Author details:
Simple Summary: In this review, we discuss previous studies, state-of-the-art technology, and the potential implications of utilizing omega-3 and omega-6 fatty acids in poultry diets, as well as the application of these fatty acids in the poultry industry for improving poultry production and health. Essential roles are played by these fatty acids in development and metabolism, growth and productive performance, immune response and anti-oxidative properties, improving meat quality, bone growth and development, and improving fertility rates and semen quality.
Abstract: Omega-3 (ω-3) and omega-6 (ω-6) fatty acids are important components of cell membranes. They are essential for health and normal physiological functioning of humans. Not all fatty acids can be produced endogenously owing to the absence of certain desaturases; however, they are required in a ratio that is not naturally achieved by the standard diet of industrialized nations. Poultry products have become the primary source of long-chain polyunsaturated fatty acids (LC-PUFA), with one of the most effective solutions being to increase the accretion of PUFAs in chicken products via the adjustment of fatty acids in poultry diets. Several studies have reported the favorable effects of ω-3 PUFA on bone strength, bone mineral content and density, and semen quality. However, other studies concluded negative effects of LC-PUFA on meat quality and palatability, and acceptability by consumers. The present review discussed the practical application of ω-3 and ω-6 fatty acids in poultry diets, and studied the critical effects of these fatty acids on productive performance, blood biochemistry, immunity, carcass traits, bone traits, egg and meat quality, and semen quality in poultry. Future studies are required to determine how poultry products can be produced with higher contents of PUFAs and favorable fatty acid composition, at low cost and without negative effects on palatability and quality.
Keywords: omega-3; omega-6; fatty acid; nutrition; performance; antioxidant; egg and meat quality; fertility; immunity; health.
1. Cherian, G. Nutrition and metabolism in poultry: Role of lipids in early diet. J. Anim. Sci. Biotechnol. 2015, 6,
28. [CrossRef] [PubMed]
2. Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients
2016, 8, 128. [CrossRef] [PubMed]
3. Lee, S.A.; Whenham, N.; Bedford, M.R. Review on docosahexaenoic acid in poultry and swine nutrition:
Consequence of enriched animal products on performance and health characteristics. Anim. Nutr. 2019, 5,
11–21. [CrossRef] [PubMed]
4. Cherian, G.; Gopalakrishnan, N.; Akiba, Y.; Sim, J.S. Effect of maternal dietary n-3 fatty acids on the accretion of long-chain polyunsaturated fatty acids in the tissues of developing chick embryo. Biolo. Neonate. 1997, 72,
165–174. [CrossRef] [PubMed]
5. Simopoulos, A.P. Importance of the omega-6/omega-3 balance in health and disease: Evolutionary aspects of diet. World Rev. Nutr. Diet. 2011, 102, 10–21.
6. Kalakuntla, S.; Nagireddy, N.K.; Panda, A.K.; Jatoth, N.; Thirunahari, R.; Vangoor, R.R. Effect of dietary incorporation of n-3 polyunsaturated fatty acids rich oil sources on fatty acid profile, keeping quality and sensory attributes of broiler chicken meat. Anim. Nutr. 2017, 3, 386–391. [CrossRef]
7. Feng, Y.; Ding, Y.; Liu, J.; Tian, Y.; Yang, Y.; Guan, S.; Zhang, C. Effects of dietary omega-3/omega-6 fatty acid ratios on reproduction in the young breeder rooster. BMC Vet. Res. 2015, 11, 73. [CrossRef]
8. Konieczka, P.; Barszcz, M.; Choct, M.; Smulikowska, S. The interactive effect of dietary n-6:N-3 fatty acid ratio and vitamin E level on tissue lipid peroxidation, DNA damage in intestinal epithelial cells, and gut morphology in chickens of different ages. Poult. Sci. 2017, 97, 149–158. [CrossRef]
9. Arias-Rico, J.; Cerón-Sandoval, M.I.; Sandoval-Gallegos, E.M.; Ramírez-Moreno, E.; Fernández-Cortés, T.L.;
Jaimez-Ordaz, J.; Contreras-López, E.; Añorve-Morga, J. Evaluation of consumption of poultry products enriched with omega-3 fatty acids in anthropometric, biochemical, and cardiovascular parameters.
J. Food Quality 2018, 2018, e9620104. [CrossRef]
10. Dhama, K.; Tiwari, R.; Khan, R.U.; Chakraborty, S.; Gopi, M.; Karthik, K.; Saminathan, M.; Desingu, P.A.;
Sunkara, L.T. Growth promoters and novel feed additives improving poultry production and health, bioactive principles and beneficial applications: The trends and advances—A review. Int. J. Pharmacol. 2014, 10,
129–159. [CrossRef]
11. Dhama, K.; Latheef, S.K.; Mani, S.; Samad, H.A.; Karthik, K.; Tiwari, T.; Khan, R.U.; Alagawany, M.;
Farag, M.R.; Alam, G.M.; et al. Multiple beneficial applications and modes of action of herbs in poultry health and production—A review. Int. J. Pharmacol. 2015, 11, 152–176. [CrossRef]
12. Laudadio, V.; Lorusso, V.; Lastella, N.M.B.; Dhama, K.; Karthik, K.; Tiwari, R.; Alam, G.A.; Tufarelli, V.
Enhancement of nutraceutical value of table eggs through poultry feeding strategies. Int. J. Pharmacol. 2015,
11, 201–212.
