Alqaisi, O., Ndambi, O. A., and Williams, R. B. (2017). Time Series Livestock Diet Optimization: Cost-Effective Broiler Feed Substitution Using the Commodity Price Spread Approach. Agric. Food Econ. 5 (1), 1–19. doi:10.1186/s40100-017- 0094-9
Altpeter, F., and Posselt, U. K. (1994). Production of High Quantities of 3- acetyldeoxynivalenol and Deoxynivalenol. Appl. Microbiol. Biotechnol. 41 (4), 384–387. doi:10.1007/bf01982524
Amit-Romach, E., Sklan, D., and Uni, Z. (2004). Microflora Ecology of the Chicken Intestine Using 16S Ribosomal DNA Primers. Poult. Sci. 83 (7), 1093–1098. doi:10.1093/ps/83.7.1093
Andrade, C. (2019). The P Value and Statistical Significance: Misunderstandings, Explanations, Challenges, and Alternatives. Indian J. Psychol. Med. 41 (3), 210–215. doi:10.4103/IJPSYM.IJPSYM_193_19
Antonissen, G., Croubels, S., Pasmans, F., Ducatelle, R., Eeckhaut, V., Devreese, M., et al. (2015). Fumonisins Affect the Intestinal Microbial Homeostasis in Broiler Chickens, Predisposing to Necrotic Enteritis. Vet. Res. 46, 98. doi:10.1186/ s13567-015-0234-8
Antonissen, G., Eeckhaut, V., Van Driessche, K., Onrust, L., Haesebrouck, F., Ducatelle, R., et al. (2016). Microbial Shifts Associated with Necrotic Enteritis. Avian Pathol. 45 (3), 308–312. doi:10.1080/03079457.2016.1152625
Antonissen, G., Van Immerseel, F., Pasmans, F., Ducatelle, R., Haesebrouck, F., Timbermont, L., et al. (2014). The Mycotoxin Deoxynivalenol Predisposes for the Development of Clostridium Perfringens-Induced Necrotic Enteritis in Broiler Chickens. PLoS One 9 (9), e108775. doi:10.1371/journal.pone.0108775
Awad, W. A., Vahjen, W., Aschenbach, J. R., and Zentek, J. (2011). A Diet Naturally Contaminated with the Fusarium Mycotoxin Deoxynivalenol (DON) Downregulates Gene Expression of Glucose Transporters in the Intestine of Broiler Chickens. Livest. Sci. 140 (1-3), 72–79. doi:10.1016/j.livsci.2011.02.014
Azcona-Olivera, J. I., Ouyang, Y.-L., Warner, R. L., Linz, J. E., and Pestka, J. J. (1995). Effects of Vomitoxin (Deoxynivalenol) and Cycloheximide on IL-2, 4, 5 and 6 Secretion and mRNA Levels in Murine CD4+ Cells. Food Chem. Toxicol. 33 (6), 433–441. doi:10.1016/0278-6915(95)00012-q
Bhat, N., and Fitzgerald, K. A. (2014). Recognition of Cytosolic DNA by cGAS and Other STING-dependent Sensors. Eur. J. Immunol. 44 (3), 634–640. doi:10. 1002/eji.201344127
Biomin (2021). World Mycotoxin Survey Impact 2021. [Online]. Available: https:// www.biomin.net/science-hub/world-mycotoxin-survey-impact-2021 [Accessed].
