Author details:
This study aimed to evaluate the long-term dietary effects of dried olive pulp (OP) on production performance, fatty acid profile and health lipid indices and quality characteristics of produced eggs, health and welfare indicators of laying hens. It was carried out in a commercial poultry farm using 300 Isa Brown layers at 23 weeks of age. The hens were randomly and equally divided in six dietary groups CON, OP2, OP3, OP4, OP5 and OP6, according to the inclusion rate of OP in the ration (0%, 2%, 3%, 4%, 5% and 6%, respectively). OP feeding increased the percentage of polyunsaturated fatty acids (PUFA) in eggs, decreased that of saturated fatty acids (SFA) and improved the PUFA to SFA ratio and health lipid indices, as indicated by the decrease of AI and TI and the increase in the h/H ratio of produced eggs, in a dose-dependent way. OP-fed layers presented a lower percentage of broken eggshells compared to controls. No adverse effects on birds’ performance, egg quality traits, health and welfare parameters were observed but a positive impact on Keel Bone Damage (KBD) incidence and belly plumage damage was recorded. OP feeding at the rates of 5% and 6% seems to be beneficial in improving egg nutrition quality.
Keywords: olive pulp; layers; performance; egg quality; egg lipid profile; health; welfare
1. Abd El-Galil, K.; Morsy, A.S.; Emam, K.R.S.; Hassan, A.M. Physiological Responses and Productive Performance of Laying Hens Fed Olive Cake under South Sinai Conditions. Egypt. Poult. Sci. J. 2017, 37, 293–304.
2. Zangeneh, S.; Torki, M. Effects of B-Mannanase Supplementing of Olive Pulp-Included Diet on Performance of Laying Hens, Egg Quality Characteristics, Humoral and Cellular Immune Response and Blood Parameters. Glob. Vet. 2011, 7, 391–398.
3. Kostas, E.T.; Durán-Jiménez, G.; Shepherd, B.J.; Meredith, W.; Stevens, L.A.; Williams, O.S.A.; Lye, G.J.; Robinson, J.P. Microwave Pyrolysis of Olive Pomace for Bio-Oil and Bio-Char Production. Chem. Eng. J. 2020, 387, 123404. [CrossRef]
4. Salomone, R.; Ioppolo, G. Environmental Impacts of Olive Oil Production: A Life Cycle Assessment Case Study in the Province of Messina (Sicily). J. Clean. Prod. 2012, 28, 88–100. [CrossRef]
5. European Commission. The European Green Deal. In Communication from The Commission to The European Parliament, The European Council, The Council, The European Economic and Social Committee and The Committee of The Regions; European Commission: Brussels, Belgium, 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52019DC0640&from= EN (accessed on 10 January 2022).
6. Ibrahim, N.S.; Sabic, E.M.; Abu-Taleb, A.M. Effect of Inclusion Irradiated Olive Pulp in Laying Quail Diets on Biological Performance. J. Radiat. Res. Appl. Sci. 2018, 11, 340–346. [CrossRef]
7. Sayehban, P.; Seidavi, A.; Dadashbeiki, M.; Ghorbani, A.; Araújo, W.A.G.; Albino, L.F.T. Effects of Different Levels of Two Types of Olive Pulp with or without Exogenous Enzyme Supplementation on Broiler Performance and Economic Parameters. Rev. Bras. Ciênc. Avícola 2016, 18, 489–500. [CrossRef]
8. Abdel-Moneim, A.E.; Shehata, A.M.; Alzahrani, S.O.; Shafi, M.E.; Mesalam, N.M.; Taha, A.E.; Swelum, A.A.; Arif, M.; Fayyaz, M.; Abd El-Hack, M.E. The Role of Polyphenols in Poultry Nutrition. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1851–1866. [CrossRef]
9. Visioli, F.; Poli, A.; Gall, C. Antioxidant and Other Biological Activities of Phenols from Olives and Olive Oil. Med. Res. Rev. 2002, 22, 65–75. [CrossRef]