13. Yadav, A.S.; Kolluri, G.; Gopi, M.; Karthik, K.; Malik, Y.S.; Dhama, K. Exploring alternatives to antibiotics as health promoting agents in poultry—A review. J. Exp. Biol. Agri Sci. 2016, 4, 368–383.
14. Nobakht, A.; Tabatbaei, S.; Khodaei, S. Effects of different sources and levels of vegetable oils on performance, carcass traits and accumulation of vitamin in breast meat of broilers. Cur. Res. J. Biolo. Sci. 2011, 3, 601–605.
15. Poorghasemi, M.; Seidavi, A.; Qotbi, A.A.; Laudadio, V.; Tufarelli, V. Influence of dietary fat source on growth performance responses and carcass traits of broiler chicks. Asian Australas. J Anim Sci. 2013, 26, 705–710.
[CrossRef] [PubMed]
16. Baiao, N.C.; Lara, L.J.C. Oil and fat in broiler nutrition. Braz. J. Poul. Sci. 2005, 7, 129–141. [CrossRef]
17. Gómez, C.C.; Bermejo, L.L.M.; Loria, K.V. Importance of a balanced omega 6/omega 3 ratio for the maintenance of health. Nutritional recommendations. Nutr. Hosp. 2011, 26, 323–329.
18. Samman, S.; Kung, F.P.; Carter, L.M.; Foster, M.J.; Ahmad, Z.I.; Phuyal, J.L.; Petocz, P. Fatty acid composition of certified organic, conventional and omega-3 eggs. Food Chem. 2009, 116, 911–914. [CrossRef]
19. Kassis, N.; Drake, S.R.; Beamer, S.K.; Matak, K.E.; Jaczynski, J. Development of nutraceutical egg products with omega-3-rich oils. Food Sci. Technol. 2010, 43, 777–783. [CrossRef]
20. Sujatha, T.; Narahari, D. Effect of designer diets on egg yolk composition of ‘White Leghorn’ hens. J. Food
Sci. Technol. 2011, 48, 494–497. [CrossRef]
21. Alagawany, M.; Farag, M.R.; Abd El-Hack, M.E.; Dhama, K. The practical application of sunflower meal in poultry nutrition. Adv. Anim. Vet. Sci. 2015, 3, 634–648. [CrossRef]
22. Shiels, M.I. Fatty acids and early human development. Early Hum. Develop. 2007, 83, 761–766.
23. Richardson, A.J. Omega-3 fatty acids in ADHD and related neurodevelopmental disorders. Int. Rev. Psychiatry
2006, 18, 155–172. [CrossRef] [PubMed]
24. Simopoulos, A.P. Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 1999, 70, 560–569.
[CrossRef] [PubMed]
25. DiNicolantonio, J.J.; O’Keefe, J.H. Importance of maintaining a low omega-6/omega-3 ratio for reducing inflammation. Open Heart 2018, 5, e000946. [CrossRef] [PubMed]
26. Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life.
Adv. Nutr. 2012, 3, 1–7. [CrossRef] [PubMed]
27. Ibrahim, D.; El-Sayed, R.; Khater, S.I.; Said, E.N.; El-Mandrawy, S.A.M. Changing dietary n-6: n-3 ratio using different oil sources affects performance, behavior, cytokines mRNA expression and meat fatty acid profile of broiler chickens. Anim. Nutr. 2018, 4, 44–51. [CrossRef] [PubMed]
28. Al-Zuhairy, M.A.; Jameel, Y.J. Effect of ND vaccine, multivitamins AD3E, and omega-3 on performance and immune response of broilers. Mirror Res. Vet Sci. Anim. 2014, 3, 42–50.
29. Irving, G.F.; Freund-Levi, Y.; Eriksdotter-Jonhagen, M.; Basun, H.; Brismar, K.; Hjorth, E.; Palmblad, J.;
Vessby, B.; Vedin, I.; Wahlund, L.O.; et al. Omega-3 fatty acid supplementation effects on weight and appetite in patients with Alzheimer’s disease: The omega-3 Alzheimer’s disease study. J. Am. Geriatr. Soc. 2009, 57,
11–17. [CrossRef]
30. Mousa, S.A.; Abdel-Raheem, S.M.; Abdel-Raheem, H.A.; Sadeek, A.L.S. Effect of dietary fat sources and antioxidant types on growth performance and carcass quality of Japanese quails. Int. J. Poult. Sci. 2017, 16,
443–450.