Bouhet, S., Hourcade, E., Loiseau, N., Fikry, A., Martinez, S., Roselli, M., et al. (2004). The Mycotoxin Fumonisin B1 Alters the Proliferation and the Barrier Function of Porcine Intestinal Epithelial Cells. Toxicol. Sci. 77 (1), 165–171. doi:10.1093/toxsci/kfh006
Bracarense, A.-P. F. L., Lucioli, J., Grenier, B., Drociunas Pacheco, G., Moll, W.-D., Schatzmayr, G., et al. (2012). Chronic Ingestion of Deoxynivalenol and Fumonisin, Alone or in Interaction, Induces Morphological and Immunological Changes in the Intestine of Piglets. Br. J. Nutr. 107 (12), 1776–1786. doi:10.1017/s0007114511004946
Broom, L. J. (2017). Necrotic Enteritis; Current Knowledge and Diet-Related Mitigation. World’s Poult. Sci. J. 73 (2), 281–292. doi:10.1017/ s0043933917000058
Brown, T. P., Rottinghaus, G. E., and Williams, M. E. (1992). Fumonisin Mycotoxicosis in Broilers: Performance and Pathology. Avian Dis. 36, 450–454. doi:10.2307/1591528
Chen, Y. P., Cheng, Y. F., Li, X. H., Yang, W. L., Wen, C., Zhuang, S., et al. (2017). Effects of Threonine Supplementation on the Growth Performance, Immunity, Oxidative Status, Intestinal Integrity, and Barrier Function of Broilers at the Early Age. Poult. Sci. 96 (2), 405–413. doi:10.3382/ps/pew240
NRC (1994). Nutrient Requirements of PoultryNinth Revised Edition. Washington, DC: National Academies Press, 19–34.
Daenicke, S., Keese, C., Goyarts, T., and Döll, S. (2011). Effects of Deoxynivalenol (DON) and Related Compounds on Bovine Peripheral Blood Mononuclear Cells (PBMC) In Vitro and In Vivo. Mycotox Res. 27 (1), 49–55. doi:10.1007/ s12550-010-0074-3
Dänicke, S., Gareis, M., and Bauer, J. (2001). Orientation Values for Critical Concentrations of Deoxynivalenol and Zearalenone in Diets for Pigs, Ruminants and Gallinaceous Poultry. Proc. Soc. Nutr. Physiol., 171–174.
Duringer, J. M., Roberts, H. L., Doupovec, B., Faas, J., Estill, C. T., Jiang, D., et al. (2020). Effects of Deoxynivalenol and Fumonisins Fed in Combination on Beef Cattle: Health and Performance Indices. World Mycotoxin J. 13 (4), 533–543. doi:10.3920/wmj2020.2567
Filazi, A., Yurdakok-Dikmen, B., Kuzukiran, O., and Sireli, U. T. (2017). “Mycotoxins in Poultry,” in Poultry Science. Editor Dr. Milad Manafi (USA: InTech), 73–92
Findley, M. K., and Koval, M. (2009). Regulation and Roles for Claudin-Family Tight Junction Proteins. IUBMB life 61 (4), 431–437. doi:10.1002/iub.175
Food and Administration (2010). Advisory Levels for Deoxynivalenol (DON) in Finished Wheat Products for Human Consumption and Grains and Grain By Products Used for Animal Feed. Food and Drug Administration: Rockville, MD
FDA (2001). Guidance for Industry: Fumonisin Levels in Human Foods and Animal Feeds. Washington DC: United States Food and Drug Administration.
