Author details:
Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Melbourne, Victoria, Australia a; Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia b; Norwegian Veterinary Institute, Oslo, Norway c; Protein Production Unit, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia d; CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia e.
Clostridium perfringens is an anaerobic bacterium that causes numerous important human and animal diseases, primarily as a result of its ability to produce many different protein toxins. In chickens, C. perfringens causes necrotic enteritis, a disease of economic importance to the worldwide poultry industry. The secreted pore-forming toxin NetB is a key virulence factor in the pathogenesis of avian necrotic enteritis and is similar to alpha-hemolysin, a β-barrel pore-forming toxin from Staphylococcus aureus. To address the molecular mechanisms underlying NetB-mediated tissue damage, we determined the crystal structure of the monomeric form of NetB to 1.8 Å. Structural comparisons with other members of the alpha-hemolysin family revealed significant differences in the conformation of the membrane binding domain. These data suggested that NetB may recognize different membrane receptors or use a different mechanism for membrane-protein interactions. Consistent with this idea, electrophysiological experiments with planar lipid bilayers revealed that NetB formed pores with much larger single-channel conductance than alpha-hemolysin. Channel conductance varied with phospholipid net charge. Furthermore, NetB differed in its ion selectivity, preferring cations over anions. Using hemolysis as a screen, we carried out a random-mutagenesis study that identified several residues that are critical for NetB-induced cell lysis. Mapping of these residues onto the crystal structure revealed that they were clustered in regions predicted to be required for oligomerization or membrane binding. Together these data provide an insight into the mechanism of NetB-mediated pore formation and will contribute to our understanding of the mode of action of this important toxin.
1. Gonzalez MR, Bischofberger M, Pernot L, van der Goot FG, Frêche B. 2008. Bacterial pore-forming toxins: the (w)hole story? Cell. Mol. Life Sci. 65:493–507.
2. Rosado CJ, Buckle AM, Law RH, Butcher RE, Kan WT, Bird CH, Ung K, Browne KA, Baran K, Bashtannyk-Puhalovich TA, Faux NG, Wong W, Porter CJ, Pike RN, Ellisdon AM, Pearce MC, Bottomley SP, Emsley J, Smith AI, Rossjohn J, Hartland EL, Voskoboinik I, Trapani JA, Bird PI, Dunstone MA, Whisstock JC. 2007. A common fold mediates vertebrate defense and bacterial attack. Science 317:1548 –1551.
3. Bischofberger M, Gonzalez MR, van der Goot FG. 2009. Membrane injury by pore-forming proteins. Curr. Opin. Cell Biol. 21:589 –595.
4. Feil SC, Polekhina G, Gorman MA, Parker MW. 2010. Proteins: membrane binding and pore formation. Introduction. Adv. Exp. Med. Biol. 677:1–13.
5. Tilley SJ, Saibil HR. 2006. The mechanism of pore formation by bacterial toxins. Curr. Opin. Struct. Biol. 16:230 –236.
6. Parker MW, Buckley JT, Postma JP, Tucker AD, Leonard K, Pattus F, Tsernoglou D. 1994. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 367:292–295.
7. Cole AR, Gibert M, Popoff M, Moss DS, Titball RW, Basak AK. 2004. Clostridium perfringens epsilon-toxin shows structural similarity to the pore-forming toxin aerolysin. Nat. Struct. Mol. Biol. 11:797–798.
8. Popoff MR. 2011. Epsilon toxin: a fascinating pore-forming toxin. FEBS J. 278:4602–4615.
9. Kitadokoro K, Nishimura K, Kamitani S, Fukui-Miyazaki A, Toshima H, Abe H, Kamata Y, Sugita-Konishi Y, Yamamoto S, Karatani H, Horiguchi Y. 2011. Crystal structure of Clostridium perfringens enterotoxin displays features of beta-pore-forming toxins. J. Biol. Chem. 286: 19549 –19555.
10. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE. 1996. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859 –1866.
11. Kaneko J, Kamio Y. 2004. Bacterial two-component and heteroheptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Biosci. Biotechnol. Biochem. 68:981–1003.
12. Yamashita K, Kawai Y, Tanaka Y, Hirano N, Kaneko J, Tomita N, Ohta M, Kamio Y, Yao M, Tanaka I. 2011. Crystal structure of the octameric pore of staphylococcal -hemolysin reveals the beta-barrel pore formation mechanism by two components. Proc. Natl. Acad. Sci. U. S. A. 108: 17314 –17319.
