[1] European Commission Directorate C Opinion of the Scientific Committee for Animal Nutrition on the Use of Copper in Feeding Stuffs. European Commission Health and Consumer Protection Directorate-General 2003.
[2] Bao YM, Choct M. Trace mineral nutrition for broiler chickens and prospects of application of organically complexed trace minerals: a review. Anim. Prod. Sci. 2009, 49, 269–282.
[3] Pang Y, Patterson JA, Applegate TJ. The influence of copper concentration and source on ileal microbiota. Poul. Sci. 2009, 88, 586–592feed and food. Trends Food Sci. Technol. 2016, 54, 155–164.
[5] Feng M, Wang ZS, Zhou AG, Ai DW. The effects of different sizes of nanometer zinc oxide on the proliferation and cell integrity of mice duodenum- epithelial cells in primary culture. PJN 2009, 8, 1164–1166
[6] Sri Sindhura K, Prasad TNVKV, Panner Selvam P, Hussain OM. Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzymes. Appl. Nanosci. 2014, 4, 819–827.
[7] Tamilvanan A, Balamurugan K, Ponappa K, Madhan Kumar B. Copper nanoparticles: synthetic strategies, properties and multifunctional application. Int. J. Nanosci. 2014, 13, 1430001
[8] Boyles, MSP, Ranninger, C, Reischl, R, Rurik, M, Tessadri, R,
Kohlbacher, O, Duschl, A, Huber, CG. Copper oxide nanoparticle toxicity profiling using untargeted metabolomics. Part.
Fibre Toxicol. 2016, 13, 49.
[9] Gonzales-Eguia A, Fu C-M, Lu F-Y, Lien T-F. Effects of nanocopper on copper availability and nutrients digestibility, growth performance and serum traits of piglets. Livest. Sci.
2009, 126, 122–129.
[10] Joshua PP, Valli C, Balakrishnan V. Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken. Vet. World 2016, 9,
287–294.
[11] Scott A, Vadalasetty KP, Sawosz E, Łukasiewicz M,
Vadalasetty RKP, Jaworski S, Chwalibog A. Effect of copper nanoparticles and copper sulphate on metabolic rate and development of broiler embryos. Anim. Feed Sci. Technol.
2016, 220, 151–158.
[12] Camacho-Flores B.A, Martínez-Álvarez O, Arenas-Arrocena
MC, Garcia-Contreras R, Argueta-Figueroa L, de la FuenteHernández J, Acosta-Torres LS. Copper: synthesis techniques in nanoscale and powerful application as an antimicrobial agent.
J. Nanomater. 2015, 2015, 1–10.
[13] Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K,
Zubair S. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res. Int.
2014, 2014, 1–8.
[14] Hefnawy AE, El-khaiat H. Copper and animal health (importance, maternal fetal, immunity and DNA relationship, deficiency and toxicity). Int. J. Agro Vet. Med. Sci. 2015, 9,
195–211.
[15] Failla ML. Trace elements and host defense: recent advances and continuing challenges. J. Nutr. 2003, 133(5 Suppl 1),
1443S–1447S.
[16] Tapiero H, Townsend DM, Tew KD. Trace elements in the human physiology and pathology. Copper. Biomed. Pharmacother.
2003, 57, 386–398.
[17] Magaye J. Genotoxicity and carcinogenicity of cobalt-, nickeland copper-based nanoparticles (Review). Exp. Ther. Med.
2012, 4, 551–561.
[18] Makarski B, Zadura A. Wplyw chelatu miedzi z lizyna na poziom skladników hematologicznych i biochemicznych krwi indyków.
Annales Universitatis Mariae Curie-Sklodowska, Lublin-Polonia
2006, 24, 357–363.
[19] Sharma MC, Joshi C, Pathak NN, Kaur H. Copper status and enzyme, hormone, vitamin and immune function in heifers.
Res. Vet. Sci. 2005, 79, 113–123.
[20] Lin W, Stayton I, Huang Y, Zhou XD, Ma Y. Cytotoxicity and cell membrane depolarization induced by aluminum oxide nanoparticles in human lung epithelial cells A549. Toxicol. Environ.
Chem. 2008, 90, 983–996.
[21] Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O.
Oxidative stress and antioxidant defense. World Allergy Organ.
J. 2012, 5, 9–19.
[22] Wu XZ, Zhang TT, Guo JG, Liu Z, Yang FH, Gao XH. Copper bioavailability, blood parameters, and nutrient balance in mink.
J. Anim. Sci. 2015, 93, 176–184.
[23] Mroczek-Sosnowska N, Batorska M, Lukasiewicz M, Wnuk A,
Sawosz E, Jaworski S, Niemiec J. Effect of nanoparticles of copper and copper sulfate administered in ovo on hematological and biochemical blood markers of broiler chickens. Annals of
Warsaw University of Life Sciences-SGGW. Anim. Sci. 2013, 52,
141–149.
[24] McDowell LR, Mineral In Animal And Human Nutrition,
Academic Press Inc.: San Diego, New York, Boston, London,
Sydney, Tokyo, Toronto, 1992, pp. 524.
[25] Chesters J.K. Trace element-gene interactions. Nutr. Rev. 1992,
50, 217–223.
[26] Karimi A, Sadeghi G, Vaziry A. The effect of copper in excess of the requirement during the starter period on subsequent performance of broiler chicks. J. Appl. Poult. Res. 2011, 20,
203–209.
[27] EFSA Panel on Additives and Products or Substances used in
Animal Feed (FEEDAP). Revision of the currently authorised maximum copper content in complete feed. EFSA J. 2016, 14,
4563.
[28] Kim JW, Kim JH, Shin JE, Kil DY. Relative bioavailability of copper in tribasic copper chloride to copper in copper sulfate for laying hens based on egg yolk and feather copper concentrations.
Poult. Sci. 2016, 95, 1591–1597.
[29] Kincaid RL. Assessment of trace mineral status of ruminants: a review. Proc. Am. Soc. Anim. Sci. 1999, 77, 1–10.
[30] National Research Council Nutrient Requirements of Poultry,
1994 9th Rev Ed. NAS-NRC, Washington DC.
[31] Leeson S. Copper metabolism and dietary needs. World Poult.
Sci. 2009, 65, 353–365.
[32] Kim JW, Kil DY. Determination of relative bioavailability of copper in tribasic copper chloride to copper in copper sulfate for broiler chickens based on liver and feather copper concentrations. Anim. Feed Sci. Technol. 2015, 210, 138–143.