10. Omar, S.H. Oleuropein in Olive and Its Pharmacological Effects. Sci. Pharm. 2010, 78, 133–154. [CrossRef]
11. Barbaro, B.; Toietta, G.; Maggio, R.; Arciello, M.; Tarocchi, M.; Galli, A.; Balsano, C. Effects of the Olive-Derived Polyphenol Oleuropein on Human Health. Int. J. Mol. Sci. 2014, 15, 18508–18524. [CrossRef]
12. Bulotta, S.; Celano, M.; Lepore, S.M.; Montalcini, T.; Pujia, A.; Russo, D. Beneficial Effects of the Olive Oil Phenolic Components Oleuropein and Hydroxytyrosol: Focus on Protection against Cardiovascular and Metabolic Diseases. J. Transl. Med. 2014, 12, 219. [CrossRef] [PubMed]
13. Casamenti, F.; Grossi, C.; Rigacci, S.; Pantano, D.; Luccarini, I.; Stefani, M. Oleuropein Aglycone: A Possible Drug against Degenerative Conditions. In Vivo Evidence of Its Effectiveness against Alzheimer’s Disease. J. Alzheimer’s Dis. 2015, 45, 679–688. [CrossRef] [PubMed]
14. Duborija-Kovacevic, N.; Shavrina, K. New Findings on the Pharmacodynamic Actions of Olive Oil: Our Contribution to Better Evidence about Its Remedial Properties. Prog. Nutr. 2018, 20, 30–38. [CrossRef]
15. Ranalli, A.; Pollastri, L.; Contento, S.; Di Loreto, G.; Iannucci, E.; Lucera, L.; Russi, F. Acylglycerol and Fatty Acid Components of Pulp, Seed, and Whole Olive Fruit Oils. Their Use to Characterize Fruit Variety by Chemometrics. J. Agric. Food Chem. 2002, 50, 3775–3779. [CrossRef]
16. Tufarelli, V.; Introna, M.; Cazzato, E.; Mazzei, D.; Laudadio, V. Suitability of Partly Destoned Exhausted Olive Cake as By-Product Feed Ingredient for Lamb Production. J. Anim. Sci. 2013, 91, 872–877. [CrossRef]
17. Mohebbifar, A.; Afsari, M.; Torki, M. Egg Quality Characteristics and Productive Performance of Laying Hens Fed Olive Pulp Included Diets Supplemented with Enzyme. Glob. Vet. 2011, 6, 409–416.
18. Zarei, M.; Ehsani, M.; Torki, M. Productive Performance of Laying Hens Fed Wheat-Based Diets Included Olive Pulp with or without a Commercial Enzyme Product. Afr. J. Biotechnol. 2011, 10, 4303–4312. [CrossRef]
19. Afsari, M.; Mohebbifar, A.; Torki, M. Effects of Dietary Inclusion of Olive Pulp Supplemented with Probiotics on Productive Performance, Egg Quality and Blood Parameters of Laying Hens. Annu. Res. Rev. Biol. 2014, 4, 198–211. [CrossRef]
20. Ghasemi, R.; Torki, M.; Ghasemi, H.A.; Zarei, M. Single or Combined Effects of Date Pits and Olive Pulps on Productive Traits, Egg Quality, Serum Lipids and Leucocytes Profiles of Laying Hens. J. Appl. Anim. Res. 2014, 42, 103–109. [CrossRef]
21. Al-Harthi, M.A. The Effect of Different Dietary Contents of Olive Cake with or without Saccharomyces Cerevisiae on Egg Production and Quality, Inner Organs and Blood Constituents of Commercial Layers. Eur. Poult. Sci. 2015, 79, 83. [CrossRef]
22. Al-Harthi, M.A.; Attia, Y.A. Effect of Citric Acid on the Utilization of Olive Cake Diets for Laying Hens. Ital. J. Anim. Sci. 2015, 14, 394–402. [CrossRef]
23. Rezar, V.; Levart, A.; Salobir, J. The Effect of Olive by Products and Their Extracts on Antioxidative Status of Laying Hens and Oxidative Stability of Eggs Enriched with N-3 Fatty Acids. Poljoprivreda 2015, 21, 216–219. [CrossRef]
24. EUR-Lex. Council Directive 1999/74/EC of 19 July 1999 Laying down Minimum Standards for the Protection of Laying Hens; European Union: Maastricht, The Netherlands, 1999; Volume OJ L203, pp. 53–57. Available online: http://data.europa.eu/eli/dir/1999/7 4/oj/eng (accessed on 12 January 2022).
