschober, R. Meinersmann, A. Uesbeck, F.-X. Weill, A. Coffey, H. Andrews-Polymenis, R. Curtiss rd, and S. Fanning. 2020. Genomic diversity of Salmonella enterica -the UoWUCC 10K genomes project. Wellcome Open Res. 5:223.
Alba, P., P. Leekitcharoenphon, V. Carfora, R. Amoruso, G. Cordaro, P. Di Matteo, A. Ianzano, M. Iurescia, E. L. Diaconu, E.-E.-A. N. Study Group, S. K. Pedersen, B. Guerra, R. S. Hendriksen, A. Franco, and A. Battisti. 2020. E.-E.-A. N. Study Group. 2020. Molecular epidemiology of Salmonella Infantis in Europe: insights into the success of the bacterial host and its parasitic pESI-like megaplasmid. Microb. Genomics. 6:1–20.
Antunes, P., J. Mour~ao, J. Campos, and L. Peixe. 2016. Salmonellosis: the role of poultry meat. Clin. Microbiol. Infect. 22:110–121.
Aviv, G., G. Rahav, and O. Gal-Mor. 2016. Horizontal transfer of the salmonella enterica serovar infantis resistance and virulence plasmid pESI to the gut microbiota of warm-blooded hosts. MBio. 7:711–721.
Aviv, G., K. Tsyba, N. Steck, M. Salmon-Divon, A. Cornelius, G. Rahav, G. A. Grassl, and O. Gal-Mor. 2014. A unique megaplasmid contributes to stress tolerance and pathogenicity of an emergent Salmonella enterica serovar Infantis strain. Environ. Microbiol. 16:977–994.
Bjelland, A. M., L. M. Sandvik, M. M. Skarstein, L. Svendal, and J. J. Debenham. 2020. Prevalence of Salmonella serovars isolated from reptiles in Norwegian zoos. Acta Vet. Scand. 62:3.
Blair, J. M. A., H. E. Smith, V. Ricci, A. J. Lawler, L. J. Thompson, and L. J. V Piddock. 2015. Expression of homologous RND efflux pump genes is dependent upon AcrB expression: implications for efflux and virulence inhibitor design. J. Antimicrob. Chemother. 70:424–431.
Bogomazova, A. N., V. D. Gordeeva, E. V. Krylova, I. V. Soltynskaya, E. E. Davydova, O. E. Ivanova, and A. A. Komarov. 2020. Mega-plasmid found worldwide confers multiple antimicrobial resistance in Salmonella Infantis of broiler origin in Russia. Int. J. Food Microbiol. 319:108497.
Bokhary, H., K. N. A. Pangesti, H. Rashid, M. Abd El Ghany, and G. A. Hill-Cawthorne. 2021. Travel-related antimicrobial resistance: a systematic review. Trop. Med. Infect. Dis. 6:1–27.
Bortolaia, V., R. S. Kaas, E. Ruppe, M. C. Roberts, S. Schwarz, V. Cattoir, A. Philippon, R. L. Allesoe, A. R. Rebelo, A. F. Florensa, L. Fagelhauer, T. Chakraborty, B. Neumann, G. Werner, J. K. Bender, K. Stingl, M. Nguyen, J. Coppens, B. B. Xavier, S. Malhotra-Kumar, H. Westh, M. Pinholt, M. F. Anjum, N. A. Duggett, I. Kempf, S. Nyk€asenoja, S. Olkkola, K. Wieczorek, A. Amaro, L. Clemente, J. Mossong, S. Losch, C. Ragimbeau, O. Lund, and F. M. Aarestrup. 2020. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75:3491–3500.
Braden, C. R. 2006. Salmonella enterica serotype Enteritidis and eggs: a national epidemic in the United States. Clin. Infect. Dis. 43:512–517.
Brown, A. C., J. C. Chen, L. K. F. Watkins, D. Campbell, J. P. Folster, H. Tate, J. Wasilenko, C. Van Tubbergen, and C. R. Friedman. 2018. CTX-M-65 extended-spectrum b-lactamase-producing salmonella enterica serotype infantis, United States. Emerg. Infect. Dis. 24:2284–2291.
Buckingham, L., and J. Hogan. 2010. Blast atlas: a virtual observatory for genomes. Pages 57−64 in Proc. - 6th IEEE Int. Conf. e-Science Work.
Burnett, E., M. Ishida, S. de Janon, S. Naushad, M.-O. Duceppe, R. Gao, A. Jardim, J. C. Chen, K. A. Tagg, D. Ogunremi, and C. Vinueza-Burgos. 2021. Whole-genome sequencing reveals the presence of the blaCTX-M-65 gene in extended-spectrum b-lactamase-producing and multi-drug-resistant clones of Salmonella Serovar infantis isolated from broiler chicken environments in the Galapagos Islands. Antibiot. (Basel, Switzerland). 10:1–13.
Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. L. Madden. 2009. BLAST+: architecture and applications. BMC Bioinform. 10:1–9.
Carattoli, A., E. Zankari, A. García-Fernandez, M. Voldby Larsen, O. Lund, L. Villa, F. Møller Aarestrup, and H. Hasman. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58:3895–3903.
Cartelle Gestal, M., J. Zurita, A. Paz Y Mino, D. Ortega-Paredes, and I. Alcocer. 2016. Characterization of a small outbreak of Salmonella enterica serovar Infantis that harbour CTX-M-65 in Ecuador. Braz. J. Infect. Dis. 20:406–407.
CDC, (Centers for Disease Control and Prevention). 2016. Pulsedfield Gel Electrophoresis (PFGE). PulseNet Methods Protoc. https://www.cdc.gov/pulsenet/pathogens/pfge.html (Accessed Mar. 2019).
CDC, (Centers for Disease Control and Prevention). 2018. National Enteric Disease Surveillance: Salmonella Annual Report, 2016. Atlanta, GA. Accessed July 2021. https://www.cdc.gov/national surveillance/salmonella-surveillance.html.
CDC PulseNet. 2018. Pages 1−44 in Laboratory Standard Operating Procedure for PulseNet Nextera XT Library Prep and Run Setup for the Illumina MiSeq: 32PNL, Atlanta-Georgia, USA. Cloeckaert, A., and E. Chaslus-Dancla. 2001. Mechanisms of quinolone resistance in Salmonella. Vet. Res. 32:291–300.
Cohen, E., S. Azriel, O. Auster, A. Gal, C. Zitronblat, S. Mikhlin, F. Scharte, M. Hensel, G. Rahav, and O. Gal-Mor. 2021. Pathoadaptation of the passerine-associated Salmonella enterica serovar Typhimurium lineage to the avian host. PLoS Pathog. 17: e1009451.
Cohen, E., G. Rahav, and O. Gal-Mor. 2020. Genome sequence of an emerging Salmonella enterica serovar Infantis and genomic comparison with other S. Infantis strains. Genome Biol. Evol. 12:1–14.
Cox, N. A., J. S. Bailey, J. E. Thomson, and B. J. Juven. 1983. Salmonella and other Enterobacteriaceae found in commercial poultry feed. Poult. Sci. 62:2169–2175.
Crump, J. A., M. Sj€olund-Karlsson, M. A. Gordon, and C. M. Parry. 2015. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin. Microbiol. Rev. 28:901–937.
Cunha-Neto, A.da, L. A. Carvalho, R. C. T. Carvalho, D. dos Prazeres Rodrigues, S. B. Mano, E. E. de S. Figueiredo, and C. A. Conte Jr. 2018. Salmonella isolated from chicken carcasses from a slaughterhouse in the state of Mato Grosso, Brazil: antibiotic resistance profile, serotyping, and characterization by repetitive sequence-based PCR system. Poult. Sci. 97:1373–1381.
Davies, R. H., and A. D. Wales. 2010. Investigations into Salmonella contamination in poultry feedmills in the United Kingdom. J. Appl. Microbiol. 109:1430–1440.
Doster, E., S. M. Lakin, C. J. Dean, C. Wolfe, J. G. Young, C. Boucher, K. E. Belk, N. R. Noyes, and P. S. Morley. 2019. MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res. 48:D561–D569.
EFSA, (European Food Safety Authority). 2019. (European Centre for Disease Prevention and Control) ECDC. 2019. The European Union One Health 2018 zoonoses report. EFSA J. 1:1–275.
EFSA, (European Food Safety Authority). 2021. (European Centre for Disease Prevention and Control) ECDC. 2021. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/ 2019.
EFSA J. 19:1–179. Evangelopoulou, G., S. Kritas, A. Govaris, and A. R. Burriel. 2013. Animal salmonelloses: a brief review of “host adaptation and host specificity” of Salmonella spp. Vet. World. 6:703–708.
Foley, S. L., R. Nayak, I. B. Hanning, T. J. Johnson, J. Han, and S. C. Ricke. 2011. Population dynamics of Salmonella enterica serotypes in commercial egg and poultry production. Appl. Environ. Microbiol. 77:4273–4279.
