1. Timbermont L, Lanckriet A, Dewulf J, Nollet N, Schwarzer K, Ducatelle
R, et al. Control of Clostridium perfringens -induced necrotic enteritis in broilers by target-released butyric acid, fatty acids and essential oils. Avian
Pathol. (2010) 39:117–21. doi: 10.1080/03079451003610586
2. Hofacre CL, Smith JA, Mathis GF. An optimist’s view on limiting necrotic enteritis and maintaining broiler gut health and performance in today’s marketing, food safety, and regulatory climate. Poult Sci. (2018) 97:1929–
33. doi: 10.3382/ps/pey082
3. M’Sadeq SA, Wu S, Swick RA, Choct M. Towards the control of necrotic enteritis in broiler chickens with in-feed antibiotics phasing-out worldwide.
Anim Nutr. (2015) 1:1–11. doi: 10.1016/j.aninu.2015.02.004
4. Skinner JT, Bauer S, Young V, Pauling G, Wilson J, Skinner JT, et al.
An economic analysis of the impact of subclinical (mild) necrotic enteritis in broiler chickens an economic analysis of the impact of subclinical (mild) necrotic enteritis in broiler chickens. (2010) 54:1237–
40. doi: 10.1637/9399-052110-Reg.1
5. Riddell C, Kong XM. The influence of diet on necrotic enteritis in broiler chickens. Avian Dis. (1992) 36:499–503. doi: 10.2307/1591740
6. Tsiouris V. Poultry management: a useful tool for the control of necrotic enteritis in poultry. Avian Pathol. (2016) 45:323–
5. doi: 10.1080/03079457.2016.1154502
7. Williams RB. Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity.
Avian Pathol. (2005) 34:159–80. doi: 10.1080/03079450500112195
8. Shivaramaiah S, Wolfenden RE, Barta JR, Morgan MJ, Wolfenden AD,
Hargis BM, et al. The role of an early Salmonella Typhimurium infection as a predisposing factor for necrotic enteritis in a laboratory challenge model.
Avian Dis. (2011) 55:319–23. doi: 10.1637/9604-112910-ResNote.1
9. Fancher CA, Zhang L, Kiess AS, Adhikari PA, Dinh TTN, Sukumaran
AT. Avian pathogenic Escherichia coli and clostridium perfringens: challenges in no antibiotics ever broiler production and potential solutions.
Microorganisms. (2020) 8:1–27. doi: 10.3390/microorganisms8101533
10. Moore RJ. Necrotic enteritis predisposing factors in broiler chickens. Avian
Pathol. (2016) 45:275–81. doi: 10.1080/03079457.2016.1150587
11. Wu SB, Stanley D, Rodgers N, Swick RA, Moore RJ. Two necrotic enteritis predisposing factors, dietary fishmeal and Eimeria infection, induce large changes in the caecal microbiota of broiler chickens. Vet Microbiol. (2014)
169:188–97. doi: 10.1016/j.vetmic.2014.01.007
12. Rodgers NJ, Swick RA, Geier MS, Moore RJ, Choct M, Wu SB. A multifactorial analysis of the extent to which eimeria and fishmeal predispose broiler chickens to necrotic enteritis. Avian Dis. (2015) 59:38–
45. doi: 10.1637/10774-011614-Reg.1
13. Dierick E, Hirvonen OP, Haesebrouck F, Ducatelle R, Van Immerseel
F, Goossens E. Rapid growth predisposes broilers to necrotic enteritis.
Avian Pathol. (2019) 48:416–22. doi: 10.1080/03079457.2019.161
4147
14. Tsiouris V, Georgopoulou I, Batzios C, Pappaioannou N, Ducatelle
R, Fortomaris P. High stocking density as a predisposing factor for necrotic enteritis in broiler chicks. Avian Pathol. (2015) 44:59–
66. doi: 10.1080/03079457.2014.1000820
15. Collier CT, Hofacre CL, Payne AM, Anderson DB, Kaiser P, Mackie RI, et al.
Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth. Vet Immunol Immunopathol. (2008) 122:104–15. doi: 10.1016/j.vetimm.2007.10.014