31. Wu, Y.B.; Li, L.; Wen, Z.G.; Yan, H.J.; Yang, P.L.; Tang, J.; Xie, M.; Hou, S.S. Dual functions of eicosapentaenoic acid-rich microalgae: Enrichment of yolk with n-3 polyunsaturated fatty acids and partial replacement for soybean meal in diet of laying hens. Poult. Sci. 2019, 98, 350–357. [CrossRef] [PubMed]
32. Konieczka, P.; Czauderna, M.; Smulikowska, S. The enrichment of chicken meat with omega-3 fatty acids by dietary fish oil or its mixture with rapeseed or flaxseed—Effect of feeding duration dietary fish oil, flaxseed, and rapeseed and n-3 enriched broiler meat. Anim. Feed Sci. Technol. 2017, 223, 42–52. [CrossRef]
33. Sihvo, H.K.; Immonen, K.; Puolanne, E. Myodegeneration with fibrosis and regeneration in the pectoralis major muscle of broilers. Vet. Path. 2014, 51, 619–623. [CrossRef] [PubMed]
34. Ahmad, S.A.; Yousaf, M.; Sabri, M.A.; Kamran, Z. Response of laying hens to omega-3 fatty acids for performance and egg quality. Avian Biol. Res. 2012, 5, 1–10. [CrossRef]
35. Ehr, I.J.; Persia, M.E.; Bobeck, E.A. Comparative omega-3 fatty acid enrichment of egg yolks from first-cycle laying hens fed flaxseed oil or ground flaxseed. Poult. Sci. 2017, 96, 1791–1799. [CrossRef] [PubMed]
36. Hamosh, M. Fatty acids and growth and development. In Fatty Acids in Foods and Their Implications;
Chow, C.K., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 899–933.
37. Horrocks, L.; Yeo, Y. Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 1999, 40, 211–225.
[CrossRef] [PubMed]
38. Ebeid, T.; Eid, Y.; Saleh, A.; Abd El-Hamid, H. Ovarian follicular development, lipid peroxidation, antioxidative status and immune response in laying hens fed fish oil-supplemented diets to produce n-3-enriched eggs. Animal 2008, 2, 84–91. [CrossRef]
39. Yalcin, H.; Unal, M.K. The enrichment of hen eggs with ω-3 fatty acids. J. Med. Food 2010, 13, 610–614.
[CrossRef]
40. Cherian, G. Egg quality and yolk polyunsaturated fatty acid status in relation to broiler breeder hen age and dietary n-3 oils. Poult. Sci. 2008, 87, 1131–1137. [CrossRef]
41. Kralik, G.; Škrti´c, Z.; Suchý, P.; Straková, E.; Gajˇcevi´c, Z. Feeding fish oil and linseed oil to laying hens to increase the n-3 PUFA of egg yolk. Acta Veterinaria Brno 2008, 77, 561–568. [CrossRef]
42. Domenichiello, A.F.; Kitson, A.P.; Bazinet, R.P. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? Prog. Lipid Res. 2015, 59, 54–66. [CrossRef] [PubMed]
43. Ribeiro, T.; Lordelo, M.M.; Alves, S.P.; Bessa, R.J.B.; Costa, P.; Lemos, J.P.C.; Ferreira, L.M.A.; Fontes, C.M.G.A.;
Prates, J.A.M. Direct supplementation of diet is the most efficient way of enriching broiler meat with n-3 long-chain polyunsaturated fatty acids. Br. Poult. Sci. 2013, 54, 753–765. [CrossRef] [PubMed]
44. Lopez-Ferrer, S.; Baucells, M.D.; Barroeta, A.C.; Grashorn, M.A. n-3 enrichment of chicken meat. 2. Use of precursors of long-chain polyunsaturated fatty acids: Linseed Oil. Poult. Sci. 2001, 80, 753–761. [PubMed]
45. Buitendach, G.C.; De Witt, F.H.; Hugo, A.; Van Der Merwe, H.J.; Fair, M.D. Effect of dietary fatty acid saturation on egg production at end-of-lay. S. Afr. J. Anim. Sci. 2013, 43, 126–131.
46. Cachaldora, P.; Garcia-Rebollar, P.; Alvarez, C.; De Blas, J.C.; Mendez, J. Effect of type and level of fish oil supplementation on yolk fat composition and n-3 fatty acid retention efficiency in laying hens. Br. Poult. Sci.
2006, 47, 43–49. [CrossRef] [PubMed]
47. Cachaldora, P.; Garcia-Rebollar, P.; Alvarez, C.; De Blas, J.C.; Mendez, J. Effect of type and level of basal fat and level of fish oil supplementation on yolk fat composition and n-3 fatty acids deposition efficiency in laying hens. Anim. Feed Sci. Technol. 2008, 141, 104–114. [CrossRef]
48. Shang, X.G.; Wang, F.L.; Li, D.F.; Yin, J.D.; Li, J.Y. Effects of dietary conjugated linoleic acid on the productivity of laying hens and egg quality during refrigerated storage. Poult. Sci. 2004, 83, 1688–1695. [CrossRef]
49. Yin, J.D.; Shang, X.G.; Li, D.F.; Wang, F.L.; Guan, Y.F.; Wang, Z.Y. Effects of dietary conjugated linoleic acid on the fatty acid profile and cholesterol content of egg yolks from different breeds of layers. Poult. Sci. 2008, 87,
284–290. [CrossRef]
50. López-Ferrer, S.; Baucells, M.D.; Barroeta, A.C.; Grashorn, M.A. n-3 enrichment of chicken meat. 1. Use of very long-chain fatty acids in chicken diets and their influence on meat quality: Fish oil. Poult. Sci. 2001, 80,
741–752. [CrossRef]
51. Donaldson, J.; Madziva, M.T.; Erlwanger, K.H. The effects of high-fat diets composed of different animal and vegetable fat sources on the health status and tissue lipid profiles of male Japanese quail (Coturnix coturnix japonica). Asian Australas. J. Anim. Sci. 2017, 30, 700–711. [CrossRef]
52. Smith, M.; Soisuvan, K.; Miller, L. Evaluation of dietary calcium level and fat source on growth performance and mineral utilization of heat-distressed broilers. Poult. Sci. 2003, 2, 32–37.