25. EUR-Lex. Commission Regulation (EEC) No 2568/91 of 11 July 1991 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis; European Union: Maastricht, The Netherlands, 1991; Volume OJ L248, pp. 1–83. Available online: http://data.europa.eu/eli/reg/1991/2568/oj/eng (accessed on 20 January 2022).
26. International Organization for Standardization. Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 4: Determination by Capillary Gas Chromatography; International Organization for Standardization: London, UK, 2015.
27. Omri, B.; Chalghoumi, R.; Izzo, L.; Ritieni, A.; Lucarini, M.; Durazzo, A.; Abdouli, H.; Santini, A. Effect of Dietary Incorporation of Linseed Alone or Together with Tomato-Red Pepper Mix on Laying Hens’ Egg Yolk Fatty Acids Profile and Health Lipid Indexes. Nutrients 2019, 11, 813. [CrossRef] [PubMed]
28. Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [CrossRef]
29. Ko, E.-Y.; Saini, R.K.; Keum, Y.-S.; An, B.-K. Age of Laying Hens Significantly Influences the Content of Nutritionally Vital Lipophilic Compounds in Eggs. Foods 2021, 10, 22. [CrossRef] [PubMed]
30. Wilkins, L.J.; Brown, S.N.; Zimmerman, P.H.; Leeb, C.; Nicol, C.J. Investigation of Palpation as a Method for Determining the Prevalence of Keel and Furculum Damage in Laying Hens. Vet. Rec. 2004, 155, 547–549. [CrossRef]
31. Welfare Quality Network. Welfare Quality Assessment Protocol for Laying Hens, 2nd ed.; Welfare Quality Network: Helsinki, Finland, 2019.
32. JASP; Version 0.14, Computer Software; JASP Team: Amsterdam, The Netherlands, 2020.
33. Cherian, G. Nutrition and Metabolism in Poultry: Role of Lipids in Early Diet. J. Anim. Sci. Biotechnol. 2015, 6, 28. [CrossRef]
34. Lee, S.A.; Whenham, N.; Bedford, M.R. Review on Docosahexaenoic Acid in Poultry and Swine Nutrition: Consequence of Enriched Animal Products on Performance and Health Characteristics. Anim. Nutr. 2019, 5, 11–21. [CrossRef]
35. Sossidou, E.N.; Dal Bosco, A.; Elson, H.A.; Fontes, C.M.G.A. Pasture-Based Systems for Poultry Production: Implications and Perspectives. Worlds Poult. Sci. J. 2011, 67, 47–58. [CrossRef]
36. Hammershøj, M.; Johansen, N.F. Review: The Effect of Grass and Herbs in Organic Egg Production on Egg Fatty Acid Composition, Egg Yolk Colour and Sensory Properties. Livest. Sci. 2016, 194, 37–43. [CrossRef]
37. Dhama, K.; Latheef, S.K.; Mani, S.; Samad, H.A.; Karthik, K.; Tiwari, R.; Khan, R.U.; Alagawany, M.; Farag, M.R.; Alam, G.M.; et al. Multiple Beneficial Applications and Modes of Action of Herbs in Poultry Health and Production-A Review. Int. J. Pharmacol. 2015, 11, 152–176. [CrossRef]
38. Laudadio, V.; Lorusso, V.; Lastella, N.M.B.; Dhama, K.; Karthik, K.; Tiwari, R.; Alam, G.M.; Tufarelli, V. Enhancement of Nutraceutical Value of Table Eggs Through Poultry Feeding Strategies. Int. J. Pharmacol. 2015, 11, 201–212. [CrossRef]