16. Deplancke B, Vidal O, Ganessunker D, Donovan SM, Mackie RI, Gaskins HR.
Selective growth of mucolytic bacteria including Clostridium perfringens in a neonatal piglet model of total parenteral nutrition. Am J Clin Nutr. (2002)
76:1117–25. doi: 10.1093/ajcn/76.5.1117
17. Nakjang S, Ndeh DA, Wipat A, Bolam DN, Hirt RP. A novel extracellular metallopeptidase domain shared by animal HostAssociated mutualistic and pathogenic microbes. PLoS One. (2012)
7:287. doi: 10.1371/journal.pone.0030287
18. Prescott JF, Parreira VR, Mehdizadeh Gohari I, Lepp D, Gong J.
The pathogenesis of necrotic enteritis in chickens: what we know and what we need to know: a review. Avian Pathol. (2016) 45:288–
94. doi: 10.1080/03079457.2016.1139688
19. Hermans D, Martel A, van Deun K, Verlinden M, van Immerseel F, Garmyn
A, et al. Intestinal mucus protects Campylobacter jejuni in the ceca of colonized broiler chickens against the bactericidal effects of medium-chain fatty acids. Poult Sci. (2010) 89:1144–55. doi: 10.3382/ps.2010-00717
20. Miles RD, Butcher GD, Henry PR, Littell RC. Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology. Poult Sci. [2006]
85:476–85. doi: 10.1093/ps/85.3.476
21. Costa MC, Bessegatto JA, Alfieri AA, Weese JS, Filho JAB, Oba A.
Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE. (2017) 12:1–
171642. doi: 10.1371/journal.pone.0171642
22. Butaye P, Devriese LA, Haesebrouck F. Antimicrobial growth promoters used in animal feed: Effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev. (2003)
16:175–88. doi: 10.1128/CMR.16.2.175-188.2003
23. Landers TF, Cohen B, Wittum TE, Larson EL. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. (2012)
127:4–22. doi: 10.1177/003335491212700103
24. Dahiya JP, Wilkie DC, Van Kessel AG, Drew MD. Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim
Feed Sci Technol. (2006) 129:60–88. doi: 10.1016/j.anifeedsci.2005.12.003
25. Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect. (2018)
7:1–5. doi: 10.1038/s41426-018-0144-8
26. Villagrán De la Mora Z, Macías-Rodríguez ME, Arratia-Quijada J,
Gonzalez-Torres YS, Nuño K, Villarruel-López A. Clostridium perfringens as foodborne pathogen in broiler production: Pathophysiology and potential strategies for controlling necrotic enteritis. Animals. (2020) 10:1–
28. doi: 10.3390/ani10091718
27. Wade B, Keyburn AL, Haring V, Ford M, Rood JI, Moore RJ. The adherent abilities of Clostridium perfringens strains are critical for the pathogenesis of avian necrotic enteritis. Vet Microbiol. (2016) 197:53–
61. doi: 10.1016/j.vetmic.2016.10.028
28. Rood JI, Adams V, Lacey J, Lyras D, McClane BA, Melville SB, et al.
Expansion of the clostridium perfringens toxin-based typing scheme.
Anaerobe. (2018) 53:5–10. doi: 10.1016/j.anaerobe.2018.04.011
29. Uzal FA, Freedman JC, Shrestha A, Theoret JR, Garcia J, Awad MM, et al. Towards an understanding of the role of clostridium perfringens toxins in human and animal disease. Future Microbiol. (2014) 9:361–
77. doi: 10.2217/fmb.13.168
30. Boulianne M, Uzal FA, Opengart K. “Clostridial diseases,” In: Disease of
Poultry 14th, 966–994.