Fujita, K., Katahira, J., Horiguchi, Y., Sonoda, N., Furuse, M., and Tsukita, S. (2000). Clostridium Perfringensenterotoxin Binds to the Second Extracellular Loop of Claudin-3, a Tight Junction Integral Membrane Protein. FEBS Lett. 476 (3), 258–261. doi:10.1016/s0014-5793(00)01744-0
Gao, Y., Li, S., Wang, J., Luo, C., Zhao, S., and Zheng, N. (2018). Modulation of Intestinal Epithelial Permeability in Differentiated Caco-2 Cells Exposed to Aflatoxin M1 and Ochratoxin A Individually or Collectively. Toxins (Basel) 10 (1), 13. doi:10.3390/toxins10010013
Girgis, G. N., Barta, J. R., Girish, C. K., Karrow, N. A., Boermans, H. J., and Smith, T. K. (2010). Effects of Feed-Borne Fusarium Mycotoxins and an Organic Mycotoxin Adsorbent on Immune Cell Dynamics in the Jejunum of Chickens Infected with Eimeria Maxima. Veterinary Immunol. Immunopathol. 138 (3), 218–223. doi:10.1016/j.vetimm.2010.07.018
Girgis, G. N., Sharif, S., Barta, J. R., Boermans, H. J., and Smith, T. K. (2008). Immunomodulatory Effects of Feed-Borne Fusarium Mycotoxins in Chickens Infected with Coccidia. Exp. Biol. Med. (Maywood) 233 (11), 1411–1420. doi:10. 3181/0805-rm-173
Glenn, A. E. (2007). Mycotoxigenic Fusarium Species in Animal Feed. Animal Feed Sci. Technol. 137 (3), 213–240. doi:10.1016/j.anifeedsci.2007.06.003
Grenier, B., Dohnal, I., Shanmugasundaram, R., Eicher, S., Selvaraj, R., Schatzmayr, G., et al. (2016). Susceptibility of Broiler Chickens to Coccidiosis when Fed Subclinical Doses of Deoxynivalenol and Fumonisins-Special Emphasis on the Immunological Response and the Mycotoxin Interaction. Toxins 8 (8), 231. doi:10.3390/toxins8080231
Grenier, B., and Oswald, I. (2011). Mycotoxin Co-contamination of Food and Feed: Meta-Analysis of Publications Describing Toxicological Interactions. World Mycotoxin J. 4 (3), 285–313. doi:10.3920/wmj2011.1281
Guerre, P. (2016). Worldwide Mycotoxins Exposure in Pig and Poultry Feed Formulations. Toxins 8 (12), 350. doi:10.3390/toxins8120350
Guo, H., Chang, J., Wang, P., Yin, Q., Liu, C., Li, S., et al. (2021). Detoxification of Aflatoxin B1 in Broiler Chickens by a Triple-Action Feed Additive. Food Addit. Contam. Part A 38 (9), 1583–1593. doi:10.1080/19440049.2021.1957159
Hernandez-Patlan, D., Solis-Cruz, B., Pontin, K. P., Hernandez-Velasco, X., Merino-Guzman, R., Adhikari, B., et al. (2019). Impact of a Bacillus Direct Fed Microbial on Growth Performance, Intestinal Barrier Integrity, Necrotic Enteritis Lesions, and Ileal Microbiota in Broiler Chickens Using a Laboratory Challenge Model. Front. Vet. Sci. 6, 108. doi:10.3389/fvets.2019.00108
Hirakawa, R., Nurjanah, S., Furukawa, K., Murai, A., Kikusato, M., Nochi, T., et al. (2020). Heat Stress Causes Immune Abnormalities via Massive Damage to Effect Proliferation and Differentiation of Lymphocytes in Broiler Chickens. Front. Vet. Sci. 7, 46. doi:10.3389/fvets.2020.00046
Hofacre, C. L., Froyman, R., Gautrias, B., George, B., Goodwin, M. A., and Brown, J. (1998). Use of Aviguard and Other Intestinal Bioproducts in Experimental Clostridium Perfringens-Associated Necrotizing Enteritis in Broiler Chickens. Avian Dis. 42, 579–584. doi:10.2307/1592685