39. Omidi, M.; Rahimi, S.; Torshizi, M.A.K. Modification of Egg Yolk Fatty Acids Profile by Using Different Oil Sources. Vet. Res. Forum 2015, 6, 137–141. [PubMed]
40. Swi ˛atkiewicz, S.; Arczewska-Włosek, A.; Szczurek, W.; Calik, J.; Bederska-Łojewska, D.; Orczewska-Dudek, S.; Muszy ´nski, ´ S.; Tomaszewska, E.; Józefiak, D. Algal Oil as Source of Polyunsaturated Fatty Acids in Laying Hens Nutrition: Effect on Egg Performance, Egg Quality Indices and Fatty Acid Composition of Egg Yolk Lipids. Ann. Anim. Sci. 2020, 20, 961–973. [CrossRef]
41. Orczewska-Dudek, S.; Pietras, M.; Puchała, M.; Nowak, J. Camelina Sativa Oil and Camelina Cake as Sources of Polyunsaturated Fatty Acids in the Diets of Laying Hens: Effect on Hen Performance, Fatty Acid Profile of Yolk Lipids, and Egg Sensory Quality. Ann. Anim. Sci. 2020, 20, 1365–1377. [CrossRef]
42. Batkowska, J.; Drabik, K.; Brodacki, A.; Czech, A.; Adamczuk, A. Fatty Acids Profile, Cholesterol Level and Quality of Table Eggs from Hens Fed with the Addition of Linseed and Soybean Oil. Food Chem. 2021, 334, 127612. [CrossRef]
43. Vlaicu, P.A.; Panaite, T.D.; Turcu, R.P. Enriching Laying Hens Eggs by Feeding Diets with Diferent Fatty Acid Composition and Antioxidants. Sci. Rep. 2021, 11, 20707. [CrossRef]
44. Difonzo, G.; Troilo, M.; Squeo, G.; Pasqualone, A.; Caponio, F. Functional Compounds from Olive Pomace to Obtain High-added Value Foods—A Review. J. Sci. Food Agric. 2021, 101, 15–26. [CrossRef]
45. Berbel, J.; Posadillo, A. Review and Analysis of Alternatives for the Valorisation of Agro-Industrial Olive Oil By-Products. Sustainability 2018, 10, 237. [CrossRef]
46. Papadomichelakis, G.; Pappas, A.C.; Tsiplakou, E.; Symeon, G.K.; Sotirakoglou, K.; Mpekelis, V.; Fegeros, K.; Zervas, G. Effects of Dietary Dried Olive Pulp Inclusion on Growth Performance and Meat Quality of Broiler Chickens. Livest. Sci. 2019, 221, 115–122. [CrossRef]
47. Saleh, A.; Alzawqari, M. Effects of Replacing Yellow Corn with Olive Cake Meal on Growth Performance, Plasma Lipid Profile, and Muscle Fatty Acid Content in Broilers. Animals 2021, 11, 2240. [CrossRef] [PubMed]
48. Joven, M.; Pintos, E.; Latorre, M.A.; Suárez-Belloch, J.; Guada, J.A.; Fondevila, M. Effect of Replacing Barley by Increasing Levels of Olive Cake in the Diet of Finishing Pigs: Growth Performances, Digestibility, Carcass, Meat and Fat Quality. Anim. Feed Sci. Technol. 2014, 197, 185–193. [CrossRef]
49. Dal Bosco, A.; Mourvaki, E.; Cardinali, R.; Servili, M.; Sebastiani, B.; Ruggeri, S.; Mattioli, S.; Taticchi, A.; Esposto, S.; Castellini, C. Effect of Dietary Supplementation with Olive Pomaces on the Performance and Meat Quality of Growing Rabbits. Meat Sci. 2012, 92, 783–788. [CrossRef] [PubMed]
50. Luciano, G.; Pauselli, M.; Servili, M.; Mourvaki, E.; Serra, A.; Monahan, F.J.; Lanza, M.; Priolo, A.; Zinnai, A.; Mele, M. Dietary Olive Cake Reduces the Oxidation of Lipids, Including Cholesterol, in Lamb Meat Enriched in Polyunsaturated Fatty Acids. Meat Sci. 2013, 93, 703–714. [CrossRef] [PubMed]