31. Bhunia AK. Clostridium botulinum, Clostridium perfringens,
Clostridium difficile. Foodborne Microbial Pathogens. 12:209–
28. doi: 10.1007/978-1-4939-7349-1_12
32. Latorre JD, Adhikari B, Park SH, Teague KD, Graham LE, Mahaffey BD, et al. Evaluation of the epithelial barrier function and ileal microbiome in an established necrotic enteritis challenge model in broiler chickens. Front
Vet Sci. (2018) 5:1–11. doi: 10.3389/fvets.2018.00199
33. Timbermont L, Haesebrouck F, Ducatelle R, Van Immerseel F. Necrotic enteritis in broilers: An updated review on the pathogenesis. Avian Pathol. (2011) 40:341–7. doi: 10.1080/03079457.2011.590967
34. Rood JI, Keyburn AL, Moore RJ. NetB and necrotic enteritis: the hole movable story. Avian Pathol. (2016) 45:295–
301. doi: 10.1080/03079457.2016.1158781
35. Keyburn AL, Boyce JD, Vaz P, Bannam TL, Ford ME, Parker D, et al. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathog. (2008)
4:e26. doi: 10.1371/journal.ppat.0040026
36. Keyburn AL, Yan XX, Bannam TL, Van Immerseel F, Rood JI, Moore
RJ. Association between avian necrotic enteritis and Clostridium perfringens strains expressing NetB toxin. Vet Res. (2010) 41
:69. doi: 10.1051/vetres/2009069
37. Navarro MA, McClane BA, Uzal FA. Mechanisms of action and cell death associated with Clostridium perfringens toxins. Toxins (Basel). (2018) 10:1–
21. doi: 10.3390/toxins10050212
38. Broom LJ. Gut barrier function: effects of (antibiotic) growth promoters on key barrier components and associations with growth performance. Poult
Sci. (2018) 97:1572–8. doi: 10.3382/ps/pey021
39. Mot D, Timbermont L, Haesebrouck F, Ducatelle R, Van
Immerseel F. Progress and problems in vaccination against necrotic enteritis in broiler chickens. Avian Pathol. (2014)
43:290–300. doi: 10.1080/03079457.2014.939942
40. Williams RB, Marshall RN, La Ragione RM, Catchpole J. A new method for the experimental production of necrotic enteritis and its use for studies on the relationships between necrotic enteritis, coccidiosis and anticoccidial vaccination of chickens. Parasitol Res. (2003) 90:19–
26. doi: 10.1007/s00436-002-0803-4
41. Tsiouris V, Georgopoulou I, Batzios C, Pappaioannou N,
Diakou A, Petridou E, et al. The role of an attenuated anticoccidial vaccine on the intestinal ecosystem and on the pathogenesis of experimental necrotic enteritis in broiler chickens.
Avian Pathol. (2013) 42:163–70. doi: 10.1080/03079457.2013.
776161
42. Jackson ME, Anderson DM, Hsiao HY, Mathis GF, Fodge DW. Beneficial effect of β-mannanase feed enzyme on performance of chicks challenged with Eimeria sp. and Clostridium perfringens. Avian Dis. (2003) 47:759–
63. doi: 10.1637/7024
43. Hofacre CL, Beacorn T, Collett S, Mathis G. Using competitive exclusion, mannan-oligosaccharide and other intestinal products to control necrotic enteritis. J Appl Poult Res. (2003) 12:60–4. doi: 10.1093/japr/12.1.60
44. Nicholds JF, McQuain C, Hofacre CL, Mathis GF, Fuller AL, Telg BE, et al.
The effect of different species of eimeria with clostridium perfringens on performance parameters and induction of clinical necrotic enteritis in broiler chickens. Avian Dis. (2020) 65:132–7. doi: 10.1637/aviandiseases-D-20-0
0106
45. Keyburn AL, Portela RW, Ford ME, Bannam TL, Yan XX, Rood JI, et al.
Vaccination with recombinant NetB toxin partially protects broiler chickens from necrotic enteritis. Vet Res. (2013) 44:1–8. doi: 10.1186/1297-9716-44-54
46. Adhikari P, Kiess A, Adhikari R, Jha R. An approach to alternative strategies to control avian coccidiosis and necrotic enteritis. J Appl Poult Res. (2020)
29:515–34. doi: 10.1016/j.japr.2019.11.005
47. Caly DL, D’Inca R, Auclair E, Drider D. Alternatives to antibiotics to prevent necrotic enteritis in broiler chickens: a microbiologist’s perspective. Front
Microbiol. (2015) 6:1–12. doi: 10.3389/fmicb.2015.01336
48. Fowler J, Kakani R, Haq A, Byrd JA, Bailey CA. Growth promoting effects of prebiotic yeast cell wall products in starter broilers under an immune stress and clostridium perfringens challenge. J Appl Poult Res. (2015) 24:66–
72. doi: 10.3382/japr/pfv010
49. Roe AJ, McLaggan D, Davidson I, O’Byrne C, Booth IR. Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids.
J Bacteriol. (1998) 180:767–72. doi: 10.1128/JB.180.4.767-772.1998
50. Lambert RJ, Stratford M. Weak-acid preservatives: modelling microbial inhibition and response. J Appl Microbiol. (1999)