[33] Ammerman CB, Baker DH, Lewis AJ. Bioavailability of Nutrients for Animals: Amino Acids, Minerals, and Vitamins, Academic
Press: San Diego, CA, 1995.
[34] Luo XG, Ji F, Lin YX, Steward FA, Lu L, Liu B, Yu SX. Effects of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability, and oxidation stability of vitamin E in feed. Poult. Sci. 2005,
84, 888–893.
[35] Marchetti M, Ashmead HD, Tossani N, Marchetti S, Ashmead
SD. Comparison of the rates of vitamin degradation when mixed with metal sulphates or metal amino acid chelates.
J. Food Compost. Anal. 2000, 13, 875–884.
[36] Pesti GM, Bakalli RI. Studies on the feeding of cupric sulfate pentahydrate and cupric citrate to broiler chickens. Poult. Sci.
1996, 75, 1086–1091.
[37] Ledoux DR, Henry PR, Ammerman CB, Rao PV, Miles RD. Estimation of the relative bioavailability of inorganic copper sources for chicks using tissue uptake of copper. J. Anim. Sci. 1991, 69,
215–222.
[38] Liu Z, Bryant MM, Roland DA Sr. Layer performance and phytase retention as influenced by copper sulfate pentahydrate and tribasic copper chloride. J. Appl. Poult. Res. 2005, 14, 499–505.
[39] Miles RD, O’keefe SF, Henry PR, Ammerman CB, Luo XG. The effect of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability, and dietary prooxidant activity. Poult. Sci. 1998,
77, 416–425.
[40] Arias VJ, Koutsos EA. Effects of copper source and level on intestinal physiology and growth of broiler chickens. Poult. Sci.
2006, 85, 999–1007.
[41] Świątkiewicz S, Arczewska-Włosek A, Józefiak D. The efficacy of organic minerals in poultry nutrition: review and implications of recent studies. World Poult. Sci. J. 2014, 70, 475–486.
[42] Leeson S, Summers JD. Commercial Poultry Nutrition
Publication, University Books: Guelph, Canada, 2005.
[43] Zhao J, Allee G, Gerlemann G, Ma L, Gracia MI, Parker D,
Vazquez-Anon M, Harrell RJ. Effects of a chelated copper as growth promoter on performance and carcass traits in pigs.
Asian-Australas. J. Anim. Sci. 2014, 27, 965–973.
[44] Banks KM, Thompson KL, Rush JK, Applegate TJ. Effects of copper source on phosphorus retention in broiler chicks and laying hens. Poult. Sci. 2004, 83, 990–996.
[45] Mondal MK, Das TK, Biswas P, Samanta CC, Bairagi B.
Influence of dietary inorganic and organic copper salt and level of soybean oil on plasma lipids, metabolites and mineral balance of broiler chickens. Anim. Feed Sci. Technol. 2007, 139,
212–233.
[46] Miles RD, Henry PR, Sampath VC, Shivarzad M, Comer CW.
Relative bioavailability of novel amino acid chelates of manganese and copper for chicks. J. Appl. Poult. Res. 2003, 12,
417–423.
[47] Guo R, Henry PR, Holwerda RA, Cao J, Littell RC, Miles RD,
Ammerman CB. Chemical characteristics and relative bioavailability of supplemental organic copper sources for poultry.
Anim. Sci. 2001, 79, 1132–1141.
[48] Bao YM, Choct M, Iji PA, Bruerton K. Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues. J. Appl.
Poult. Res. 2007, 16, 448–455.
[49] Jegede AV, Oduguwa OO, Bamgbose AM, Fanimo AO, Nollet L.
Growth response, blood characteristics and copper accumulation in organs of broilers fed on diets supplemented with organic and inorganic dietary copper sources. Br. Poult. Sci.
2011, 52, 133–139.
[50] Kwiecień M, Winiarska-Mieczan A, Piedra JV, Bujanowicz-Haraś
B, Chałabis-Mazurek A. Effects of copper glycine chelate on liver and faecal mineral concentrations, and blood parameters in broilers. Agric. Food Sci. 2015, 24, 92–103.
[51] Liu S, Lu L, Li S, Xie J, Zhang L, Wamg R, Luo X. Copper in organic proteinate or inorganic sulfate form is equally bioavailable for broiler chicks fed a conventional corn-soybean meal diet. Biol. Trace Elem. Res. 2012, 147, 142–148.
[52] Das TK, Mondal MK, Biswas P, Bairagi B, Samanta CC. Influence of level of dietary inorganic and organic copper and energy level on the performance and nutrient utilization of broiler chickens. Asian-Australas. J. Anim. Sci. 2010, 23, 82.
[53] Shamsudeen P, Shrivastava HP. Biointeraction of chelated and inorganic copper with aflatoxin on growth performance of broiler chicken. Int. J. Vet. Sci. 2013, 2, 106–110.
[54] Kim JS, Adamcakova-Dodd A, O’Shaughnessy PT, Grassian VH,
Thorne PS. Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model. Part. Fibre
Toxicol. 2011, 8, 29.
[55] Kwiecień M, Winiarska-Mieczan A, Zawiślak K, Sroka S. Effect of copper glycinate chelate on biomechanical, morphometric and chemical properties of chicken femur. Ann. Anim. Sci.
2014, 14, 127–139.
[56] Jegede AV, Oduguwa OO, Oso AO, Fafiolu AO, Idowu OMO,
Nollet L. Growth performance, blood characteristics and plasma lipids of growing pullet fed dietary concentrations of organic and inorganic copper sources. Livest. Sci. 2012,145, 298–302.
[57] Attia YA, Qota EM, Zeweil HS, Bovera F, Abd Al-Hamid AE,
Sahledom MD. Effect of different dietary concentrations of inorganic and organic copper on growth performance and lipid metabolism of White Pekin male ducks. Br. Poult. Sci. 2012, 53,
77–88.
[58] Kulkarni RC, Shrivastava HP, Mandal AB. Effect of iron supplementation on serum trace mineral status and cholesterol in broiler chickens. Indian J. Anim. Res. 2013, 47, 89–90.
[59] Rahman ZU, Besbasi F, Afan AM, Bengali EA, Zendah MI, Hilmy
M, Mukhtar MR, Jaspal SAS, Aslam N. Effects of copper supplement on haematological profiles and broiler meat composition.
Int. J. Agric. Biol. 2001, 1560–8530, 203–205.
[60] Yang W, Wang J, Liu L. Effect of high dietary copper on somatostatin and growth hormone-releasing hormone levels in the hypothalamic of growing pigs. Biol. Trace Elem. Res. 2011, 143,
893–900.