53. Jalali, S.M.A.; Rabiei, R.; Kheiri, F. Effects of dietary soybean and sunflower oils with and without
L-carnitine supplementation on growth performance and blood biochemical parameters of broiler chicks.
Arch. Anim. Breed. 2015, 58, 387–394. [CrossRef]
54. Abdulla, N.R.; Loh, T.C.; Akit, H.; Sazili, A.Q.; Foo, H.L.; Kareem, K.Y.; Mohamad, R.; Rahim, R.A. Effects of dietary oil sources, calcium and phosphorus levels on growth performance, carcass characteristics and bone quality of broiler chickens. J. App. Anim. Res. 2017, 45, 423–429. [CrossRef]
55. Fébel, H.; Mezes, M.; Palfy, T.; Herman, A.; Gundel, J.; Lugasi, A.; Balogh, K.; Kocsis, I.; Blazovics, A. Effect of dietary fatty acid pattern on growth, body fat composition and antioxidant parameters in broilers. J. Anim.
Physiol. Anim. Nutr. 2008, 92, 369–376. [CrossRef] [PubMed]
56. Ebeid, T.; Fayoud, A.; Abou El-Soud, S.; Eid, Y.; El-Habbak, M. The effect of omega-3 enriched meat production on lipid peroxidation, antioxidative status, immune response and tibia bone characteristics in
Japanese quail. Czech J. Anim. Sci. 2011, 56, 314–324. [CrossRef]
57. Raj Manohar, G.; Edwin, S.C. Effect of dietary omega-3 PUFA rich sources on growth performance of Japanese quail. Int. J. Sci. Env. Technol. 2015, 4, 393–399.
58. Qi, K.K.; Chen, J.L.; Zhao, G.P.; Zheng, M.Q.; Wen, J. Effect of dietary ω6/ω3 on growth performance, carcass traits, meat quality and fatty acid profiles of Beijing-you chicken. J. Anim. Physiol. Anim. Nutr. 2010, 94,
474–485. [CrossRef]
59. Puthpongsiriporn, U.; Scheideler, S.E. Effects of dietary ratio of linoleic to linolenic acid on performance, antibody production, and in vitro lymphocyte proliferation in two strains of leghorn pullet chicks. Poult. Sci.
2005, 84, 846–857. [CrossRef]
60. Ayerza, R.; Coates, W. Omega-3 enriched eggs: The influence of dietary alpha-linolenic fatty acid source on egg production and composition. Can. J. Anim. Sci. 2001, 81, 355–362. [CrossRef]
61. Crespo, N.; Esteve-Garcia, E. Dietary polyunsaturated fatty acids decrease fat deposition in separable fat depots but not in the remainder carcass. Poult. Sci. 2002, 81, 512–518. [CrossRef]
62. Newman, R.E.; Bryden, W.L.; Fleck, E.; Ashes, J.R.; Buttemer, W.A.; Storlien, L.H.; Downing, J.A. Dietary n-3 and n-6 fatty acids alter avian metabolism: Metabolism and abdominal fat deposition. Br. J. Nutr. 2002, 88,
11–18. [CrossRef] [PubMed]
63. Ferrini, G.; Baucells, M.D.; Esteve-Garcia, E.; Barroeta, A.C. Dietary polyunsaturated fat reduces skin fat as well as abdominal fat in broiler chickens. Poult. Sci. 2008, 87, 528–535. [CrossRef] [PubMed]
64. Zollitsch, W.; Knaus, W.; Aichinger, F.; Lettner, F. Effects of different dietary fat sources on performance and carcass characteristics of broilers. Anim. Feed Sci. Technol. 1997, 66, 63–73. [CrossRef]
65. Huo, W.; Li, M.; Wang, J.; Wang, Z.; Huang, Y.; Chen, W. On growth performance, nutrient digestibility, blood
T lymphocyte subsets, and cardiac antioxidant status of broilers. Anim. Nutr. 2019, 5, 68–73. [CrossRef]
[PubMed]
66. Elwan, H.A.; Elnesr, S.S.; Mohany, M.; Al-Rejaie, S.S. The effects of dietary tomato powder (Solanum lycopersicum L.) supplementation on the haematological, immunological, serum biochemical and antioxidant parameters of growing rabbits. J. Anim. Physiol. Anim. Nutr. 2019, 103, 534–546. [CrossRef] [PubMed]
67. Velmurugan, N.; Kalpana, D.; Cho, J.Y.; Lee, Y.S. Chemical composition and antioxidant capacity of the aqueous extract of Phellodendronamurense. J. Forest. Res. 2018, 29, 1041–1048. [CrossRef]
68. Changxing, L.; Dongfang, D.; Lixue, Z.; Saeed, M.; Alagawany, M.; Farag, M.R.; Chenling, M.; Jianhua, L.
Heracleum persicum: Chemical composition, biological activities and potential uses in poultry nutrition.