13. Hardy SP, Lund T, Granum PE. 2001. CytK toxin of Bacillus cereus forms pores in planar lipid bilayers and is cytotoxic to intestinal epithelia. FEMS Microbiol. Lett. 197:47–51.
14. Nagahama M, Hayashi S, Morimitsu S, Sakurai J. 2003. Biological activities and pore formation of Clostridium perfringens beta toxin in HL 60 cells. J. Biol. Chem. 278:36934 –36941.
15. Keyburn AL, Boyce JD, Vaz P, Bannam TL, Ford ME, Parker D, Di Rubbo A, Rood JI, Moore RJ. 2008. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathog. 4:e26. http://dx.doi.org/10.1371/journal.ppat.0040026.
16. Keyburn AL, Bannam TL, Moore RJ, Rood JI. 2010. NetB, a poreforming toxin from necrotic enteritis strains of Clostridium perfringens. Toxins (Basel) 2:1913–1927.
17. Jayasinghe L, Miles G, Bayley H. 2006. Role of the amino latch of staphylococcal alpha-hemolysin in pore formation: a co-operative interaction between the N terminus and position 217. J. Biol. Chem. 281: 2195–2204.
18. Olson R, Nariya H, Yokota K, Kamio Y, Gouaux E. 1999. Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nat. Struct. Biol. 6:134 –140.
19. Guillet V, Roblin P, Werner S, Coraiola M, Menestrina G, Monteil H, Prevost G, Mourey L. 2004. Crystal structure of leucotoxin S component: new insight into the staphylococcal beta-barrel pore-forming toxins. J. Biol. Chem. 279:41028 –41037.
20. Galdiero S, Gouaux E. 2004. High resolution crystallographic studies of alpha-hemolysin-phospholipid complexes define heptamer-lipid head group interactions: implication for understanding protein-lipid interactions. Protein Sci. 13:1503–1511.
21. Walker B, Bayley H. 1995. Key residues for membrane binding, oligomerization, and pore forming activity of staphylococcal alphahemolysin identified by cysteine scanning mutagenesis and targeted chemical modification. J. Biol. Chem. 270:23065–23071.
22. Steinthorsdottir V, Fridriksdottir V, Gunnarsson E, Andrésson OS. 1998. Site-directed mutagenesis of Clostridium perfringens beta-toxin: expression of wild-type and mutant toxins in Bacillus subtilis. FEMS Microbiol. Lett. 158:17–23.
23. Steinthorsdottir V, Halldórsson H, Andrésson OS. 2000. Clostridium perfringens beta-toxin forms multimeric transmembrane pores in human endothelial cells. Microb. Pathog. 28:45–50.
24. Awad MM, Ellemor DM, Boyd RL, Emmins JJ, Rood JI. 2001. Synergistic effects of alpha-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene. Infect. Immun. 69:7904 –7910.
25. Keyburn AL, Yan XX, Bannam TL, Van Immerseel F, Rood JI, Moore RJ. 2010. Association between avian necrotic enteritis and Clostridium perfringens strains expressing NetB toxin. Vet. Res. 41:21. http://dx.doi .org/10.1051/vetres/2009069.
26. Van Immerseel F, Rood JI, Moore RJ, Titball RW. 2009. Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol. 17:32–36.
27. Menestrina G. 1986. Ionic channels formed by Staphylococcus aureus alpha-toxin: voltage-dependent inhibition by divalent and trivalent cations. J. Membr. Biol. 90:177–190.
28. Cooper KK, Songer JG. 2009. Necrotic enteritis in chickens: a paradigm of enteric infection by Clostridium perfringens type A. Anaerobe 15:55–60.
29. Timbermont L, Haesebrouck F, Ducatelle R, Van Immerseel F. 2011. Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathol. 40:341–347.
30. Bokori-Brown M, Savva CG, Fernandes da Costa SP, Naylor CE, Basak AK, Titball RW. 2011. Molecular basis of toxicity of Clostridium perfringens epsilon toxin. FEBS J. 278:4589 –4601.
31. Briggs DC, Naylor CE, Smedley JG, III, Lukoyanova N, Robertson S, Moss DS, McClane BA, Basak AK. 2011. Structure of the food-poisoning Clostridium perfringens enterotoxin reveals similarity to the aerolysin-like pore-forming toxins. J. Mol. Biol. 413:138 –149.
32. Krasilnikov OV, Merzlyak PG, Yuldasheva LN, Rodrigues CG, Bhakdi S, Valeva A. 2000. Electrophysiological evidence for heptameric stoichiometry of ion channels formed by Staphylococcus aureus alpha-toxin in planar lipid bilayers. Mol. Microbiol. 37:1372–1378.