51. Molina-Alcaide, E.; Yáñez-Ruiz, D.R. Potential Use of Olive By-Products in Ruminant Feeding: A Review. Anim. Feed Sci. Technol. 2008, 147, 247–264. [CrossRef]
52. Vargas-Bello-Pérez, E.; Vera, R.R.; Aguilar, C.; Lira, R.; Peña, I.; Fernández, J. Feeding Olive Cake to Ewes Improves Fatty Acid Profile of Milk and Cheese. Anim. Feed Sci. Technol. 2013, 184, 94–99. [CrossRef]
53. Serra, V.; Salvatori, G.; Pastorelli, G. Dietary Polyphenol Supplementation in Food Producing Animals: Effects on the Quality of Derived Products. Animals 2021, 11, 401. [CrossRef]
54. Laudadio, V.; Ceci, E.; Lastella, N.M.B.; Tufarelli, V. Dietary High-Polyphenols Extra-Virgin Olive Oil Is Effective in Reducing Cholesterol Content in Eggs. Lipids Health Dis. 2015, 14, 5. [CrossRef]
55. Wołoszyn, J.; Haraf, G.; Okruszek, A.; Were ´nska, M.; Goluch, Z.; Teleszko, M. Fatty Acid Profiles and Health Lipid Indices in the Breast Muscles of Local Polish Goose Varieties. Poult. Sci. 2020, 99, 1216–1224. [CrossRef]
56. Simopoulos, A.P. The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids. Biomed. Pharmacother. 2002, 56, 365–379. [CrossRef]
57. Abd El-Moneim, A.E.; Sabic, E.M. Beneficial Effect of Feeding Olive Pulp and Aspergillus Awamori on Productive Performance, Egg Quality, Serum/Yolk Cholesterol and Oxidative Status in Laying Japanese Quails. J. Anim. Feed Sci. 2019, 28, 52–61. [CrossRef]
58. Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [CrossRef] [PubMed]
59. Monteiro, M.; Matos, E.; Ramos, R.; Campos, I.; Valente, L.M.P. A Blend of Land Animal Fats Can Replace up to 75% Fish Oil without Affecting Growth and Nutrient Utilization of European Seabass. Aquaculture 2018, 487, 22–31. [CrossRef]
60. Yurchenko, S.; Sats, A.; Tatar, V.; Kaart, T.; Mootse, H.; Jõudu, I. Fatty Acid Profile of Milk from Saanen and Swedish Landrace Goats. Food Chem. 2018, 254, 326–332. [CrossRef] [PubMed]
61. Watson, T.; Shantsila, E.; Lip, G.Y. Mechanisms of Thrombogenesis in Atrial Fibrillation: Virchow’s Triad Revisited. Lancet 2009, 373, 155–166. [CrossRef]
62. Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of Genotype, Feeding System and Slaughter Weight on the Quality of Light Lambs. II. Fatty Acid Composition of Meat. Livest. Prod. Sci. 2002, 77, 187–194. [CrossRef]
63. Chiofalo, B.; Liotta, L.; Zumbo, A.; Chiofalo, V. Administration of Olive Cake for Ewe Feeding: Effect on Milk Yield and Composition. Small Rumin. Res. 2004, 55, 169–176. [CrossRef]
64. EUR-Lex. Commission Regulation (EC) No 589/2008 of 23 June 2008 Laying down Detailed Rules for Implementing Council Regulation (EC) No 1234/2007 as Regards Marketing Standards for Eggs; European Union: Maastricht, The Netherlands, 2008; Volume OJ L163, pp. 6–23. Available online: http://data.europa.eu/eli/reg/2008/589/oj/eng (accessed on 10 December 2021).