86:157–64. doi: 10.1046/j.1365-2672.1999.00646.x
51. Kundukad B, Schussman M, Yang K, Seviour T, Yang L, Rice SA, et al.
Mechanistic action of weak acid drugs on biofilms. Sci Rep. (2017)
7:4783. doi: 10.1038/s41598-017-05178-3
52. Bergsson G, Arnfinnsson J, Karlsson SM, Steingrímsson Ó,
Thormar H. In vitro inactivation of chlamydia trachomatis by fatty acids and monoglycerides. Antimicrob Agents Chemother. (1998)
42:2290–2294. doi: 10.1128/AAC.42.9.2290
53. Bergsson G, Steingrímsson Ó, Thormar H. In vitro susceptibilities of
Neisseria gonorrhoeae to fatty acids and monoglycerides. Antimicrob Agents
Chemother. (1999) 43:2790–2. doi: 10.1128/AAC.43.11.2790
54. Schlievert PM, Peterson ML. Glycerol monolaurate antibacterial activity in broth and biofilm cultures. PLoS ONE. (2012)
7:40350. doi: 10.1371/journal.pone.0040350
55. Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. (2010)
85:1629–42. doi: 10.1007/s00253-009-2355-3
56. Viegas C, Sa-Correia I. Activation of plasma membrane ATPase of
Saccharomyces cerevisiae by octanoic acid. J Gen Microbiol. (1991) 137:645–
51. doi: 10.1099/00221287-137-3-645
57. Sun CQ, O’Connor CJ, Turner SJ, Lewis GD, Stanley RA, Roberton AM.
The effect of pH on the inhibition of bacterial growth by physiological concentrations of butyric acid: implications for neonates fed on suckled milk.
Chem Biol Interact. (1998) 113:117-31. doi: 10.1016/S0009-2797(98)00025-8
58. Projan SJ, Brown-Skrobot S, Schlievert PM, Vandenesch F,
Novick RP. Glycerol monolaurate inhibits the production of βlactamase, toxic shock syndrome toxin-1, and other staphylococcal exoproteins by interfering with signal transduction. J Bacteriol. (1994)
176:4204–4209. doi: 10.1128/jb.176.14.4204-4209.1994
59. Ruzin A, Novick RP. Equivalence of lauric acid and glycerol monolaurate as inhibitors of signal transduction in Staphylococcus aureus. J Bacteriol. (2000)
182:2668–71. doi: 10.1128/JB.182.9.2668-2671.2000
60. Heerklotz H. Interactions of surfactants with lipid membranes. Q Rev
Biophys. (2008) 41:205–64. doi: 10.1017/S0033583508004721
61. Batovska DI, Todorova IT, Tsvetkova I V., Najdenski HM. Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: individual effects and synergistic relationships. Polish J Microbiol. (2009) 58:43–7.
62. Kovanda L, Zhang W, Wei X, Luo J, Wu X, Atwill ER, et al. In vitro antimicrobial activities of organic acids. Molecules. (2019) 1–14.
63. Bach AC, Babayan K. Medium-chain triglycerides: an update. Am J Clin
Nutr. (1982) 36:950–62. doi: 10.1093/ajcn/36.5.950
64. Sauberan JB, Bradley JS. Antimicrobial agents. Princ Pract Pediatr Infect Dis. (2018) 2:1499–531. doi: 10.1016/B978-0-323-40181-4.00292-9
65. Nguyen DH, Kim IH. Protected organic acids improved growth performance, nutrient digestibility, and decreased gas emission in broilers.
Animals. (2020) 10:0–10. doi: 10.3390/ani10030416
66. Khan SH, Iqbal J. Recent advances in the role of organic acids in poultry nutrition. J Appl Anim Res. (2016) 44:359–
369. doi: 10.1080/09712119.2015.1079527
67. Dittoe DK, Ricke SC, Kiess AS. Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Front Vet Sci. (2018) 5:1–12. doi: 10.3389/fvets.2018.
00216
68. Gutierrez Del Alamo A, De Los Mozos J, Van Dam JTP, Perez de
Ayala P. “The use of short and medium chain fatty acids as an alternative to antibiotic growth promoters in broilers infected with malabsorption syndrome,” in 16th Eur Symp Poult Nutr. (2006) 317–320.