33. Shatursky O, Bayles R, Rogers M, Jost BH, Songer JG, Tweten RK. 2000. Clostridium perfringens beta-toxin forms potential-dependent, cation-selective channels in lipid bilayers. Infect. Immun. 68:5546 –5551.
34. Manich M, Knapp O, Gibert M, Maier E, Jolivet-Reynaud C, Geny B, Benz R, Popoff MR. 2008. Clostridium perfringens delta toxin is sequence related to beta toxin, NetB, and Staphylococcus pore-forming toxins, but shows functional differences. PLoS One 3:e3764. http://dx.doi.org /10.1371/journal.pone.0003764.
35. Savva CG, Fernandes da Costa SP, Bokori-Brown M, Naylor CE, Cole AR, Moss DS, Titball RW, Basak AK. 13 December 2012. Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens. J. Biol. Chem. http://www.jbc.org/cgi/doi /10.1074/jbc.M112.430223.
36. Nelson GJ. 1967. Composition of neutral lipids from erythrocytes of common mammals. J. Lipid Res. 8:374 –379.
37. Beach DH, Sherman IW, Holz GG, Jr. 1977. Lipids of Plasmodium lophurae, and of erythrocytes and plasma of normal and P. lophuraeinfected Pekin ducklings. J. Parasitol. 63:62–75.
38. Kulkarni RR, Parreira VR, Sharif S, Prescott JF. 2007. Immunization of broiler chickens against Clostridium perfringens-induced necrotic enteritis. Clin. Vaccine Immunol. 14:1070 –1077.
39. Zekarias B, Mo H, Curtiss R, III. 2008. Recombinant attenuated Salmonella enterica serovar Typhimurium expressing the carboxy-terminal domain of alpha toxin from Clostridium perfringens induces protective responses against necrotic enteritis in chickens. Clin. Vaccine Immunol. 15:805–816.
40. Jang SI, Lillehoj HS, Lee SH, Lee KW, Lillehoj EP, Hong YH, An DJ, Jeong W, Chun JE, Bertrand F, Dupuis L, Deville S, Arous JB. 2012. Vaccination with Clostridium perfringens recombinant proteins in combination with Montanide TM ISA 71 VG adjuvant increases protection against experimental necrotic enteritis in commercial broiler chickens. Vaccine 30:5401–5406.
41. Lyras D, Rood JI. 1998. Conjugative transfer of RP4-oriT shuttle vectors from Escherichia coli to Clostridium perfringens. Plasmid 39:160 –164.
42. Scott PT, Rood JI. 1989. Electroporation-mediated transformation of lysostaphin-treated Clostridium perfringens. Gene 82:327–333.
43. Bannam TL, Rood JI. 1999. Identification of structural and functional domains of the tetracycline efflux protein TetA(P) from Clostridium perfringens. Microbiology 145:2947–2955.
44. Cabrita LD, Dai W, Bottomley SP. 2006. A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production. BMC Biotechnol. 6:12. http://dx.doi.org/10.1186/1472-6750-6-12.
45. Braud S, Moutiez M, Belin P, Abello N, Drevet P, Zinn-Justin S, Courçon M, Masson C, Dassa J, Charbonnier JB, Boulain JC, Ménez A, Genet R, Gondry M. 2005. Dual expression system suitable for highthroughput fluorescence-based screening and production of soluble proteins. J. Proteome Res. 4:2137–2147.
46. Cabrita LD, Gilis D, Robertson AL, Dehouck Y, Rooman M, Bottomley SP. 2007. Enhancing the stability and solubility of TEV protease using in silico design. Protein Sci. 16:2360 –2367.
47. Evans P. 2006. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62:72–82.
48. Leslie AGW. 1992. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 ESF-EAMCB. Newsl. Proteins Crystallogr. 26:27–33.
49. McCoy AJ, Grosse-Kunstleve RW, Adams PD., Winn MD, Storoni LC, Read RJ. 2007. Phaser crystallographic software. J. Appl. Crystallogr. 40: 658 –674.
50. Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60:2126 –2132.
51. Murshudov GN, Vagin AA, Dodson EJ. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53:240 –255.
52. Collaborative Computational Project, Number 4. 1994. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50:760 –763.
53. Langer G, Cohen SX, Lamzin VS, Perrakis A. 2008. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3:1171–1179.
54. Pédelacq JD, Maveyraud L, Prévost G, Baba-Moussa L, González A, Courcelle E, Shepard W, Monteil H, Samama JP, Mourey L. 1999. The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins. Structure 7:277–287.