World. Poult. Sci. J. 2019, 75, 207–217. [CrossRef]
69. Shen, Y.; Wang, D.; Zhao, J.; Chen, X. Fish red blood cells express immune genes and responses. Aquac. Fish
2018, 3, 14–21. [CrossRef]
70. Wang, Y.W.; Field, C.J.; Sim, J.S. Dietary polyunsaturated fatty acids alter lymphocyte subset proportion and proliferation, serum IgG concentration and immune tissue development in chicks. Poult. Sci. 2000, 80,
1741–1748. [CrossRef]
71. Yuming, G.; Chen, S.; Xia, Z.; Yuan, J. Effects of different types of polyunsaturated fatty acids on immune function and PGE2 synthesis by peripheral blood leukocytes of laying hens. Anim. Feed Sci. Technol. 2004,
116, 249–257.
72. Al-Khalifa, H.; Givens, D.; Rymer, C.; Yaqoob, P. Effect of n-3 fatty acids on immune function in broiler chickens. Poult. Sci. 2012, 91, 74–88. [CrossRef]
73. Jameel, Y.J.; Sahib, A.M.; Husain, M.A. Effect of dietary omega-3 fatty acid on antibody production against
Newcastle disease in broilers. Int. J. Sci. Nat. 2015, 6, 23–27.
74. Fritsche, K.L.; Cassity, N.A.; Huang, S.C. Effect of dietary fats on the fatty acid compositions of serum and immune tissues in chickens. Poult. Sci. 1991, 70, 1213–1222. [CrossRef]
75. Cherian, G. Essential fatty acids and early life programming in meat-type birds. World Poult. Sci. 2011, 67,
599–614. [CrossRef]
76. Wang, Y.W.; Sunwoo, H.; Cherian, G.; Sim, J.S. Maternal dietary ratio of linoleic acid to alpha-linolenic acid affects the passive immunity of hatching chicks. Poult. Sci. 2004, 83, 2039–2043. [CrossRef]
77. Wang, Y.W.; Ajuyah, A.O.; Sunwoo, H.H.; Cherian, G.; Sim, J.S. Maternal dietary n-3 fatty acids alter the spleen fatty acid composition and bovine serum albumin-induced wing web swelling in broilers. Poult. Sci.
2002, 81, 1722–1727. [CrossRef]
78. Al-Mayah, A.A.S. Effect of fish oil on humoral immunity of broiler chicks. Basrah J. Vet. Res. 2009, 8, 23–32.
[CrossRef]
79. Fouad, A.M.; El-Senousey, H.K. Nutritional factors affecting abdominal fat deposition in poultry: A review.
Asian Australas. J. Anim. Sci. 2014, 27, 1057–1068. [CrossRef]
80. Yang, X.; Zhang, B.; Guo, Y.; Jiao, P.; Long, F. Effects of dietary lipids and Clostridium butyricum on fat deposition and meat quality of broiler chickens. Poult. Sci. 2010, 89, 254–260. [CrossRef]
81. Chen, W.; Wang, J.P.; Huang, Y.Q. Effects of dietary n-6: n-3 polyunsaturated fatty acid ratio on cardiac antioxidative status, T-cell and cytokine mRNA expression in the thymus, and blood T lymphocyte subsets of broilers. Livest. Sci. 2012, 150, 114–120. [CrossRef]
82. Maroufyan, E.; Kasim, A.; Ebrahimi, M.; Loh, T.C.; Bejo, M.H.; Zerihun, H.; Hosseni, F.; Goh, Y.M.; Farjam, A.S.
Omega-3 polyunsaturated fatty acids enrichment alters performance and immune response in infectious bursal disease challenged broilers. Lipids Health Dis. 2012, 25, 15. [CrossRef]
83. Kassis, N.M.; Gigliotti, J.C.; Beamer, S.K.; Tou, J.C.; Jaczynski, J. Characterisation of lipids and antioxidant capacity of novel nutraceutical egg products developed with omega-3-rich oils. J. Sci. Food Agric. 2012, 92,
66–73. [CrossRef]
84. Fraeye, I.; Bruneel, C.; Lemahieu, C.; Buyse, J.; Muylaert, K.; Foubert, I. Dietary enrichment of eggs with omega-3 fatty acids: A review. Food Res. Int. 2012, 48, 961–969. [CrossRef]
85. Alagawany, M.; Farag, M.R.; Dhama, K.; Patra, A. Nutritional significance and health benefits of designer eggs. World’s Poult. Sci. J. 2018, 74, 317–330. [CrossRef]
86. Juturu, V. Omega-3 fatty acids and the cardiometabolic syndrome. J. Cardiometab. Syndr. 2008, 3, 244–253.
[CrossRef]
87. Galobart, J.; Barroeta, A.C.; Baucells, M.D.; Guardiola, F. Lipid oxidation in fresh and spray-dried eggs enriched with omega-3 and omega-6 polyunsaturated fatty acids during storage as affected by dietary vitamin E and canthaxanthin supplementation. Poult. Sci. 2001, 80, 327–337. [CrossRef]
88. Ren, Y.; Perez, T.I.; Zuidhof, M.J.; Renema, R.A.; Wu, J. Oxidative stability of omega-3 polyunsaturated fatty acids enriched eggs. J. Agri. Food Chem. 2013, 61, 11595–11602. [CrossRef]
89. Schneiderová, D.; Zelenka, J.; Mrkvicová, E. Poultry meat production as a functional food with a voluntary n-6 and n-3 polyunsaturated fatty acids ratio. Czech J. Anim. Sci. 2007, 52, 203–213. [CrossRef]
90. Ahmad, S.; Yousaf, M.; Kamran, Z.; Sohail, M.U. Production of n-3 pufa enriched eggs by feeding various dietary ratios of n-6 to n-3 fatty acids and vitamin a levels to the laying hens in hot climate. J. Poult. Sci. 2014,
51, 213–219.