Available online at: https://www.cabi.org/Uploads/animal-science/worldspoultry-science-association/WPSA-france-2007/47.pdf
69. Moquet PCA, Onrust L, Van Immerseel F, Ducatelle R, Hendriks WH,
Kwakkel RP. Importance of release location on the mode of action of butyrate derivatives in the avian gastrointestinal tract. Worlds Poult Sci J. (2016)
72:61–80. doi: 10.1017/S004393391500269X
70. Hankel J, Popp J, Meemken D, Zeiger K, Beyerbach M, Taube V, et al. Influence of lauric acid on the susceptibility of chickens to an experimental Campylobacter jejuni colonisation. PLoS One. (2018) 13:1–
22. doi: 10.1371/journal.pone.0204483
71. Wang L, Johnson EA. Inhibition of Listeria monocytogenes by fatty acids and monoglycerides. Appl Environ Microbiol. (1992) 58:624–
9. doi: 10.1128/aem.58.2.624-629.1992
72. Yang WY, Lee Y, Lu H, Chou CH, Wang C. Analysis of gut microbiota and the effect of lauric acid against necrotic enteritis in Clostridium perfringens and Eimeria side-by-side challenge model. PLoS ONE. (2019)
14:1–22. doi: 10.1371/journal.pone.0205784
73. Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP. Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother. (1972)
2:23–8. doi: 10.1128/AAC.2.1.23
74. Namkung H, Yu H, Gong J, Leeson S. Antimicrobial activity of butyrate glycerides toward salmonella typhimurium and clostridium perfringens.
Poult Sci. (2011) 90:2217–22. doi: 10.3382/ps.2011-01498
75. Bergsson G, Steingrimsson O, Thormar H. Bactericidal effects of fatty acids
& monoglycerides on Helicobacter pylori. Int J Antimicrob Agents. (2002)
20:258–62. doi: 10.1016/S0924-8579(02)00205-4
76. Van Immerseel F, Fievez V, De Buck J, Pasmans F, Martel A, Haesebrouck F, et al. Microencapsulated short-chain fatty acids in feed modify colonization and invasion early after infection with Salmonella enteritidis in young chickens. Poult Sci. (2004) 83:69–74. doi: 10.1093/ps/83.1.69
77. Zentek J, Buchheit-Renko S, Ferrara F, Vahjen W, Van Kessel AG, Pieper
R. Nutritional and physiological role of medium-chain triglycerides and medium-chain fatty acids in piglets. Anim Health Res Rev. (2011) 12:83–
93. doi: 10.1017/S1466252311000089
78. Krogdahl A. Digestion and absorption of lipids in poultry. J Nutr. (1985)
115:675–85. doi: 10.1093/jn/115.5.675
79. Bedford A, Gong J. Implications of butyrate and its derivatives for gut health and animal production. Anim Nutr. (2018)
4:151–9. doi: 10.1016/j.aninu.2017.08.010
80. Yoon BK, Jackman JA, Valle-González ER, Cho NJ. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int J Mol Sci. (2018)
19:1114. doi: 10.3390/ijms19041114
81. Kabara JJ, Vrable R, Lie Ken Jie MSF. Antimicrobial lipids: natural and synthetic fatty acids and monoglycerides. Lipids. (1977) 12:753–
9. doi: 10.1007/BF02570908
82. Hyldgaard M, Sutherland DS, Sundh M, Mygind T, Meyer RL. Antimicrobial mechanism of monocaprylate. Appl Environ Microbiol. (2012) 78:2957–
65. doi: 10.1128/AEM.07224-11
83. Timbermont L. A Contribution to the Pathogenesis and Treatment of
Clostridium Perfringens-Associated Necrotic Enteritis in Broilers. PhD
Diss. (2009).