Hofacre, C. L., Smith, J. A., and Mathis, G. F. (2018). An Optimist’s View on Limiting Necrotic Enteritis and Maintaining Broiler Gut Health and Performance in Today’s Marketing, Food Safety, and Regulatory Climate. Poult. Sci. 97 (6), 1929–1933. doi:10.3382/ps/pey082
Hopkins, A. M., Walsh, S. V., Verkade, P., Boquet, P., and Nusrat, A. (2003). Constitutive Activation of Rho Proteins by CNF-1 Influences Tight Junction Structure and Epithelial Barrier Function. J. cell Sci. 116 (4), 725–742. doi:10. 1242/jcs.00300
Immerseel, F. V., Buck, J. D., Pasmans, F., Huyghebaert, G., Haesebrouck, F., and Ducatelle, R. (2004). Clostridium Perfringensin Poultry: an Emerging Threat for Animal and Public Health. Avian Pathol. 33 (6), 537–549. doi:10.1080/ 03079450400013162
Kuttappan, V. A., Berghman, L. R., Vicuña, E. A., Latorre, J. D., Menconi, A., Wolchok, J. D., et al. (2015). Poultry Enteric Inflammation Model with Dextran Sodium Sulfate Mediated Chemical Induction and Feed Restriction in Broilers. Poult. Sci. 94 (6), 1220–1226. doi:10.3382/ps/pev114
Langendijk, P. S., Schut, F., Jansen, G. J., Raangs, G. C., Kamphuis, G. R., Wilkinson, M. H., et al. (1995). Quantitative Fluorescence In Situ Hybridization of Bifidobacterium Spp. With Genus-specific 16S rRNA Targeted Probes and its Application in Fecal Samples. Appl. Environ. Microbiol. 61 (8), 3069–3075. doi:10.1128/aem.61.8.3069-3075.1995
Li, Y., Zhang, H., Chen, Y. P., Yang, M. X., Zhang, L. L., Lu, Z. X., et al. (2015). Bacillus Amyloliquefaciens Supplementation Alleviates Immunological Stress and Intestinal Damage in Lipopolysaccharide-Challenged Broilers. Animal Feed Sci. Technol. 208, 119–131. doi:10.1016/j.anifeedsci.2015.07.001
Liu, J., Teng, P.-Y., Kim, W. K., and Applegate, T. J. (2021). Assay Considerations for Fluorescein Isothiocyanate-Dextran (FITC-D): An Indicator of Intestinal Permeability in Broiler Chickens. Poult. Sci. 100 (7), 101202. doi:10.1016/j.psj. 2021.101202
Livak, K. J., and Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. methods 25 (4), 402–408. doi:10.1006/meth.2001.1262
Lucke, A., Böhm, J., Zebeli, Q., and Metzler-Zebeli, B. U. (2018). Dietary Deoxynivalenol and Oral Lipopolysaccharide Challenge Differently Affect Intestinal Innate Immune Response and Barrier Function in Broiler Chickens. J. Anim. Sci. 96 (12), 5134–5143. doi:10.1093/jas/sky379
Markazi, A. D., Luoma, A., Shanmugasundaram, R., Murugesan, R., Mohnl, M., and Selvaraj, R. (2019). Effect of Acidifier Product Supplementation in Laying Hens Challenged with Salmonella. J. Appl. Poult. Res. 28 (4), 919–929. doi:10. 3382/japr/pfz053
Martin, S. J., Burton, D. R., Roitt, I. M., and Delves, P. J. (2016). Roitt’s Essential Immunology. New Jersey: John Wiley & Sons.
McGlone, J. (2010). Guide for the Care and Use of Agricultural Animals in Teaching and Research. United States: American Dairy Science Association.