65. Mazzuco, H.; Bertechini, A.G. Critical Points on Egg Production: Causes, Importance and Incidence of Eggshell Breakage and Defects. Ciênc. E Agrotecnol. 2014, 38, 7–14. [CrossRef]
66. Mertens, K.; Kemps, B.; Perianu, C.; De Baerdemaeker, J.; Decuypere, E.; De Ketelaere, B.; Bain, M. Advances in Egg Defect Detection, Quality Assessment and Automated Sorting and Grading. In Improving the Safety and Quality of Eggs and Egg Products; Woodhead Publishing Limited: Sawston, UK, 2011; Volume 1, pp. 209–241. [CrossRef]
67. Zhang, Z.F.; Kim, I.H. Effects of Dietary Olive Oil on Egg Quality, Serum Cholesterol Characteristics, and Yolk Fatty Acid Concentrations in Laying Hens. J. Appl. Anim. Res. 2014, 42, 233–237. [CrossRef]
68. Mabe, I.; Rapp, C.; Bain, M.M.; Nys, Y. Supplementation of a Corn-Soybean Meal Diet with Manganese, Copper, and Zinc from Organic or Inorganic Sources Improves Eggshell Quality in Aged Laying Hens. Poult. Sci. 2003, 82, 1903–1913. [CrossRef]
69. Habeeb, A.A.M.; Gad, A.E.; EL-Tarabany, A.A.; Mustafa, M.M.; Atta, M.A.A. Using of Olive Oil By-Products in Farm Animals Feeding. Int. J. Sci. Res. Sci. Technol. 2017, 3, 57–68.
70. Santos, R.R.; Segura, C.J.; Sarmiento, F.L. Egg Quality during Storage of Eggs from Hens Fed Diets with Crude Palm Oil. Rev. MVZ Córdoba 2019, 24, 7297–7304. [CrossRef]
71. Heath, J.L. Chemical and Related Osmotic Changes in Egg Albumen During Storage. Poult. Sci. 1977, 56, 822–828. [CrossRef]
72. Brelaz, K.C.B.T.R.; Cruz, F.G.G.; Rufino, J.P.F.; Brasil, R.J.M.; Silva, A.F.; Santos, A.N.A. Serum Biochemistry Profile of Laying Hens Fed Diets with Fish Waste Oil. Arq. Bras. Med. Vet. E Zootec. 2021, 73, 223–230. [CrossRef]
73. Harlander-Matauschek, A.; Rodenburg, T.B.; Sandilands, V.; Tobalske, B.W.; Toscano, M.J. Causes of Keel Bone Damage and Their Solutions in Laying Hens. Worlds Poult. Sci. J. 2015, 71, 461–472. [CrossRef]
74. Dedousi, A.; Ðuki´c Stojˇci´c, M.; Sossidou, E. Effects of Housing Systems on Keel Bone Damage and Egg Quality of Laying hens. Vet. Res. Forum 2020, 11, 299–304. [CrossRef]
75. Riber, A.B.; Casey-Trott, T.M.; Herskin, M.S. The Influence of Keel Bone Damage on Welfare of Laying Hens. Front. Vet. Sci. 2018, 5, 6. [CrossRef]
76. Nasr, M.A.F.; Murrell, J.; Nicol, C.J. The Effect of Keel Fractures on Egg Production, Feed and Water Consumption in Individual Laying Hens. Br. Poult. Sci. 2013, 54, 165–170. [CrossRef]
77. Candelotto, L.; Stratmann, A.; Gebhardt-Henrich, S.G.; Rufener, C.; van de Braak, T.; Toscano, M.J. Susceptibility to Keel Bone Fractures in Laying Hens and the Role of Genetic Variation. Poult. Sci. 2017, 96, 3517–3528. [CrossRef]