[61] Zhu D, Yu B, Ju C, Mei S, Chen D. Effect of high dietary copper on the expression of hypothalamic appetite regulators in weanling pigs. J. Anim. Feed Sci. 2011, 20, 60–70.
[62] Zhou W, Kornegay ET, Lindemann MD, Swinkels JW, Welten MK,
Wong EA. Stimulation of growth by intravenous injection of copper in weanling pigs. J. Anim. Sci. 1994, 72, 2395–2403.
[63] Prashanth L, Kattapagari K, Chitturi R, Baddam VR, Prasad
L. A review on role of essential trace elements in health and disease. NTR Univ. Health Sci. 2015, 4, 75–85.
[64] Wang ZL. Characterizing the structure and properties of individual wire-like nanoentities. Adv. Mater. 2000, 12, 1295–1298.
[65] Din MI, Rehan R. Synthesis, characterization, and applications of copper nanoparticles. Anal. Lett. 2017, 50, 50–62.
[66] Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem.
Rev. 2005, 105, 1547–1562.
[67] Volokitin Y, Sinzig J, De Jongh L, Schmid G, Vargaftik M, Moiseevi I. Quantum size effects in the thermodynamic properties of metallic nanoparticles. Nature 1996, 384, 621–623.
[68] Sasaki K, Matsubara K, Kawamura S, Saito K, Yagi M, Norimatsu W, Sasai R, Yui T. Synthesis of copper nanoparticles within the interlayer space of titania nanosheet transparent films. J. Mater. Chem. C 2016, 4, 1476–1481.
[69] Lee Y, Choi J-R, Lee KJ, Stott NE, Kim D. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology
2008, 19, 415604.
[70] Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008, 4, 707–716.
[71] Rajendran D, Thulasi A, Jash S, Selvaraju S, Rao SBN. Synthesis and application of nano minerals in livestock industry. In
Animal Nutrition & Reproductive Physiology (Recent Concepts).
Sampath, KT, Ghosh, J, Bhatta, R, Eds., Satish Serial Publishing
House: Delhi 2013, 517–530.
[72] Male KB, Hrapovic S, Liu Y, Wang D, Luong JH. Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal. Chem. Acta 2004, 516, 35–41.
[73] Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 2007, 7, 1947–1952.
[74] Chen S, Sommers JM. Alkanethiolate-protected copper nanoparticles: spectroscopy, electrochemistry, and solid-state morphological evolution. J. Physiol. Chem. B 2001, 105, 8816.
[75] Shankar S, Rhim J-W. Effect of copper salts and reducing agents on characteristics and antimicrobial activity of copper nanoparticles. Mater. Lett. 2014, 132, 307–311.
[76] Yallappa S, Manjanna J, Sindhe MA, Satyanarayan ND, Pramod
SN, Nagaraja K. Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochim. Acta Part A: Mol. Biomol.
Spectrosc. 2013, 110, 108–115.
[77] Valodkar M, Rathore PS, Jadeja RN, Thounaojam M, Devkar RV,
Thakore S. Cytotoxicity evaluation and antimicrobial studies of starch capped water soluble copper nanoparticles. J. Hazard.
Mater. 2012, 201–202, 244–249.
[78] Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007, 2, 17–71.
[79] Pradhan, S, Hedberg, J, Blomberg, E, Wold, S, Odnevall Wallinder, I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanopart. Res. 2016, 18, 285.
[80] Taurozzi JS, Hackley VA, Wiesner MR. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment – issues and recommendations. Nanotoxicology 2010, 5,
711–729.
[81] Powers KW, Palazuelos M, Moudgil BM, Roberts SM. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 2007, 1, 42–51.
[82] Singh N, Manshian B, Jenkins GJS. NanoGenotoxicology: the
DNA damaging potential of engineered nanomaterials. Biomaterials 2009, 30–24, 3891–3914.
[83] Elder A, Vidyasagar S, DeLouise L. Physicochemical factors that affect metal and metal oxide nanoparticle passage across epithelial barriers. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2009, 1, 434–450.
[84] Chandra S, Kumar A, Tomar PK. Synthesis and characterization of copper nanoparticles by reducing agent. J. Saudi Chem. Soc.
2014, 18, 149–153.
[85] Soomro RA, Sherazi STH, Sirajuddin MN, Shah MR, Kalwar NH,
Hallam KR, Shah A. Synthesis of air stable copper nanoparticles and their use in catalysis. Adv. Mater. Lett. 2013, 5, 191–198.
[86] Meng H, Chen Z, Xing GM. Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles.
Toxicol. Lett. 2007, 175, 102–110.
[87] Cho WS, Duffin R, Poland CA. Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology 2012, 6,
22–35.
[88] Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006, 311, 622–627.
[89] Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML. Effects of nanomaterials physicochemical properties on in vivo toxicity.
Adv. Drug Deliv. Rev. 2009, 61, 457–466.
[90] Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc. Chem. Res. 2013, 46, 622–631.
[91] Jackelen A-ML, Jungbauer M, Glavee GN. Nanoscale materials synthesis. 1. Solvent effects on hydridoborate reduction of copper ions. Langmuir 1999, 15, 2322–2326.
[92] Xia X, Xie C, Cai S, Yang Z, Yang X. Corrosion characteristics of copper microparticles and copper nanoparticles in distilled water. Corros. Sci. 2006, 48, 3924–3932.
[93] Shi M, Kwon HS, Peng Z, Elder A, Yang H. Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles. ACS Nano 2012, 6, 2157–2164.
[94] Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson
H, Dawson KA, Linse S. Understanding the nanoparticleprotein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci.
2007, 104, 2050–2055.
[95] Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela MA. Penetration of metallic nanoparticles in human fullthickness skin. J. Investig. Dermatol. 2007, 127, 1701–1712.
[96] Zahr AS, Davis CA, Pishko MV. Macrophage uptake of coreshell nanoparticles surface modified with poly (ethylene glycol). Langmuir 2006, 22, 8178–8185.
[97] Hoshino A, Fujioka K, Oku T. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 2004, 4, 2163–2169.
[98] Pietroiusti A, Massimiani M, Fenoglio I. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano 2011, 5, 4624–4633.
[99] Georgieva JV, Kalicharan D, Couraud P. Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro. Mol. Ther. 2011, 19, 318–325.
[100] Mamonova IA, Matasov MD, Babushkina IV, Losev OE, Chebotareva YG, Gladkova EV, Borodulina YV. Study of physical properties and biological activity of copper nanoparticles.