91. Ceylan, N.; Ciftçi, I.; Mızrak, C.; Kahraman, Z.; Efil, H. Influence of different dietary oil sources on performance and fatty acid profile of egg yolk in laying hens. J. Anim. Feed Sci. 2011, 20, 71–83. [CrossRef]
92. Da Silva Filardi, R.; Junqueira, O.M.; de Laurentiz, A.C.; Casartelli, E.M.; Aparecida Rodrigues, E.; Francelino
Araujo, L. Influence of different fat sources on the performance, egg quality, and lipid profile of egg yolks of commercial layers in the second laying cycle. J. Appl. Poult. Res. 2005, 258, 264. [CrossRef]
93. Schiavone, A.; Marzoni, M.; Castillo, A.; Nery, J.; Romboli, I. Dietary lipid sources and vitamin E affect fatty acid composition or lipid stability of breast meat from Muscovy duck. Can. J. Anim. Sci. 2010, 90, 371–378.
[CrossRef]
94. Kishawy, A.T.; Amer, S.A.; Abd El-Hack, M.E.; Saadeldin, I.M.; Swelum, A.A. The impact of dietary linseed oil and pomegranate peel extract on broiler growth, carcass traits, serum lipid profile, and meat fatty acid, phenol, and flavonoid contents. Asian Australas. J. Anim. Sci. 2019, 32, 1161–1171. [CrossRef]
95. Jung, S.; Choe, J.H.; Kim, B.; Yun, H.; Kruk, Z.A.; Jo, C. Effect of dietary mixture of gallic acid and linoleic acid on antioxidative potential and quality of breast meat from broilers. Meat Sci. 2010, 86, 520–526. [CrossRef]
96. Mohamed, L.A.; El-Hindawy, M.M.; Alagawany, M.; Salah, A.S.; El-Sayed, S.A. Effect of low- or high-CP diet with cold-pressed oil supplementation on growth, immunity and antioxidant indices of growing quail.
J. Anim. Physiol. Anim. Nutr. 2019, 1–8. [CrossRef]
97. Baucells, M.D.; Crespo, N.A.C.; Barroeta, S.; Ferrer, L.; Grashorn, M.A. Incorporation of different polyunsaturated fatty acids into eggs. Poult. Sci. 2000, 79, 51–59. [CrossRef]
98. Shunthwal, J.; Sheoran, N. Influence of linseed oil feeding on performance and fatty acid composition of muscles in broiler chicks. Pharma Innov. J. 2017, 6, 268–273.
99. Zsédely, E.; Tóth, T.; Eiban, C.S.; Virág, G.Y.; Fábián, J.; Schmidt, J. Effect of dietary vegetable oil (sunflower, linseed) and vitamin E supplementation on the fatty acids composition, oxidative stability and quality of rabbit meat. In Proceedings of the 9th World Rabbit Congress, Verona, Italy, 10–13 June 2008; pp. 1473–1477.
100. Hulan, H.W.; Ackman, R.G.; Ratnayake, W.M.N.; Proudfoot, F.G. n-3 fatty acid levels and performance of broilers chickens fed redfish meal or redfish oil. Can. J. Anim. Sci. 1988, 68, 533–547. [CrossRef]
101. Rymer, C.; Givens, D. n−3 fatty acid enrichment of edible tissue of poultry: A review. Lipids 2005, 40, 121–130.
[CrossRef]
102. Givens, D.; Gibbs, R.A. Current intakes of EPA and DHA in European populations and the potential of animalderived foods to increase them. Proc. Nutr. Soc. 2008, 67, 273–280. [CrossRef]
103. Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M.
Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [CrossRef]
104. Amaral, A.B.; Silva, M.V.D.; Lannes, S.C.D.S. Lipid oxidation in meat: Mechanisms and protective factors–a review. Food Sci. Technol. 2018, 38, 1–15. [CrossRef]
105. Ribeiro, T.; Lordelo, M.M.; Costa, P.; Alves, S.P.; Benevides, W.S.; Bessa, R.J.B.; Lemos, J.P.C.; Pinto, R.M.A.;
Ferreira, L.M.A.; Fontes, C.M.G.A.; et al. Effect of reduced dietary protein and supplementation with a docosahexaenoic acid product on broiler performance and meat quality. Br. Poult. Sci. 2014, 55, 752–765.
[CrossRef]
106. Oken, E.; Kleinman, K.P.; Olsen, S.F.; Rich-Edwards, J.W.; Gillman, M.W. Associations of seafood and elongated n-3 fatty acid intake with fetal growth and length of gestation: Results from a us pregnancy cohort.