Mensikova, M., Stepanova, H., and Faldyna, M. (2013). Interleukin-17 in Veterinary Animal Species and its Role in Various Diseases: a Review. Cytokine 64 (1), 11–17. doi:10.1016/j.cyto.2013.06.002
Mora, Z. V.-d. l., Macías-Rodríguez, M. E., Arratia-Quijada, J., Gonzalez-Torres, Y. S., Nuño, K., and Villarruel-López, A. (2020). Clostridium perfringens as Foodborne Pathogen in Broiler Production: Pathophysiology and Potential Strategies for Controlling Necrotic Enteritis. Animals 10 (9), 1718. doi:10.3390/ ani10091718
Novak, B., Vatzia, E., Springler, A., Pierron, A., Gerner, W., Reisinger, N., et al. (2018). Bovine Peripheral Blood Mononuclear Cells Are More Sensitive to Deoxynivalenol Than Those Derived from Poultry and Swine. Toxins 10 (4), 152. doi:10.3390/toxins10040152
Ogbuewu, I. (2011). Effects of Mycotoxins in Animal Nutrition: A Review. Asian J. Anim. Sci. 5, 19–33. doi:10.3923/ajas.2011.19.33
Overgaard, N. H., Jung, J.-W., Steptoe, R. J., and Wells, J. W. (2015). CD4+/ CD8+double-positive T Cells: More Than Just a Developmental Stage? J. Leukoc. Biol. 97 (1), 31–38. doi:10.1189/jlb.1ru0814-382
Pinton, P., and Oswald, I. (2014). Effect of Deoxynivalenol and Other Type B Trichothecenes on the Intestine: A Review. Toxins 6 (5), 1615–1643. doi:10. 3390/toxins6051615
Rauber, R. H., Oliveira, M. S., Mallmann, A. O., Dilkin, P., Mallmann, C. A., Giacomini, L. Z., et al. (2013). Effects of Fumonisin B1 on Selected Biological Responses and Performance of Broiler Chickens. Pesq. Vet. Bras. 33 (9), 1081–1086. doi:10.1590/s0100-736x2013000900006
Ren, Z., Wang, Y., Deng, H., Deng, Y., Deng, J., Zuo, Z., et al. (2015). Deoxynivalenol-induced Cytokines and Related Genes in Concanavalin A-Stimulated Primary Chicken Splenic Lymphocytes. Toxicol. Vitro 29 (3), 558–563. doi:10.1016/j.tiv.2014.12.006
Riley, R. T., Voss, K. A., Norred, W. P., Bacon, C. W., Meredith, F. I., and Sharma, R. P. (1999). Serine Palmitoyltransferase Inhibition Reverses Anti-proliferative Effects of Ceramide Synthase Inhibition in Cultured Renal Cells and Suppresses Free Sphingoid Base Accumulation in Kidney of BALBc Mice. Environ. Toxicol. Pharmacol. 7 (2), 109–118. doi:10.1016/s1382-6689(98)00047-7
Roberts, H. L., Bionaz, M., Jiang, D., Doupovec, B., Faas, J., Estill, C. T., et al. (2021). Effects of Deoxynivalenol and Fumonisins Fed in Combination to Beef Cattle: Immunotoxicity and Gene Expression. Toxins 13 (10), 714. doi:10.3390/ toxins13100714
Roitt, I. (1992). Essential Immunology. Rev. Inst. Med. Trop. S. Paulo 34, 32. doi:10. 1590/s0036-46651992000100014
Ruhnau, D., Hess, C., Grenier, B., Doupovec, B., Schatzmayr, D., Hess, M., et al. (2020). The Mycotoxin Deoxynivalenol (DON) Promotes Campylobacter Jejuni Multiplication in the Intestine of Broiler Chickens with Consequences on Bacterial Translocation and Gut Integrity. Front. Veterinary Sci. 1027, 573894. doi:10.3389/fvets.2020.573894
Šefcová, M., Larrea-Álvarez, M., Larrea-Álvarez, C., Revajová, V., Karaffová, V., Koščová, J., et al. (2020). Effects of Lactobacillus Fermentum Supplementation on Body Weight and Pro-inflammatory Cytokine Expression in Campylobacter Jejuni-Challenged Chickens. Veterinary Sci. 7 (3), 121. doi:10.3390/vetsci7030121