Franco, A., P. Leekitcharoenphon, F. Feltrin, P. Alba, G. Cordaro, M. Iurescia, R. Tolli, M. D’Incau, M. Staffolani, E. Di Giannatale, R. S. Hendriksen, and A. Battisti. 2015. Emergence of a clonal lineage of multidrug-resistant ESBL-producing Salmonella infantis transmitted from broilers and broiler meat to humans in Italy between 2011 and 2014. (A Cloeckaert, Ed.). PLoS One 10: e0144802.
García-Soto, S., M. Y. Abdel-Glil, H. Tomaso, J. Linde, and U. Methner. 2020. Emergence of multidrug-resistant Salmonella enterica Subspecies enterica Serovar infantis of multilocus sequence type 2283 in German broiler farms. Front. Microbiol. 11:1741.
Glatz, P., and R. Pym. 2015. Poultry housing and management in developing countries. Pages 23−44 in Poultry Development Review. 1st ed. Food and Agriculture Organization of the United Nations, Rome, Italy.
Guiney, D. G., F. C. Fang, M. Krause, S. Libby, N. A. Buchmeier, and J. Fierer. 1995. Biology and clinical significance of virulence plasmids in Salmonella serovars. Clin. Infect. Dis. 21(Suppl. 2):S146– S151.
Guiney, D. G., and J. Fierer. 2011. The role of the spv genes in Salmonella pathogenesis. Front. Microbiol. 2:129.
Gymoese, P., K. Kiil, M. Torpdahl, M. T. Østerlund, G. Sørensen, J. E. Olsen, E. M. Nielsen, and E. Litrup. 2019. WGS based study of the population structure of Salmonella enterica serovar Infantis. BMC Genomics. 20:870.
Ishihara, K., C. Nakazawa, S. Nomura, S. Elahi, M. Yamashita, and H. Fujikawa. 2020. Effects of climatic elements on Salmonella contamination in broiler chicken meat in Japan. J. Vet. Med. Sci. 82:646–652.
Kurekci, C., S. Sahin, E. Iwan, R. Kwit, A. Bomba, and € D. Wasyl. 2021. Whole-genome sequence analysis of Salmonella Infantis isolated from raw chicken meat samples and insights into pESI-like megaplasmid. Int. J. Food Microbiol. 337:108956.
Lapierre, L., J. Cornejo, S. Zavala, N. Galarce, F. Sanchez, M. B. Benavides, M. Guzman, and L. Saenz. 2020. Phenotypic and genotypic characterization of virulence factors and susceptibility to antibiotics in Salmonella infantis strains isolated from chicken meat: first findings in Chile. Animals. 10:1049.
Letunic, I., and P. Bork. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47: W256–W259.
Li, Y., Q. Yang, C. Cao, S. Cui, Y. Wu, H. Yang, Y. Xiao, and B. Yang. 2020. Prevalence and characteristics of Salmonella isolates recovered from retail raw chickens in Shaanxi province. China Poult. Sci. 99:6031–6044.
Liebana, E., L. Garcia-Migura, M. F. Breslin, R. H. Davies, and M. J. Woodward. 2001. Diversity of strains of Salmonella enterica serotype enteritidis from English poultry farms assessed by multiple genetic fingerprinting. J. Clin. Microbiol. 39:154–161.
Liu, B., D. Zheng, Q. Jin, L. Chen, and J. Yang. 2019. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 47:D687–D692. Llor, C., and L. Bjerrum. 2014. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. drug Saf. 5:229–241.
Magdelaine, P., M. P. Spiess, and E. Valceschini. 2008. Poultry meat consumption trends in Europe. Worlds Poult. Sci. J. 64:53–64.
Mambu, J., I. Virlogeux-Payant, S. Holbert, O. Grepinet, P. Velge, and A. Wiedemann. 2017. An updated view on the Rck Invasin of Salmonella: still much to discover. Front. Cell. Infect. Microbiol. 7:500.
McMillan, E. A., C. R. Jackson, and J. G. Frye. 2020a. Transferable plasmids of Salmonella enterica associated with antibiotic resistance genes. Front. Microbiol. 11.
McMillan, E. A., J. L. Wasilenko, K. A. Tagg, J. C. Chen, M. Simmons, S. K. Gupta, G. E. Tillman, J. Folster, C. R. Jackson, and J. G. Frye. 2020b. Carriage and gene content variability of the pESI-like plasmid sssociated with Salmonella infantis recently established in United States poultry production. Genes (Basel). 11:1–15.
Mejía, L., J. L. Medina, R. Bayas, C. S. Salazar, F. Villavicencio, S. Zapata, J. Matheu, J. A. Wagenaar, F. Gonzalez-Candelas, and C. Vinueza-Burgos. 2020. Genomic epidemiology of Salmonella infantis in Ecuador: from poultry farms to human infections. Front. Vet. Sci. 7:1–10.