Nanotechnol. Russ. 2013, 8, 303–308.
[101] Rakhmetova AA, Alekseeva TP, Bogoslovskaya OA, Leipunskii
IO, Ol’khovskaya IP, Zhigach AN, Glushchenko NN. Wound-healing properties of copper nanoparticles as a function of physicochemical parameters. Nantechnol. Russ. 2010, 5, 271–276.
[102] Huang J, Chen C, He N, Hong J, Lu Y, Qingbiao L, Shao W, Sun
D, Wang XH, Wang Y, Yiang X. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf.
Nanotechnology 2007, 18, 105–106.
[103] Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai MK. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr. Nanosci. 2008, 4, 141–144.
[104] Lewinski N, Colvin V, Drezek R, Cytotoxicity of nanoparticles.
Small 2008, 4, 26–49.
[105] Nel AE, Mädler L, Velegol D, Xia TE, Hoek MV, Somasundaran
P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano–bio interface. Nat.
Mater. 2009, 8, 543–557.
[106] Zhao F, Zhao Y, Liu Y, Chang XL, Chen CY, Zhao YL. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 2011, 7, 1322–1337.
[107] Civardi C, Schubert M, Fey A, Wick P, Schwarze FW. Micronized copper wood preservatives: efficacy of ion, nano, and bulk copper against the brown rot fungus Rhodonia placenta. PLoS
One 2015, 10, e0142578.
[108] Zaboli K, Aliarabi H, Bahari AA, Abbasalipourkabir R. Role of dietary nano-zinc oxide on growth performance and blood levels of mineral: a study on in Iranian Angora (Markhoz) goat kids. J. Pharm. Health Sci. 2013, 2, 19–26.
[109] Hillyer JF, Albrecht RM. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci. 2001, 90, 1927–1936.
[110] Mroczek-Sosnowska N, Sawosz E, Vadalasetty K, Łukasiewicz
M, Niemiec J, Wierzbicki M, Kutwin M, Jaworski S, Chwalibog A. Nanoparticles of copper stimulate angiogenesis at systemic and molecular level. Int. J. Mol. Sci. 2015a, 16,
4838–4849.
[111] Al-Bairuty GA, Boyle D, Henry TB, Handy RD. Sublethal effects of copper sulphate compared to copper nanoparticles in rainbow trout (Oncorhynchus mykiss) at low pH: physiology and metal accumulation. Aquat. Toxicol. 2016, 174,
188–198.
[112] Hoet PH, Brüske-Hohlfeld I, Salata OV. Nanoparticles–known and unknown health risks. J. Nanobiotechnol. 2004, 2, 12.
[113] O’ Hagan DT. The intestinal uptake of particles and the implications for drug and antigen delivery. J. Anat. 1996, 189,
477–482.
[114] Hillery AM, Jani PU, Florence AT. Comparative, quantitative study of lymphoid and nonlymphoid uptake of 60 nm polystyrene particles. J. Drug Target. 1994, 2, 151–156.
[115] Food Safety Authority of Ireland. The Relevance for Food
Safety of Applications of Nanotechnology in the Food and
Feed Industries Abbey Court, Lower Abbey Street, Dublin
2008, 1.
[116] Gangadoo S, Stanley D, Hughes RJ, Moore RJ, Chapman J.
Nanoparticles in feed: Progress and prospects in poultry research. Trends Food Sci. Technol. 2016, 58, 115–126.
[117] Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P,
Larsen A. Kupffer cells are central in the removal of nanoparticles from the organism. Part. Fibre Toxicol. 2007, 4, 1.
[118] Jiang X, Rocker C, Hafner M, Brandholt S, Dorlich RM,
Nienhaus GU. Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano 2010, 4,
6787–6797.
[119] Gangadoo S, Taylor-Robinson AW, Chapman J. From replacement to regeneration: are bio-nanomaterials the emerging prospect for therapy of defective joints and bones. J. Biotechnol. Biomater. 2015, 5, 2.
[120] Alber F, Dokudovskaya S, Veenhoff LM, Zhang WH, Kipper J,
Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT,
Sali A, Rout MP. The molecular architecture of the nuclear pore complex. Nature 2007, 450, 695–701.
[121] Jani P, Halbert GW, Langridge J, Florence AT. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J. Pharm. Pharmacol. 1990, 42, 821–826.
[122] Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839.
[123] Thulasi A, Rajendran D, Jash S, Selvaraju S, Jose VL, Velusamy
S, Mathivanan S. Nanobiotechnology of Animal Nutrition,
Sampath, KT, Ghosh, J, Bhatta, R, Eds., Satish Serial Publishing House: New Delhi Chapter 24, 2013, pp. 499–515.
[124] Fröhlich E, Roblegg E. Models for oral uptake of nanoparticles in consumer products. Toxicology 2012, 291, 10–17.
[125] Mroczek-Sosnowska N, Lukasiewicz M, Wnuk A, Sawosz E,
Niemiec J. Effect of copper nanoparticles and copper sulfate administered in ovo on copper content in breast muscle, liver and spleen of broiler chickens. Annals of Warsaw University of
Life Sciences-SGGW. Anim. Sci. 2014, 53, 135–142.
[126] Mroczek-Sosnowska N, Łukasiewicz M, Wnuk A, Sawosz E,
Niemiec J, Skot A, Jaworski S, Chwalibog A. In ovo administration of copper nanoparticles and copper sulfate positively influences chicken performance: effect of Cu on chicken performance. J. Sci. Food Agric. 2015b, 96, 3058–3062.
[127] El Basuini MF, El-Hais AM, Dawood MAO, Abou-Zeid AE-S,
EL-Damrawy SZ, Khalafalla MME-S, Koshio S, Ishikawa
M, Dossou S. Effect of different levels of dietary copper nanoparticles and copper sulfate on growth performance, blood biochemical profiles, antioxidant status and immune response of red sea bream (Pagrus major). Aquaculture 2016,
455, 32–40.
[128] Lien TF. Nanosize of copper sulfate and effects on growth, copper availability, and excretion of pigs. Int. J. Livest. Res.
2009, 1, 30–36.
[129] Refaie AM, Ghazal MN, Easa FM, Barakat SA, GE Y, WH E.
Nano-copper as a new growth promoter in the diet of growing
New Zealand white rabbits. Egypt Journal of Rabbit Science
2015, 25, 39–57.
[130] Wang C, Wang MQ, Ye SS, Tao WJ, Du YJ. Effects of copperloaded chitosan nanoparticles on growth and immunity in broilers. Poult. Sci. 2011, 90, 2223–2228.