Shanmugasundaram, R., Acevedo, K., Mortada, M., Akerele, G., Applegate, T. J., Kogut, M. H., et al. (2021). Effects of Salmonella enterica Ser. Enteritidis and Heidelberg on Host CD4+CD25+ Regulatory T Cell Suppressive Immune Responses in Chickens. Plos one 16 (11), e0260280. doi:10.1371/journal. pone.0260280
Shanmugasundaram, R., Kogut, M. H., Arsenault, R. J., Swaggerty, C. L., Cole, K., Reddish, J. M., et al. (2015). Effect of Salmonella Infection on Cecal Tonsil Regulatory T Cell Properties in Chickens. Poult. Sci. 94 (8), 1828–1835. doi:10. 3382/ps/pev161
Shanmugasundaram, R., Markazi, A., Mortada, M., Ng, T. T., Applegate, T. J., Bielke, L. R., et al. (2020). Research Note: Effect of Synbiotic Supplementation on Caecal Clostridium perfringens Load in Broiler Chickens with Different Necrotic Enteritis Challenge Models. Poult. Sci. 99 (5), 2452–2458. doi:10.1016/ j.psj.2019.10.081
Shanmugasundaram, R., Mortada, M., Cosby, D. E., Singh, M., Applegate, T. J., Syed, B., et al. (2019a). Synbiotic Supplementation to Decrease Salmonella Colonization in the Intestine and Carcass Contamination in Broiler Birds. Plos one 14 (10), e0223577. doi:10.1371/journal.pone.0223577
Shanmugasundaram, R., Mortada, M., Murugesan, G. R., and Selvaraj, R. K. (2019b). In Vitro characterization and Analysis of Probiotic Species in the Chicken Intestine by Real-Time Polymerase Chain Reaction. Poult. Sci. 98 (11), 5840–5846. doi:10.3382/ps/pez188
Shanmugasundaram, R., and Selvaraj, R. K. (2012). Effect of Killed Whole Yeast Cell Prebiotic Supplementation on Broiler Performance and Intestinal Immune Cell Parameters. Poult. Sci. 91 (1), 107–111. doi:10. 3382/ps.2011-01732
Shanmugasundaram, R., Wick, M., and Lilburn, M. S. (2019c). Effect of a Posthatch Lipopolysaccharide Challenge in Turkey Poults and Ducklings after a Primary Embryonic Heat Stress. Dev. Comp. Immunol. 101, 103436. doi:10. 1016/j.dci.2019.103436
Shanmugasundaram, R., Wick, M., and Lilburn, M. S. (2018). Effect of Embryonic Thermal Manipulation on Heat Shock Protein 70 Expression and Immune System Development in Pekin Duck Embryos. Poult. Sci. 97 (12), 4200–4210. doi:10.3382/ps/pey298
Shimshoni, J. A., Cuneah, O., Sulyok, M., Krska, R., Galon, N., Sharir, B., et al. (2013). Mycotoxins in Corn and Wheat Silage in Israel. Food Addit. Contam. Part A 30 (9), 1614–1625. doi:10.1080/19440049.2013.802840
Smith, J. A. (2019). Broiler Production without Antibiotics: United States Field Perspectives. Animal Feed Sci. Technol. 250, 93–98. doi:10.1016/j.anifeedsci. 2018.04.027
Taranu, I., Marin, D. E., Burlacu, R., Pinton, P., Damian, V., and Oswald, I. P. (2010). Comparative Aspects Ofin Vitroproliferation of Human and Porcine Lymphocytes Exposed to Mycotoxins. Archives Animal Nutr. 64 (5), 383–393. doi:10.1080/1745039x.2010.492140
Taranu, I., Marin, D. E., Pistol, G. C., Motiu, M., and Pelinescu, D. (2015). Induction of Pro-inflammatory Gene Expression by Escherichia coli and Mycotoxin Zearalenone Contamination and Protection by a Lactobacillus Mixture in Porcine IPEC-1 Cells. Toxicon 97, 53–63. doi:10.1016/j.toxicon. 2015.01.016
Timbermont, L., Haesebrouck, F., Ducatelle, R., and Van Immerseel, F. (2011). Necrotic Enteritis in Broilers: an Updated Review on the Pathogenesis. Avian Pathol. 40 (4), 341–347. doi:10.1080/03079457.2011.590967