Mejía, L., G. Vela, and S. Zapata. 2021. High occurrence of multiresistant Salmonella infantis in retail meat in Ecuador. Foodbor. Pathog. Dis. 18:41–48.
Mølbak, K. 2005. Human health consequences of antimicrobial drugresistant Salmonella and other foodborne pathogens. Clin. Infect. Dis. 41:1613–1620.
Nagakubo, S., K. Nishino, T. Hirata, and A. Yamaguchi. 2002. The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J. Bacteriol. 184:4161–4167.
Negi, V. D., S. Singhamahapatra, and D. Chakravortty. 2007. Salmonella enterica serovar Typhimurium strain lacking pmrG-HM-D provides excellent protection against salmonellosis in murine typhoid model. Vaccine. 25:5315–5323.
Nishino, K., T. Latifi, and E. A. Groisman. 2006. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 59:126–141.
Onwuezobe, I. A., P. O. Oshun, and C. C. Odigwe. 2012. Antimicrobials for treating symptomatic non-typhoidal Salmonella infection. Cochrane Database Syst. Rev. 11:CD001167.
Pal, C., J. Bengtsson-Palme, E. Kristiansson, and D. G. J. Larsson. 2015. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics. 16:964.
Parry, C. M. 2003. Antimicrobial drug resistance in Salmonella enterica. Curr. Opin. Infect. Dis. 16:467–472.
Proietti, P. C., V. Stefanetti, L. Musa, A. Zicavo, A. M. Dionisi, S. Bellucci, A. La Mensa, L. Menchetti, R. Branciari, R. Ortenzi, and M. P. Franciosini. 2020. Genetic profiles and antimicrobial resistance patterns of Salmonella infantis strains isolated in Italy in the food chain of broiler meat production. Antibiot. (Basel, Switzerland). 9:1–12.
Rasschaert, G., K. Houf, J. Van Hende, and L. De Zutter. 2006. Campylobacter contamination during poultry slaughter in Belgium. J. Food Prot. 69:27–33.
Rosenberg, E. Y., D. Ma, and H. Nikaido. 2000. AcrD of Escherichia coli is an aminoglycoside efflux pump. J. Bacteriol. 182:1754–1756.
Rouger, A., O. Tresse, and M. Zagorec. 2017. Bacterial contaminants of poultry meat: sources, species, and dynamics. Microorganisms. 5:50.
Salazar, G. A., R. Guerrero-Lopez, L. Lalaleo, D. Aviles-Esquivel, C. Vinueza-Burgos, and W. Calero-Caceres. 2019. Presence and diversity of Salmonella isolated from layer farms in central Ecuador. F1000Research. 8:1–12.
Scallan, E., R. M. Hoekstra, F. J. Angulo, R. V. Tauxe, M.-A. Widdowson, S. L. Roy, J. L. Jones, and P. M. Griffin. 2011. Foodborne illness acquired in the United States−major pathogens. Emerg. Infect. Dis. 17:7–15.
Seemann, T. 2020. ABRicate. Accessed February 2021. https:// github.com/tseemann/abricate.
Shah, D. H., N. C. Paul, W. C. Sischo, R. Crespo, and J. Guard. 2017. Population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poult. Sci. 96:687–702.
Simpson, K. M. J., G. A. Hill-Cawthorne, M. P. Ward, and S. M. Mor. 2018. Diversity of Salmonella serotypes from humans, food, domestic animals and wildlife in New South Wales, Australia. BMC Infect. Dis. 18:623.
Slipski, C. J., T. R. Jamieson, A. Lam, V. L. Shing, K. Bell, G. G. Zhanel, and D. C. Bay. 2019. Plasmid transmitted Small Multidrug Resistant (SMR) efflux pumps differ in gene regulation and enhance tolerance to Quaternary Ammonium Compounds (QAC) when grown as biofilms. bioRxiv.