[131] Miroshnikov S, Yausheva E, Sizova E, Miroshnikova E. Comparative assessment of effect of copper nano- and microparticles in chicken. Orient. J. Chem. 2015, 31, 2327–2336.
[132] Kumar P, Biswas A, Bharti VK, Srivastava RB. Effects of dietary copper supplementation on performance and blood biochemical parameters in broiler chickens at cold desert region in
India. J. Vet. Sci. Photon 2013, 114, 166–172.
[133] Canli E.G, Canli M. Effects of aluminum, copper, and titanium nanoparticles on some blood parameters in Wistar rats. Turk.
J. Zool. 2017, 41, 259–266.
[134] Mommsen TP, Vijayan MM, Moon TW. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation.
Rev. Fish Biol. Fish. 1999, 9, 211–268.
[135] Zahedi M, Ghalehkandi JG, Ebrahimnezhad Y, Emami F. Effects of different levels of copper sulfate on blood biochemical traits in Japanese quail (Coturnix coturnix japonica), Int. J.
Biosci. (IJB) 2013, 3, 221–226.
[136] Payvastegan S, Farhoomand P, Delfani N. Growth performance, organ weights and, blood parameters of broilers fed diets containing graded levels of dietary canola meal and supplemental copper. J. Poult. Sci. 2013, 50,
354–363.
[137] Kim S, Chao PY, Allen KGD. Inhibition of elevated hepatic glutathione abolishes copper deficiency cholesterolemia. FASEB
J. 1992, 6, 2467–2471
[138] Bakalli RI, Pesti GM, Ragland WL, Konjufca V. Dietary copper in excess of nutritional requirement reduces plasma and breast muscle cholesterol in chickens. Poult. Sci. 1995, 74,
360–365
[139] Yang YX, Guo J, Yoon SY, Jin Z, Choi JY, Piao XS, Kim BW, Ohh
SJ, Wang MH, Chae BJ. Early energy and protein reduction: effects on growth, blood profiles and expression of genes related to protein and fat metabolism in broilers. Br. Poult.
Sci. 2009, 50, 218–227.
[140] Fukawa K, Nishimura N, Irino O, Nitta, K. Experimental studies on anti-tumor effects of lysozyme-II: effect of lysozyme on immunopotentiation. Gan To Kagaku Ryoho 1982, 9,
1832–1837.
[141] Dmoch M, Polonis A. Wplyw tiokompleksu miedziowego na wybrane wskalniki hematologiczne, biochemiczne i zawartosc skladników mineralnych we krwi kurczat brojlerów. Acta Sci.
Pol., Zootechnica 2007, 6, 11–18.
[142] Mullally AM, Vogelsang GB, Moliterno AR. Warted sheep and premature infants the role of trace metals in hematopoiesis.
Blood Rev. 2004, 18, 227–234.
[143] Maryam G, Samaneh Z. The effect of copper oxide nanoparticles as feed additive on some the blood proteins of broiler chickens. Mol. Biol. Res. Commun. 2014, 3, 144–145.
[144] Yazdankhah S, Rudi K, Bernhoft A. Zinc and copper in animal feed – development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb. Ecol.
Health Dis. 2014, 25, 25862.
[145] Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm. Ther. 2015, 40, 277–283.
[146] DeAlba-Montero I, Guajardo-Pacheco J, Morales-Sánchez E,
Araujo-Martínez R, Loredo-Becerra GM, Martínez-Castañón
G-A, Ruiz F, Compeán Jasso ME. Antimicrobial properties of copper nanoparticles and amino acid chelated copper nanoparticles produced by using a soya extract. Bioinorg. Chem.
Appl. 2017, 2017, 1–6.
[147] Sánchez-Sanhueza G, Fuentes-Rodríguez D, Bello-Toledo H.
Nanopartículas de xobre como potencial agente antimicrobiano en la desinfección de canales radiculares: revisión sistemática. Int. J. Odontostomatol. 2016, 10, 547–554.
[148] Rudramurthy G, Swamy M, Sinniah U, Ghasemzadeh, A.
Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 2016, 21, 836.
[149] Chang Y-N, Zhang M, Xia L, Zhang J, Xing G. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials
2012, 5, 2850–2871.
[150] Amro NA, Kotra P, WaduMesthrige K, Bulychev A, Mobashery
S, Liu GY. High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 2000, 16, 2789–2796.
[151] Azam A, Ahmed A, Oves M. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive andnegative bacterial strains. Int. J. Nanomed. 2012, 7, 3527–
3535.
[152] Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez. Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ. Sci. Technol. 2007, 41,
2636–2642.
[153] Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R,
Gedanken A, Banin E. Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 2012, 8, 3326–3337.
[154] Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182.
[155] Kim B-E, Nevitt T, Thiele DJ. Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol. 2008, 4,
176–185.
[156] Chatterjee AK, Chakraborty R, Basu T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 2014,
25, 135101.
[157] Das R, Gang S, Nath SS, Bhattacharjee R. Linoleic acid capped copper nanoparticles for antibacterial activity. J. Bionanosci.
2010, 4, 82–86.[158] Duran N, Marcato PD, De Conti R, Alves OL, Costa FTM, Brocchi
M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity, and possible mechanisms of action. J. Braz.
Chem. Soc. 2010, 21, 949–959.
[159] Prabhu BM, Ali SF, Murdock RC, Hussain SM, Srivatsan M.
Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology
2010, 4, 150–160.
[160] Diaz-Visurrage J, Gutierrez C, Plessing C, Garcia A. Metal nanostructures as antimicrobial agents. Formatex, Badajoz,
Spain 2011, 257, 210–218.
[161] Patra JK, Baek K-H. Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Front. Microbiol. 2017, 8, 167.
[162] Theivasanthi T, Alagar M. Studies of copper nanoparticles effects on micro-organisms. 2011. arXiv:1110.1372
[physics].https://arxiv.org/abs/1110.1372
[163] Hajipour MJ, Fromm KM, Akbar Ashkarran A, Jimenez de
Aberasturi D, e Larramendi IR, Rojo T, Serpooshan V, Parak
WJ, Mahmoudi, M. Antibacterial properties of nanoparticles.
Trends Biotechnol. 2012, 30, 499–511.
[164] Khurana C, Andhariya N, Chudasama B, Vala AK, Pandey OP.
Influence of antibiotic adsorption on biocidal activities of silver nanoparticles. IET Nanobiotechnol. 2016, 10, 69–74.