Tomaszewska, E., Rudyk, H., Dobrowolski, P., Donaldson, J., Świetlicka, I., Puzio, I., et al. (2021). Changes in the Intestinal Histomorphometry, the Expression of Intestinal Tight Junction Proteins, and the Bone Structure and Liver of Prelaying Hens Following Oral Administration of Fumonisins for 21 Days. Toxins 13 (6), 375. doi:10.3390/toxins13060375
van der Most, P. J., de Jong, B., Parmentier, H. K., and Verhulst, S. (2011). Trade-off between Growth and Immune Function: a Meta-analysis of Selection Experiments. Funct. Ecol. 25 (1), 74–80. doi:10.1111/j.1365-2435.2010.01800.x
Van Nevel, C. J., Decuypere, J. A., Dierick, N. A., and Molly, K. (2005). Incorporation of Galactomannans in the Diet of Newly Weaned Piglets: Effect on Bacteriological and Some Morphological Characteristics of the Small Intestine. Archives Animal Nutr. 59 (2), 123–138. doi:10.1080/ 17450390512331387936
Wallach, D., Kang, T.-B., and Kovalenko, A. (2014). Concepts of Tissue Injury and Cell Death in Inflammation: a Historical Perspective. Nat. Rev. Immunol. 14 (1), 51–59. doi:10.1038/nri3561
Wang, E., Norred, W. P., Bacon, C. W., Riley, R. T., and Merrill, A. H., Jr (1991). Inhibition of Sphingolipid Biosynthesis by Fumonisins. Implications for Diseases Associated with Fusarium Moniliforme. J. Biol. Chem. 266 (22), 14486–14490. doi:10.1016/s0021-9258(18)98712-0
Wang, R. F., Cao, W. W., and Cerniglia, C. E. (1996). PCR Detection and Quantitation of Predominant Anaerobic Bacteria in Human and Animal Fecal Samples. Appl. Environ. Microbiol. 62 (4), 1242–1247. doi:10.1128/ aem.62.4.1242-1247.1996
Wang, R. J., Fui, S. X., Miao, C. H., and Feng, D. Y. (2005). Effects of Different Mycotoxin Adsorbents on Performance, Meat Characteristics and Blood Profiles of Avian Broilers Fed Mold Contaminated Corn. Asian Australas. J. Anim. Sci. 19 (1), 72–79. doi:10.5713/ajas.2006.72
Yang, Q., Liu, J., Wang, X., Robinson, K., Whitmore, M. A., Stewart, S. N., et al. (2021). Identification of an Intestinal Microbiota Signature Associated with the Severity of Necrotic Enteritis. Front. Microbiol. 12, 703693. doi:10.3389/fmicb. 2021.703693
Yu, S., Jia, B., Lin, H., Zhang, S., Yu, D., Liu, N., et al. (2022). Effects of Fumonisin B and Hydrolyzed Fumonisin B on Growth and Intestinal Microbiota in Broilers. Toxins 14 (3), 163. doi:10.3390/toxins14030163
Zhang, B., Lv, Z., Li, Z., Wang, W., Li, G., and Guo, Y. (2018). Dietary L-Arginine Supplementation Alleviates the Intestinal Injury and Modulates the Gut Microbiota in Broiler Chickens Challenged by Clostridium perfringens. Front. Microbiol. 9, 1716. doi:10.3389/fmicb.2018.01716
Zhang, C., Zhao, X. H., Yang, L., Chen, X. Y., Jiang, R. S., Jin, S. H., et al. (2017). Resveratrol Alleviates Heat Stress-Induced Impairment of Intestinal Morphology, Microflora, and Barrier Integrity in Broilers. Poult. Sci. 96 (12), 4325–4332. doi:10.3382/ps/pex266
Zhou, H.-R., Yan, D., and Pestka, J. J. (1997). Differential Cytokine mRNA Expression in Mice after Oral Exposure to the Trichothecene Vomitoxin (Deoxynivalenol): Dose Response and Time Course. Toxicol. Appl. Pharmacol. 144 (2), 294–305. doi:10.1006/taap.1997.8132