Am. J. Epidemiol. 2004, 160, 774–783. [CrossRef]
107. Gonzalez-Esquerra, R.; Leeson, S. Effects of menhaden oil and flaxseed in broiler diets on sensory quality and lipid composition of poultry meat. Br. Poult. Sci. 2000, 41, 481–488. [CrossRef]
108. Leeson, S.; Atteh, J. Utilization of fats and fatty acids by turkey poults. Poult. Sci. 1995, 74, 2003–2010.
[CrossRef]
109. Leeson, S.; Summers, J. Commercial Poultry Production; University Books: Guelph, ON, Canada, 2005.
110. Sun, D.; Krishnan, A.; Zaman, K.; Lawrence, R.; Bhattacharya, A.; Fernandes, G. Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized rats. J. Bone Min. Res. 2003, 18, 1206–1216.
[CrossRef]
111. Baird, H.T.; Eggett, D.L.; Fullmer, S. Varying ratios of omega-6: Omega-3 fatty acids on the pre-and postmortem bone mineral density, bone ash, and bone breaking strength of laying chickens. Poult. Sci. 2008,
87, 323–328. [CrossRef]
112. Lau, B.Y.Y.; Cohen, D.J.A.; Ward, W.E.; Ma, D.W.L. Investigating the role of polyunsaturated fatty acids in bone development using animal models. Molecules 2013, 18, 14203–14227. [CrossRef]
113. Yair, R.; Shahar, R.; Uni, Z. In ovo feeding with minerals and vitamin D3 improves bone properties in hatchlings and mature broilers. Poult. Sci. 2015, 94, 2695–2707. [CrossRef]
114. Hopcroft, R.L.; Cowieson, A.J.; Muir, W.I.; Groves, P.J. Changes to mineral levels in the yolk of meat chicken embryos during incubation. Poult. Sci. 2018, 98, 1511–1516. [CrossRef]
115. Yair, R.; Uni, Z. Content and uptake of minerals in the yolk of broiler embryos during incubation and effect of nutrient enrichment. Poult. Sci. 2011, 90, 1523–1531. [CrossRef]
116. Kelso, K.A.; Cerolini, S.; Noble, R.C.; Sparks, N.H.C.; Speake, B.K. Lipid and antioxidant changes in semen of broiler fowl from 25 to 60 weeks of age. J. Rep. 1996, 106, 201–206. [CrossRef]
117. Kelso, K.A.; Cerolini, S.; Speake, B.K.; Gavalchini, L.G.; Noble, R.C. Effects of dietary supplementation with alpha-linolenic acid on the phospholipids fatty acid composition and quality of spermatozoa in cockerel from 24–72 weeks of age. J. Rep. 1997, 110, 53–59. [CrossRef]
118. Cerolini, S.; Surai, P.; Ggavalchini, L.G.M.; Noble, R.C. Effect of n3 and n6 fatty acid supplemented diet and vitamin E level on semen quality in cockerels. Br. Poult. Sci. 2000, 41, 8–10. [CrossRef]
119. Hudson, P.; Wilson, J. Effects of dietary menhaden oil on fertility and sperm quality of broiler breeder males.
J. App. Poult. Res. 2003, 12, 341–347. [CrossRef]
120. Bongalhardo, D.C.; Leeson, S.; Buhr, M.M. Dietary lipids differentially affect membranes from different areas of rooster sperm. Poult. Sci. 2009, 88, 1060–1069. [CrossRef]
121. Blesbois, E.; Grasseau, I.; Seigneurin, F. Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreservation. Reproduction 2005, 129, 371–378. [CrossRef]
122. Waterhouse, K.E.; Hofmo, P.O.; Tverdal, A.; Miller, R.R. Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm. Reproduction 2006, 131, 887–894.
[CrossRef]
123. Zaniboni, L.; Cerolini, S. Liquid storage of turkey semen: Changes in quality parameters, lipid composition and susceptibility to induced in vitro peroxidation in control, n-3 fatty acids and alpha tocopherol rich spermatozoa. Anim. Reprod. Sci. 2009, 112, 51–65. [CrossRef]
124. Al-Daraji, H.J.; Al-Mashadani, H.A.; Al-Hayani, W.K.; Al-Hassani, A.S.; Mirza, H.A. Effect of n-3 and n-6 fatty acid supplemented diets on semen quality in Japanese quail (Coturnix coturnix japonica). Int. J. Poult. Sci.
2010, 9, 656–663. [CrossRef]
125. Al-Daraji, H.J. Sperm-egg penetration in laying breeder flocks: A technique for the prediction of fertility.
Br. Poult. Sci. 2001, 42, 266–270. [CrossRef]
126. Al-Daraji, H.J. Studies of the semen characteristics of certain breeds of Iraqi cocks. Iraqi J. Agric. Sci. 2002, 33,
257–262.
127. Swi ˛atkiewicz, S.; Arczewska-Włosek, A.; Krawczyk, J.; Szczurek, W.; Puchała, M.; J ´ ózefiak, D. Effect of selected feed additives on egg performance and eggshell quality in laying hens fed a diet with standard or decreased calcium content. Ann. Anim. Sci. 2018, 18, 167–183. [CrossRef]
128. Gakhar, N.; Goldberg, E.; Jing, M.; Gibson, R.; House, J.D. Effect of feeding hemp seed and hemp seed oil on laying hen performance and egg yolk fatty acid content: Evidence of their safety and efficacy for laying hen diets. Poult. Sci. 2012, 91, 701–711. [CrossRef]
129. Shahid, S.; Chand, N.; Khan, R.U.; Suhail, S.M.; Khan, N.A. Alternations in cholesterol and fatty acids composition in egg yolk of Rhode Island Red x Fyoumi Hens fed with hemp seeds (Cannabis sativa L.).