Stanaway, J. D., A. Parisi, K. Sarkar, B. F. Blacker, R. C. Reiner, S. I. Hay, M. R. Nixon, C. Dolecek, S. L. James, A. H. Mokdad, G. Abebe, E. Ahmadian, F. Alahdab, B. T. T. Alemnew, V. Alipour, F. Allah Bakeshei, M. D. Animut, F. Ansari, J. Arabloo, E. T. Asfaw, M. Bagherzadeh, Q. Bassat, Y. M. M. Belayneh, F. Carvalho, A. Daryani, F. M. Demeke, A. B. B. Demis, M. Dubey, E. E. Duken, S. J. Dunachie, A. Eftekhari, E. Fernandes, R. Fouladi Fard, G. A. Gedefaw, B. Geta, K. B. Gibney, A. Hasanzadeh, C. L. Hoang, A. Kasaeian, A. Khater, Z. T. Kidanemariam, A. M. Lakew, R. Malekzadeh, A. Melese, D. T. Mengistu, T. Mestrovic, B. Miazgowski, K. A. Mohammad, M. Mohammadian, A. Mohammadian-Hafshejani, C. T. Nguyen, L. H. Nguyen, S. H. Nguyen, Y. L. Nirayo, A. T. Olagunju, T. O. Olagunju, H. Pourjafar, M. Qorbani, M. Rabiee, N. Rabiee, A. Rafay, A. Rezapour, A. M. Samy, S. G. Sepanlou, M. A. Shaikh, M. Sharif, M. Shigematsu, B. Tessema, B. X. Tran, I. Ullah, E. M. Yimer, Z. Zaidi, C. J. L. Murray, and J. A. Crump. 2019. The global burden of non-typhoidal salmonella invasive disease: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 19:1312–1324.
Tate, H., J. P. Folster, C.-H. Hsu, J. Chen, M. Hoffmann, C. Li, C. Morales, G. H. Tyson, S. Mukherjee, A. C. Brown, A. Green, W. Wilson, U. Dessai, J. Abbott, L. Joseph, J. Haro, S. Ayers, P. F. McDermott, and S. Zhao. 2017. Comparative analysis of extended-spectrum-b-lactamase CTX-M-65-producing Salmonella enterica serovar infantis isolates from humans, food animals, and retail chickens in the United States. Antimicrob. Agents Chemother. 61:1–11.
Thomas, C. M., and K. M. Nielsen. 2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3:711–721.
Totton, S. C., A. M. Farrar, W. Wilkins, O. Bucher, L. A. Waddell, B. J. Wilhelm, S. A. McEwen, and A. Rajic. 2012. A systematic review and meta-analysis of the effectiveness of biosecurity and vaccination in reducing Salmonella spp. in broiler chickens. Food Res. Int. 45:617–627.
Tyson, G. H., C. Li, L. B. Harrison, G. Martin, C.-H. Hsu, H. Tate, T.-T. Tran, E. Strain, and S. Zhao. 2020. A multidrug-resistant Salmonella infantis clone is spreading and recombining in the United States. Microb. Drug Resist. 27 mdr.2020.0389.
Valderrama, W., J. Pastor, J. Mantilla Salazar, and M. Ortiz. 2014. Estudio de prevalencia de serotipos de salmonella en granjas avícolas tecnificadas en el Peru. Lima. Accessed July 2021. https://repo sitorio.senasa.gob.pe:8443/handle/SENASA/137.
Vallejos-Sanchez, K., L. Tataje-Lavanda, D. Villanueva-Perez, J. Bendezu, A. Montalv an, M. Zimic-Peralta, M. Fernandez-Sanchez, and M. Fernandez-Díaz. 2019. Wholegenome sequencing of a Salmonella enterica subsp. enterica Serovar infantis strain isolated from broiler chicken in Peru. Microbiol. Resour. Announc. 8:30–33.
Ventola, C. L. 2015. The antibiotic resistance crisis: part 1: causes and threats. P&T. 40:277–283.
Villagomez, S., M. Logacho, and C. Vinueza. 2017. Presencia y Resistencia a los Antimicrobianos de serovariedades de Salmonella enterica aisladas en una empresa avícola integrada del Ecuador. Rev. Ecuat. Med. Cienc. Biol. 38:11–24.
Vinueza-Burgos, C., M. Baquero, J. Medina, and L. De Zutter. 2019. Occurrence, genotypes and antimicrobial susceptibility of Salmonella collected from the broiler production chain within an integrated poultry company. Int. J. Food Microbiol. 299:1–7.
Vinueza-Burgos, C., M. Cevallos, L. Ron-Garrido, S. Bertrand, and L. De Zutter. 2016. Prevalence and diversity of Salmonella serotypes in ecuadorian broilers at slaughter age. PLoS One 11:e0159567.
Windhorst, H.-W. 2017. Dynamics and patterns of global poultrymeat production. Pages 1−25 in Poultry Quality Evaluation. Elsevier, Amsterdam, Netherlands.
Zankari, E., H. Hasman, S. Cosentino, M. Vestergaard, S. Rasmussen, O. Lund, F. M. Aarestrup, and M. V. Larsen. 2012. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67:2640–2644.
Zhou, Z., N.-F. Alikhan, K. Mohamed, Y. Fan, and Agama Study Group. 2020M. Achtman. 2020. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 30:138–152.