[165] Sportelli M, Picca R, Ronco R, Bonerba E, Tantillo G, Pollini
M, Sannino A, Valentini A, Cataldi T, Cioffi N. Investigation of industrial polyurethane foams modified with antimicrobial copper nanoparticles. Materials 2016, 9, 544.
[166] Ballo MKS, Rtimi S, Pulgarin C, Hopf N, Berthet A, Kiwi J, Moreillon P, Entenza JM, Bizzini A. In vitro and in vivo effectiveness of an innovative silver-copper nanoparticle coating of catheters to prevent methicillin-resistant Staphylococcus aureus infection.
Antimicrob. Agents Chemother. 2016, 60, 5349–5356.
[167] Gunawan C, Teoh WY, Marquis CP, Amal R. Cytotoxic origin of copper (II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salt. ACS Nano
2011, 5, 7214–7225.
[168] Rajasekaran P, Santra S. Hydrothermally treated chitosan hydrogel loaded with copper and zinc particles as a potential micronutrient-based antimicrobial feed additive. Front. Vet.
Sci. 2015, 2, 62.
[169] Højberg O, Canibe N, Poulsen HD, Hedemann MS, Jensen
BB. Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl.
Environ. Microbiol. 2005, 71, 2267–2277.
[170] Carlson D, Poulsen HD, Sehested J. Influence of weaning and effect of post weaning dietary zinc and copper on electrophysiological response to glucose, theophylline and 5-HT in piglet small intestinal mucosa. Comp. Biochem. Physiol. A
Mol. Integr. Physiol. 2004, 137, 757–765.
[171] Seiler C, Berendonk TU. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 2012, 3, 399.
[172] Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. Coselection of antibiotic and metal resistance. Trends Microbiol.
2006, 14, 176–182.
[173] Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA,
Syed AF. Metal-based nanoparticles and their toxicity assessment. WIREs Nanomed. Nanobiotechnol. 2010, 2, 554–568.
[174] Alzahrani E, Ahmed RA. Synthesis of copper nanoparticles with various sizes and shapes: application as a superior nonenzymatic sensor and antibacterial agent. Int. J. Electrochem.
Sci. 2016, 11, 4712–4723.
[175] Shobha G, Moses V, Anand, S. Biological synthesis of copper nanoparticles and its impact. Int. J. Pharm. Sci. Invent. 2014,
3, 6–28.
[176] Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G,
Rahuman AA. Synthesis and antimicrobial activity of copper nanoparticles. Mater. Lett. 2012, 71, 114–116.
[177] Yoon KY, Byeon JH, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles Sci. Total Environ. 2007, 373, 572–575.
[178] Xu JF, Ji W, Shen ZX, Tang SH, Ye XR, Jia DZ, Xin XQ. Preparation and characterization of CuO nanocrystals. J. Solid State Chem.
2009, 147, 516–519.
[179] Raffi M, Mehrwan S, Bhatti T, Akhter J, Hameed A, Yawar W, ul Hasan, M. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann. Microbiol.
2010, 60, 75–80.
[180] Lee S, Chung H, Kim S, Lee I. The genotoxic effect of ZnO and
CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut. 2013, 88, 1971–1977.
[181] Pramanik A, Laha D, Bhattacharya D, Pramanik P, Karmakar
P. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids
Surf. B Biointerfaces 2012, 96, 50–55.
[182] Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control Release. 2011, 156, 128–145.
[183] Tamayo LA, Zapata PA, Rabagliati FM, Azócar MI, Muñoz LA,
Zhou X, Thompson GE, Páez MA. Antibacterial and noncytotoxic effect of nanocomposites based in polyethylene and copper nanoparticles. J. Mater. Sci. Mater. Med. 2015,
26, 129.
[184] Chakraborty R, Sarkar RK, Chatterjee AK, Manju U,
Chattopadhyay AP, Basu T. A simple, fast and cost-effective method of synthesis of cupric oxide nanoparticle with promising antibacterial potency: unraveling the biological and chemical modes of action. Biochim. Biophys. Acta (BBA) –
General Subjects 2015, 1850, 845–856.
[185] Wu B, Huang R, Sahu M, Feng X, Biswas P, Tang YJ. Bacterial responses to Cu doped TiO2
nanoparticles. Sci. Total Environ.
2010, 408, 1755–1758.
[186] Gajjar P, Pettee B, Britt DW, Huang W, Johnson PW, Anderson AJ. Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida
KT2440. J. Biol. Eng. 2009, 3, 9.
[187] Kaur G, Singh P, Mehta SK, Kumar S, Dilbaghi N, Chaudhary
GR. A facile route for the synthesis of Co, Ni and Cu metallic nanoparticles with potential antimicrobial activity using novel metallosurfactants. Appl. Surf. Sci. 2017, 404, 254–262.
[188] Du BD, Phu DV, Quoc LA, Hien NQ. Synthesis and investigation of antimicrobial activity of Cu2
O nanoparticles/zeolite.
J. Nanopart. 2017, 2017, 1–6. doi: 10.1155/2017/705684.
[189] Dobrovolný K, Ulbrich P, Švecová M, Rimpelová S, Malinčík
J, Kohout M, Svoboda J, Bartůněk V. Copper nanoparticles in glycerol-polyvinyl alcohol matrix: in situ preparation, stabilisation and antimicrobial activity. J. Alloys Compds 2017, 697,
147–155.
[190] Morsi RE, Alsabagh AM, Nasr SA, Zaki MM. Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: antimicrobial characteristics. Int. J. Biol. Macromol. 2017, 97,
264–269.
[191] Woźniak-Budych MJ, Przysiecka Ł, Langer K, Peplińska B,
Jarek M, Wiesner M, Nowaczyk G, Jurga S. Green synthesis of rifampicin-loaded copper nanoparticles with enhanced antimicrobial activity. J. Mater. Sci. Mater. Med. 2017, 28, 42.
[192] Villanueva ME, Diez AM, González JA, Pérez CJ, Orrego M,
Piehl L, Teves S, Copello GJ. Antimicrobial activity of starch hydrogel incorporated with copper nanoparticles. ACS Appl.
Mater. Interfaces 2016, 8, 16280–16288.
[193] Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane
O, Ihssane B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl. Nanosci.
2013, 4, 571–576.
[194] Usman M, El Zowalaty M, Ibrahim NA, Salama M, Shameli K,
Zainuddin N. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int. J. Nanomed. 2013, 8,
4467–4479.
[195] Shannahan JH, Brown JM. Engineered nanomaterial exposure and the risk of allergic disease. Curr. Opin. Allergy Clin. Immunol. 2014, 14, 95–99.