78. Gebhardt-Henrich, S.G.; Pfulg, A.; Fröhlich, E.K.F.; Käppeli, S.; Guggisberg, D.; Liesegang, A.; Stoffel, M.H. Limited Associations between Keel Bone Damage and Bone Properties Measured with Computer Tomography, Three-Point Bending Test, and Analysis of Minerals in Swiss Laying Hens. Front. Vet. Sci. 2017, 4, 128. [CrossRef]
79. Wei, H.D.; Chen, Y.J.; Zeng, X.Y.; Bi, Y.J.; Wang, Y.N.; Zhao, S.; Li, J.H.; Li, X.; Zhang, R.X.; Bao, J. Keel-Bone Fractures Are Associated with Bone Quality Differences in Laying Hens. Anim. Welf. 2021, 30, 71–80. [CrossRef]
80. Wei, H.; Chen, Y.; Nian, H.; Wang, J.; Liu, Y.; Wang, J.; Yang, K.; Zhao, Q.; Zhang, R.; Bao, J. Abnormal Bone Metabolism May Be a Primary Causative Factor of Keel Bone Fractures in Laying Hens. Animals 2021, 11, 3133. [CrossRef] [PubMed]
81. Kruger, M.C.; Coetzee, M.; Haag, M.; Weiler, H. Long-Chain Polyunsaturated Fatty Acids: Selected Mechanisms of Action on Bone. Prog. Lipid Res. 2010, 49, 438–449. [CrossRef] [PubMed]
82. Rubert, M.; Torrubia, B.; Díaz-Curie, M.; de la Piedra, C. Olive Oil and Bone Health. Rev. Osteoporos. Metab. Miner. 2020, 12, 107–110. [CrossRef]
83. Cicerale, S.; Lucas, L.J.; Keast, R.S.J. Antimicrobial, Antioxidant and Anti-Inflammatory Phenolic Activities in Extra Virgin Olive Oil. Curr. Opin. Biotechnol. 2012, 23, 129–135. [CrossRef]
84. Oliveras-López, M.-J.; Molina, J.J.M.; Mir, M.V.; Rey, E.F.; Martín, F.; de la Serrana, H.L.-G. Extra Virgin Olive Oil (EVOO) Consumption and Antioxidant Status in Healthy Institutionalized Elderly Humans. Arch. Gerontol. Geriatr. 2013, 57, 234–242. [CrossRef]
85. Díaz-Curiel, M.; Torrubia, B.; Martín-Fernández, M.; Rubert, M.; De la Piedra, C. Effects of Virgin Olive Oil on Bone Health in Ovariectomized Rats. Nutrients 2020, 12, 1270. [CrossRef]
86. Giersberg, M.F.; Spindler, B.; Kemper, N. Assessment of Plumage and Integument Condition in Dual-Purpose Breeds and Conventional Layers. Animals 2017, 7, 97. [CrossRef]
87. Michalak, M.; Pierzak, M.; Kr˛ecisz, B.; Suliga, E. Bioactive Compounds for Skin Health: A Review. Nutrients 2021, 13, 203. [CrossRef]
88. Anunciato, T.P.; da Rocha Filho, P.A. Carotenoids and Polyphenols in Nutricosmetics, Nutraceuticals, and Cosmeceuticals: Nutricosmetics. J. Cosmet. Dermatol. 2012, 11, 51–54. [CrossRef]
89. Nichols, J.A.; Katiyar, S.K. Skin Photoprotection by Natural Polyphenols: Anti-Inflammatory, Antioxidant and DNA Repair Mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [CrossRef] [PubMed]
90. Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as Active Ingredients for Cosmetic Products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [CrossRef] [PubMed]