J. Chem. 2015, 2015, 6. [CrossRef]
130. Neijat, M.; Suh, M.; Neufeld, J.; House, J.D. Hempseed products fed to hens effectively increased n 3 polyunsaturated fatty acids in total lipids, triacylglycerol and phospholipid of egg yolk. Lipids 2016, 51,
601–614. [CrossRef]
131. Mattioli, S.; Dal Bosco, A.; Martino, M.; Ruggeri, S.; Marconi, O.; Sileoni, V.; Falcinelli, B.; Castellini, C.;
Benincasa, P. Alfalfa and flax sprouts supplementation enriches the content of bioactive compounds and lowers the cholesterol in hen egg. J. Funct. Foods. 2016, 22, 454–462. [CrossRef]
132. Park, N.; Lee, T.K.; Nguyen, T.T.H.; An, E.B.; Kim, N.M.; You, Y.H.; Park, T.S.; Kim, D. The effect of fermented buckwheat on producing l-carnitine-and γ-aminobutyric acid (GABA)-enriched designer eggs.
J. Sci. Food Agric. 2017, 97, 2891–2897. [CrossRef]
133. Lokhande, A.; Ingale, S.L.; Lee, S.H.; Sen, S.; Khong, C.; Chae, B.J.; Kwon, I.K. Effects of dietary supplementation with Gynuraprocumbens (Merr.) on egg yolk cholesterol, excreta microflora and laying hen performance. Br. Poult. Sci. 2014, 55, 524–531. [CrossRef]
134. Elkin, R.G.; Ying, Y.; Harvatine, K.J. Feeding laying hens stearidonic acid-enriched soybean oil, as compared to flaxseed oil, more efficiently enriches eggs with very long-chain n-3 polyunsaturated fatty acids. J. Agric.
Food Chem. 2015, 63, 2789–2797. [CrossRef]
135. Petrovic, M.; Gacic, M.; Karacic, V.; Gottsteinc, Z.; Mazijac, H.; Medic, H. Enrichment of eggs in n-3 poly unsaturated fatty acids by feeding hens with different amount of linseed oil in diet. Food Chem. 2012, 135,
1563–1568. [CrossRef]
136. Herzallah, S. Enrichment of conjugated linoleic acid (CLA) in hen eggs and broiler chickens meat by lactic acid bacteria. Br. Poult. Sci. 2013, 54, 747–752. [CrossRef]
137. Kostogrys, R.B.; Filipiak-Florkiewicz, A.; Dere ´n, K.; Drahun, A.; Czy˙zy ´nska-Cicho ´n, I.; Cie´slik, E.;
Szymczyk, B.; Franczyk-Zar ˙ ów, M. Effect of dietary pomegranate seed oil on laying hen performance and physicochemical properties of eggs. Food Chem. 2017, 221, 1096–1103. [CrossRef]
138. Park, J.H.; Upadhaya, S.D.; Kim, I.H. Effect of dietary marine microalgae (Schizochytrium) powder on egg production, blood lipid profiles, egg quality, and fatty acid composition of egg yolk in layers. Asian Australas.
J. Anim. Sci. 2015, 28, 391–397. [CrossRef]
139. El-Katcha, M.I.; El-Kholy, M.E.; Soltan, M.A.; El-Gayar, A.H. Effect of dietary omega-3 to omega-6 ratio on growth performance, immune response, carcass traits and meat fatty acids profile of broiler chickens.
J. Poult. Sci. 2014, 2, 71–94.
140. Lemahieu, C.; Bruneel, C.; Ryckebosch, E.; Muylaert, K.; Buyse, J.; Foubert, I. Impact of different omega-3 polyunsaturated fatty acid (n-3 PUFA) sources (flaxseed, Isochrysisgalbana, fish oil and DHA Gold) on n-3
LC-PUFA enrichment (efficiency) in the egg yolk. J. Funct. Foods 2015, 19, 821–827. [CrossRef]
141. Lemahieu, C.; Bruneel, C.; Termote-Verhalle, R.; Muylaert, K.; Buyse, J.; Foubert, I. Impact of feed supplementation with different omega-3 rich microalgae species on enrichment of eggs of laying hens.
Food Chem. 2013, 14, 4051–4059. [CrossRef]
142. Scollan, N.D.; Price, E.M.; Morgan, S.A.; Huws, S.A.; Shingfield, K.J. Can we improve the nutritional quality of meat? Proc. Nutr. Soc. 2017, 76, 603–618. [CrossRef]
143. Saeed, M.; Yatao, X.; Hassan, F.U.; Arain, M.A.; Abd El-Hack, M.E.; Noreldin, A.E.; Sun, C. Influence of graded levels of l-theanine dietary supplementation on growth performance, carcass traits, meat quality, organs histomorphometry, blood chemistry and immune response of broiler chickens. Int. J. Mol. Sci. 2018,
19, 462. [CrossRef]
144. Zhang, P.; Tang, C.; Ding, Z.; Huang, H.; Sun, Y. Effects of simultaneous supplementation of laying hens with
α-linolenic acid and eicosapentaenoic acid/docosahexaenoic acid resources on egg quality and n-3 fatty acid profile. Asian Australas. J. Anim. Sci. 2017, 30, 973–978. [CrossRef]