[196] Moghimi SM, Hunter AC. Capture of stealth nanoparticles by the body’s defences. Crit. Rev. Ther. Drug Carrier Syst. 2001,
18, 527–550.
[197] Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling
W, Schulz H, Semmler M, Hof VI, Heyder J, Gehr P. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect.
2005, 113, 1555–1560.
[198] Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann
MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008, 38, 1404–1413.
[199] Chono S, Tanino T, Seki T, Morimoto K. Influence of particle size on drug delivery to rat alveolar macrophages following pulmonary administration of ciprofloxacin incorporated into liposomes. J. Drug Target. 2006, 14, 557–566.
[200] Borm PJ, Kreyling W. Toxicological hazards of inhaled nanoparticles potential implications for drug delivery. J. Nanosci.
Nanotechnol. 2004, 4, 521–531.
[201] Li, N, Xia, T. and Nel, A. E. The role of oxidative stress in ambient particulate matter induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic.
Biol. Med. 2008, 44, 1689–1699.
[202] Pettibone JM, Adamcakova-Dodd A, Thorne PS,
O’Shaughnessy PT, Weydert JA, Grassian VH. Inflammatory response of mice following inhalation exposure to iron and copper nanoparticles. Nanotoxicology 2008, 2, 189–204.
[203] Pineda L, Sawosz E, Vadalasetty KP, Chwalibog A. Effect of copper nanoparticles on metabolic rate and development of chicken embryos. Anim. Feed Sci. Technol. 2013, 186,
125–129.
[204] Wang T, Long X, Cheng Y, Liu Z, Yan S. A comparison effect of copper nanoparticles versus copper sulphate on juvenile
Epinephelus coioides: growth parameters, digestive enzymes, body composition, and histology as biomarkers. Int. J.
Genomics 2015, 2015, 1–10.
[205] Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticleinduced oxidative stress and toxicity. Biomed Res. Int. 2013,
2013, e942916.
[206] Zhang, L, Bai, R, Liu, Y, Meng, L, Li, B, Wang, L, Xu, L, Le
Guyader, L, Chen, C. The dose-dependent toxicological effects and potential perturbation on the neurotransmitter secretion in brain following intranasal instillation of copper nanoparticles. Nanotoxicology 2012, 6, 562–575.
[207] Wang T, Long X, Liu Z, Cheng Y, Yan S. Effect of copper nanoparticles and copper sulphate on oxidation stress, cell apoptosis and immune responses in the intestines of juvenile
Epinephelus coioides. Fish Shellfish Immunol. 2014, 44,
674–682.
[208] Wang T, Long X, Chen X, Liu Y, Liu Z, Han S, Yan S. Integrated transcriptome, proteome and physiology analysis of
Epinephelus coioides after exposure to copper nanoparticles or copper sulfate. Nanotoxicology 2017, 11, 236–246.
[209] Hua J, Vijver MG, Ahmad F, Richardson MK, Peijnenburg
WJ. Toxicity of different-sized copper nano- and submicron particles and their shed copper ions to zebrafish embryos.
Environ. Toxicol. Chem. 2014, 33, 1774–1782.
[210] Hedberg J, Karlsson HL, Hedberg Y, Blomberg E, Odnevall
Wallinder I. The importance of extracellular speciation and corrosion of copper nanoparticles on lung cell membrane integrity. Colloids Surf. B Biointerfaces 2016, 141, 291–300.
[211] Song L, Connolly M, Fernández-Cruz ML, Vijver MG,
Fernández M, Conde E, de Snoo GR, Peijnenburg WJ, Navas
JM. Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology 2014, 8,
383–393.
[212] Sadiq R, Khan QM, Mobeen A, Hashmat AJ. In vitro toxicological assessment of iron oxide, aluminium oxide and copper nanoparticles in prokaryotic and eukaryotic cell types. Drug
Chem. Toxicol. 2015, 38, 152–161.
[213] Palza H, Galarce N, Bejarano J, Beltran M, Caviedes P. Effect of copper nanoparticles on the cell viability of polymer composites. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 462–468.
[214] Ganesan S, Anaimalai Thirumurthi N, Raghunath A, Vijayakumar S, Perumal E. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos: oxidative stress and teratogenicity of
CuO-NPs. J. Appl. Toxicol. 2016, 36, 554–567.
[215] Sun Y, Zhang G, He Z, Wang Y, Cui J. Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae.
Int. J. Nanomed. 2016, 11, 905–918.
[216] Liao M, Liu H. Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. Environ. Toxicol. Pharmacol. 2012, 34,
67–80.
[217] Doudi M, Setorki M. Acute effect of nano-copper on liver tissue and function in rat. Nanomed. J. 2014, 1, 331–338.
[218] Ostaszewska T, Chojnacki M, Kamaszewski M,
Sawosz-Chwalibóg E. Histopathological effects of silver and copper nanoparticles on the epidermis, gills, and liver of Siberian sturgeon. Environ. Sci. Pollut. Res. 2016, 23,
1621–1633.
[219] Lee I-C, Kim J-C, Ko J-W, Park S-H, Lim J-O, Shin I-S, Moon C,
Kim S-H, Her J-D. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. Int. J. Nanomed.
2016, 11, 2883–2900.
[220] Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan
H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L. Acute toxicological effects of copper nanoparticles in vivo. Toxicol.
Lett. 2006, 163, 109–120.
[221] Hill EK, Li J. Current and future prospects for nanotechnology in animal production. J. Anim. Sci. Biotechnol. 2017, 8, 26.
[222] Prescott JF, Baggot JD. Antimicrobial Therapy in Veterinary
Medicine, 2nd ed., Iowa State University Press: Ames, IA,
1993, pp. 564–565.
[223] Mahler GJ, Esch MB, Tako E, Southard TL, Archer SD, Glahn RP,
Shuler ML. Oral exposure to polystyrene nanoparticles affects iron absorption. Nat. Nanotechnol. 2012, 7, 264–271.
[224] Selim NA, Radwan NL, Youssef SF, Eldin TAS, Elwafa SA. Effect of inclusion inorganic, organic or nano selenium forms in broiler diets on: 1-growth performance, carcass and meat characteristics. Int. J. Poult. Sci. 2015, 14, 135–143.
[225] Bagheri M, Golchin-Gelehdooni S, Mohamadi M, Tabidian A.
Comparative effects of nano, mineral and organic selenium on growth performance, immunity responses and total antioxidant activity in broiler chickens. Int. J. Biol. Pharm. Allied Sci. (IJBPAS) 2015, 4, 583–595.