84. Bergsson G, Arnfinnsson J, Steingrímsson Ó, Thormar H. Killing of grampositive cocci by fatty acids and monoglycerides. Apmis. (2001) 109:670–
8. doi: 10.1034/j.1600-0463.2001.d01-131.x
85. Yoon BK, Jackman JA, Kim MC, Sut TN, Cho NJ. Correlating membrane morphological responses with micellar aggregation behavior of capric acid and monocaprin. Langmuir. (2017)
33:2750–9. doi: 10.1021/acs.langmuir.6b03944
86. Fortuoso BF, dos Reis JH, Gebert RR, Barreta M, Griss LG,
Casagrande RA, et al. Glycerol monolaurate in the diet of broiler chickens replacing conventional antimicrobials: impact on health, performance and meat quality. Microb Pathog. (2019)
129:161–7. doi: 10.1016/j.micpath.2019.02.005
87. Van Immerseel F, De Buck J, Boyen F, Bohez L, Pasmans F, Volf J, et al. Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with Salmonella enterica serovar enteritidis. Appl Environ Microbiol. (2004) 70:3582–
7. doi: 10.1128/AEM.70.6.3582-3587.2004
88. Hermans D, Martel A, Garmyn A, Verlinden M, Heyndrickx M, Gantois I, et al. Application of medium-chain fatty acids in drinking water increases
Campylobacter jejuni colonization threshold in broiler chicks. Poult Sci. (2012) 91:1733–8. doi: 10.3382/ps.2011-02106
89. Andrews JM. Determination of minimum inhibitory concentrations. J
Antimicrob Chemother. (2001) 48:5–16. doi: 10.1093/jac/48.suppl_1.5
90. Kien CL, Blauwiekel R, Bunn JY, Jetton TL, Frankel WL, Holst JJ. Cecal infusion of butyrate increases intestinal cell proliferation in piglets. J Nutr. (2007) 137:916–22. doi: 10.1093/jn/137.4.916
91. Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut. (1994) 35:S35–8. doi: 10.1136/gut.35.1_Suppl.S35
92. Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel
F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr
Res Rev. (2010) 23:366–84. doi: 10.1017/S0954422410000247
93. Peng L, Li ZR, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of
AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. (2009)
139:1619–25. doi: 10.3945/jn.109.104638
94. Dauksiene A, Ruzauskas M, Gruzauskas R, Zavistanaviciute P, Starkute
V, Lele V, et al. A comparison study of the caecum microbial profiles, productivity and production quality of broiler chickens fed supplements based on medium chain fatty and organic acids. Animals. (2021) 11:1–
22. doi: 10.3390/ani11030610
95. Abdelli N, Pérez JF, Vilarrasa E, Luna IC, Melo-Duran D, D’angelo M, et al.
Targeted-release organic acids and essential oils improve performance and digestive function in broilers under a necrotic enteritis challenge. Animals. (2020) 10:20259. doi: 10.3390/ani10020259
96. Kumar A, Toghyani M, Kheravii SK, Pineda L, Han Y, Swick RA, et al.
Potential of blended organic acids to improve performance and health of broilers infected with necrotic enteritis. Anim Nutr. (2021) 7:440–
9. doi: 10.1016/j.aninu.2020.11.006
97. Kumar A, Kheravii SK, Li L, Wu S. Monoglyceride Blend Reduces
Mortality, Improves Nutrient Digestibility, and Intestinal Health in Broilers
Subjected to Clinical Necrotic Enteritis Challenge. Animals. (2021) 11:1–
9. doi: 10.3390/ani11051432
98. Onrust L, Van Driessche K, Ducatelle R, Schwarzer K, Haesebrouck F,
Van Immerseel F. Valeric acid glyceride esters in feed promote broiler performance and reduce the incidence of necrotic enteritis. Poult Sci. (2018)
97:2303–11. doi: 10.3382/ps/pey085
99. Whelan RA, Doranalli K, Rinttilä T, Vienola K, Jurgens G, Apajalahti J. The impact of Bacillus subtilis DSM 32315 on the pathology, performance, and intestinal microbiome of broiler chickens in a necrotic enteritis challenge.
Poult Sci. (2019) 98:3450–63. doi: 10.3382/ps/pey500
100. Xu S, Lin Y, Zeng D, Zhou M, Zeng Y, Wang H, et al. Bacillus licheniformis normalize the ileum microbiota of chickens infected with necrotic enteritis.
Sci Rep. (2018) 8:1–10. doi: 10.1038/s41598-018-20059-z
101. Wang L, Lilburn M, Yu Z. Intestinal microbiota of broiler chickens as affected by litter management regimens. Front Microbiol. (2016) 7:1–
12. doi: 10.3389/fmicb.2016.00593
102. Wei S, Gutek A, Lilburn M, Yu Z. Abundance of pathogens in the gut and litter of broiler chickens as affected by bacitracin and litter management. Vet
Microbiol. (2013) 166:595–601. doi: 10.1016/j.vetmic.2013.06.006
103. Antonissen G, Eeckhaut V, Van Driessche K, Onrust L, Haesebrouck F,
Ducatelle R, et al. Microbial shifts associated with necrotic enteritis. Avian
Pathol. (2016) 45:308–312. doi: 10.1080/03079457.2016.1152625
104. Ballou AL, Ali RA, Mendoza MA, Ellis JC, Hassan HM, Croom
WJ, et al. Development of the chick microbiome: how early exposure influences future microbial diversity. Front Vet Sci. (2016)