[226] Boostani A, Sadeghi AA, Mousavi SN, Chamani M, Kashan N.
The effects of organic, inorganic, and nano-selenium on blood attributes in broiler chickens exposed to oxidative stress. Acta
Sci. Vet. 2015, 43, 1–6.
[227] Milani NC, Sbardella M, Ikeda NY, Arno A, Mascarenhas BC,
Miyada VS. Dietary zinc oxide nanoparticles as growth promoter for weanling pigs. Anim. Feed Sci. Technol. 2017, 227, 13–23.
[228] Mishra A, Swain RK, Mishra SK, Panda N, Sethy K. Growth performance and serum biochemical parameters as affected by nano zinc supplementation in layer chicks. Indian J. Anim.
Nutr. 2014, 31, 384–388.
[229] Swain PS, Rao SBN, Rajendran D, Dominic G, Selvaraju S.
Nano zinc, an alternative to conventional zinc as animal feed supplement: a review. Anim. Nutr. 2016, 2, 134–141.
[230] Sirirat N, Lu J-J, Tsung-Yu Hung A, Chen S-Y, Lien T-F. Effects different levels of nanoparticles chromium picolinate supplementation on growth performance, mineral retention, and immune responses in broiler chickens. J. Agric. Sci. 2012,
4, 48.
[231] Pineda L, Chwalibog A, Sawosz E, Lauridsen C, Engberg R,
Elnif J. Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Arch.
Anim. Nutr. 2012, 66, 416–429.
[232] Fondevila M, Herrer R, Casallas MC, Abecia L, Ducha JJ. Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim. Feed Sci. Technol. 2009, 150, 259–269.
[233] Sawosz F, Pineda L, Hotowy A, Hyttel P, Sawosz E, Szmidt M,
Niemiec T, Chwalibog A. Nano-nutrition of chicken embryos.
The effect of silver nanoparticles and glutamine on molecular responses, and the morphology of pectoral muscle. Comp.
Biochem. Physiol. A 2012, 161, 315–319.
[234] Bhanja S, Hotowy A, Mehra M, Sawosz E, Pineda L, Vadalasetty K, Kurantowicz N, Chwalibog A. In ovo administration of silver nanoparticles and/or amino acids influence metabolism and immune gene expression in chicken embryos. Int. J. Mol.
Sci. 2015, 16, 9484–9503.
[235] Ravikumar S, Gokulakrishnan R. The inhibitory effect of metal oxide nanoparticles against poultry pathogens. Int. J. Pharm.
Sci. Drug Res. 2012, 4, 157–159.
[236] Mroczek-Sosnowska N, Łukasiewicz M, Adamek D, Kamaszewski M, Niemiec J, Wnuk-Gnich A, Scott A, Chwalibog A,
Sawosz E. Effect of copper nanoparticles administered in ovo on the activity of proliferating cells and on the resistance of femoral bones in broiler chickens. Arch. Anim. Nutr. 2017, 71,
327–332.
[237] Zheng SM, Guo LX, Zhan X. Copper silicate nanoparticles: effects of intestinal microflora, nitrogen metabolism and ammonia emission from excreta of yellow-feathered broilers.
Chin. J. Anim. Nutr. 2013, 8, 1837–1844.
[238] Nguyen QK, Nguyen DD, Nguyen VK, Nguyen KT, Nguyen HC,
Tran XT, Nguyen HC, Phung DT. Impact of biogenic nanoscale metals Fe, Cu, Zn and Se on reproductive LV chickens. Adv.
Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 35017.
[239] Minglei S, Zheng L, Xiaoye G, Xiu’an Z. Copper silicate nanoparticles: effects of intestinal microflora, nitrogen metabolism and ammonia emission from excreta of yellow-feathered broilers. Nutr. Feed Sci. Technol. 2013, 25, 1843–1850.
[240] Muralisankar T, Saravana Bhavan P, Radhakrishnan S,
Seenivasan C, Srinivasan V. The effect of copper nanoparticles supplementation on freshwater prawn Macrobrachium rosenbergii post larvae. J. Trace Elem. Med. Biol. 2016, 34,
39–49.
[241] El Basuini MF, El-Hais AM, Dawood MAO, Abou-Zeid AE-S,
EL-Damrawy SZ, Khalafalla MME-S, Koshio S, Ishikawa M, Dossou S. Effects of dietary copper nanoparticles and vitamin C supplementations on growth performance, immune response and stress resistance of red sea bream. Pagrus major. Aquac.
Nutr. 2017, 1–12. doi:10.1111/anu.12508
[242] Han, X.-Y, Du, W.-L, Fan, C.-L, Xu, Z.-R. Changes in composition a metabolism of caecal microbiota in rats fed diets supplemented with copper-loaded chitosan nanoparticles: CSN changes composition and metabolism of caecal microbiota in rats. J. Anim. Physiol. Anim. Nutr. 2010, 94, e138–e144.
[243] Han X-Y, Du W-L, Huang, Q-C, Xu Z-R, Wang Y-Z. Changes in small intestinal morphology and digestive enzyme activity with oral administration of copper-loaded chitosan nanoparticles in rats. Biol. Trace Elem. Res. 2012, 145, 355–360.
[244] Sarvestani S, Rezvani MR, Zamiri MJ, Shekarforoush S, Atashi
H, Mosleh N. The effect of nanocopper and mannan oligosaccharide supplementation on nutrient digestibility and performance in broiler chickens. J. Vet. Res. 2016, 71, 153–161.
[245] Ognik K, Stępniowska A, Cholewińska E, Kozłowski K. The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poult. Sci. 2016, 95, 2045–2051.
[246] Wang M-Q, Du Y-J, Wang C, Tao W-J, He Y-D, Li H. Effects of copper-loaded chitosan nanoparticles on intestinal microflora and morphology in weaned piglets. Biol. Trace Elem. Res.
2012, 149, 184–189.
[247] Sawosz E, Binek M, Grodzik M, Zielińska M, Sysa P, Szmidt
M, Niemiec T, Chwalibog A. Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch. Anim. Nutr. 2010, 61, 444–451.
[248] Tomaszewska E, Muszyński S, Ognik K, Dobrowolski P,
Kwiecień M, Juśkiewicz J, Chocyk D, Świetlicki M, Blicharski T,
Gładyszewska B. Comparison of the effect of dietary copper nanoparticles with copper (II) salt on bone geometric and structural parameters as well as material characteristics in a rat model. J. Trace Elem. Med. Biol. 2017, 42, 103–110.