3:1–12. doi: 10.3389/fvets.2016.00002
105. Wei S, Morrison M, Yu Z. Bacterial census of poultry intestinal microbiome.
Poult Sci. (2013) 92:671–83. doi: 10.3382/ps.2012-02822
106. Stanley D, Wu SB, Rodgers N, Swick RA, Moore RJ. Differential responses of cecal microbiota to fishmeal, eimeria and clostridium perfringens in a necrotic enteritis challenge model in chickens. PLoS ONE. (2014)
9:e104739. doi: 10.1371/journal.pone.0104739
107. Yu Q, Lepp D, Gohari IM, Wu T, Zhou H, Yin X, et al. The Agrlike quorum sensing system is required for pathogenesis of necrotic enteritis caused by Clostridium perfringens in poultry. Infect Immun. (2017)
85:16. doi: 10.1128/IAI.00975-16
108. Gray B, Hall P, Gresham H. Targeting agr- and agr-like quorum sensing systems for development of common therapeutics to treat multiple gram-positive bacterial infections. Sensors. (2013) 13:5130–
5166. doi: 10.3390/s130405130
109. Thompson JA, Oliveira RA, Djukovic A, Ubeda C, Xavier KB. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep. (2015) 10:1861–1871. doi: 10.1016/j.celrep.2015.02.049
110. Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol. (2020) 11:1–
14. doi: 10.3389/fendo.2020.00025
111. Venegas DP, De La Fuente MK, Landskron G, González MJ, Quera R,
Dijkstra G, et al. Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front
Immunol. (2019) 10:1486. doi: 10.3389/fimmu.2019.01486
112. Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, De los
Reyes-Gavilán CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. (2016) 7:1–
9. doi: 10.3389/fmicb.2016.00185
113. Puddu A, Sanguineti R, Montecucco F, Viviani GL. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm. (2014)
2014:21. doi: 10.1155/2014/162021
114. Hara T, Kimura I, Inoue D, Ichimura A, Hirasawa A. Free fatty acid receptors and their role in regulation of energy metabolism. Rev Physiol Biochem
Pharmacol. (2013) 164:77–116. doi: 10.1007/112_2013_13
115. Oakley BB, Buhr RJ, Ritz CW, Kiepper BH, Berrang ME, Seal BS, et al.
Successional changes in the chicken cecal microbiome during 42 days of growth are independent of organic acid feed additives. BMC Vet Res. (2014)
10:1–8. doi: 10.1186/s12917-014-0282-8
116. Bortoluzzi C, Pedroso AA, Mallo JJ, Puyalto M, Kim WK, Applegate
TJ. Sodium butyrate improved performance while modulating the cecal microbiota and regulating the expression of intestinal immune-related genes of broiler chickens. Poult Sci. (2017) 96:3981–93. doi: 10.3382/ps/pex218
117. Zhou Z, Nie K, Huang Q, Li K, Sun Y, Zhou R, et al. Changes of cecal microflora in chickens following Eimeria tenella challenge and regulating effect of coated sodium butyrate. Exp Parasitol. (2017) 177:73–
81. doi: 10.1016/j.exppara.2017.04.007
118. Papamandjaris AA, Macdougall DE, Jones PJH. Medium chain fatty acid metabolism and energy expenditure: obesity treatment implications. Life Sci. (1998) 62:1203–15. doi: 10.1016/S0024-3205(97)01143-0
119. Svoboda E. A gut feeling. Nature. (2021) 595:S54–
5. doi: 10.1038/d41586-021-01837-8
120. Altindis E, Cai W, Sakaguchi M, Zhang F, GuoXiao W, Liu F, et al. Viral insulin-like peptides activate human insulin and IGF-1 receptor signaling: a paradigm shift for host–microbe interactions. Proc Natl Acad Sci U S A. (2018) 115:2461–2466. doi: 10.1073/pnas.1721117115
Mcf acids are more desirable in children for both NE control and high body weight gain. When formulation of broilers is done. The nutritionist must keep in mind the importance of Mcf acid.