Identifying biomarkers of mycotoxin effects in chickens will provide an opportunity for early intervention to reduce the impact of mycotoxicosis. This study aimed to identify whether serum enzyme concentrations, gut integrity, and liver miRNAs can be potential biomarkers for fumonisin B1 (FB1), deoxynivalenol (DON), and zearalenone (ZEA) toxicity in broiler birds as early as 14 days after exposure. A total of 720 male broiler chicks were distributed to six treatment groups: T1: control group (basal diet), T2 (2 FB1 + 2.5 DON + 0.9 ZEA), T3 (5 FB1 + 0.4 DON + 0.1 ZEA), T4 (9 FB1 + 3.5 DON + 0.7 ZEA), T5 (17 FB1 + 1.0 DON + 0.2 ZEA), and T6 (21 FB1 + 3.0 DON + 1.0 ZEA), all in mg/kg diet. On d14, there were no significant differences in the body weight gain (BWG) of mycotoxin treatment groups when compared to the control (p > 0.05), whereas on d21, T6 birds showed significantly reduced BWG compared to the control (p < 0.05). On d14, birds in T6 showed significant upregulation of liver miRNAs, gga-let-7a-5p (14.17-fold), gga-miR-9-5p (7.05-fold), gga-miR-217-5p (16.87-fold), gga-miR-133a-3p (7.41-fold), and gga-miR-215-5p (6.93-fold) (p < 0.05) and elevated serum fluorescein isothiocyanate-dextran (FITC-d) concentrations, aspartate aminotransferase (AST), and creatine kinase (CK) levels compared to the control (p < 0.05). On d21, T2 to T6 birds exhibited reduced serum phosphorus, glucose, and potassium, while total protein, FITC-d, AST, and CK levels increased compared to control (p < 0.05). These findings suggest that serum FITC-d, AST, CK, and liver miRNAs could serve as biomarkers for detecting mycotoxin exposure in broiler chickens.
Keywords: mycotoxin; biomarker; broiler chickens
Key Contribution: Chicken diets containing multiple mycotoxins below FDA recommendations led to a range of physiological and biochemical changes in broiler chickens, including increased intestinal permeability, liver apoptosis, and altered serum aspartate aminotransferase and creatine kinase concentration. Further, the upregulation of miRNAs such as gga-let-7a-5p, gga-miR-19b-3p, gga-miR-9-5p, gga-miR-217-5p, and gga-miR-215- 5p on d 14 suggests that these can be potential biomarkers for the early detection of subclinical mycotoxicosis.
1. Placinta, C.; D’Mello, J.F.; Macdonald, A. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim. Feed Sci. Technol. 1999, 78, 21–37. [CrossRef]
2. Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [CrossRef] [PubMed]
3. Madhysatha, S.; Marquardt, R. 12: Mycotoxins in the feed and animal products. In Poultry and Pig Nutrition; Wageningen Academic: Wageningen, The Netherlands, 2019; pp. 263–278.
4. Buszewska-Forajta, M. Mycotoxins, invisible danger of feedstuff with toxic effect on animals. Toxicon 2020, 182, 34–53. [CrossRef]
5. Jimenez-Garcia, S.N.; Garcia-Mier, L.; Garcia-Trejo, J.F.; Ramirez-Gomez, X.S.; Guevara-Gonzalez, R.G.; Feregrino-Perez, A.A. Fusarium mycotoxins and metabolites that modulate their production. In Fusarium—Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers; IntechOpen: Rijeka, Croatia, 2018.
6. Shanmugasundaram, R.; Lourenco, J.; Hakeem, W.A.; Dycus, M.M.; Applegate, T.J. Subclinical doses of dietary fumonisins and deoxynivalenol cause cecal microbiota dysbiosis in broiler chickens challenged with Clostridium perfringens. Front. Microbiol. 2023, 14, 1106604. [CrossRef]
7. Commission, E. Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union 2006, 229, 7–9.
8. DSM-Firmenich World Mycotoxin Survey. The Global Threat 2023. Available online: https://www.dsm.com/content/dam/ dsm/anh/en/documents/REP_MTXsurvey_Q3_2023_EN_1123_AUE.pdf (accessed on 11 November 2024).
9. Shar, Z.; Shar, H.; Jatoi, A.; Sherazi, S.; Mahesar, S.; Khan, E.; Phanwar, Q. Natural co-occurrence of Fusarium toxins in poultry feed and its ingredients. J. Consum. Prot. Food Saf. 2020, 15, 341–350. [CrossRef]
10. Shanmugasundaram, R.; Adams, D.; Applegate, T.; Pokoo-Aikins, A. Subclinical doses of combined fumonisins and deoxynivalenol predispose Clostridium perfringens—Inoculated broilers to necrotic enteritis. Front. Physiol. 2022, 13, 934660. [CrossRef] [PubMed]
11. Grenier, B.; Dohnal, I.; Shanmugasundaram, R.; Eicher, S.D.; Selvaraj, R.K.; Schatzmayr, G.; Applegate, T.J. Susceptibility of broiler chickens to coccidiosis when fed subclinical doses of deoxynivalenol and fumonisins—Special emphasis on the immunological response and the mycotoxin interaction. Toxins 2016, 8, 231. [CrossRef] [PubMed]
12. Liu, J.; Shanmugasundaram, R.; Doupovec, B.; Schatzmayr, D.; Murugesan, G.; Applegate, T. Short-term exposure to fumonisins and deoxynivalenol, on broiler growth performance and cecal Salmonella load during experimental Salmonella Enteritidis infection. Poult. Sci. 2023, 102, 102677. [CrossRef]
13. Dänicke, S.; Brezina, U. Kinetics and metabolism of the Fusarium toxin deoxynivalenol in farm animals: Consequences for diagnosis of exposure and intoxication and carry over. Food Chem. Toxicol. 2013, 60, 58–75. [CrossRef]
14. Lauwers, M.; De Baere, S.; Letor, B.; Rychlik, M.; Croubels, S.; Devreese, M. Multi LC-MS/MS and LC-HRMS methods for determination of 24 mycotoxins including major phase I and II biomarker metabolites in biological matrices from pigs and broiler chickens. Toxins 2019, 11, 171. [CrossRef]
15. Muñoz-Solano, B.; González-Peñas, E. Biomonitoring of 19 Mycotoxins in Plasma from Food-Producing Animals (Cattle, Poultry, Pigs, and Sheep). Toxins 2023, 15, 295. [CrossRef]
16. Alaboudi, A.R.; Osaili, T.M.; Otoum, G. Quantification of mycotoxin residues in domestic and imported chicken muscle, liver and kidney in Jordan. Food Control. 2022, 132, 108511. [CrossRef]
17. Bart, H.; Evelyne, D.; Els, D. Carry-over of some Fusarium mycotoxins in tissues and eggs of chickens fed experimentally mycotoxin-contaminated diets. Food Chem. Toxicol. 2020, 145, 111715.
18. Micco, C.; Miraglia, M.; Onori, R.; Brera, C.; Mantovani, A.; Ioppolo, A.; Stasolla, D. Long-term administration of low doses of mycotoxins to poultry. 1. Residues of aflatoxin B1 and its metabolites in broilers and laying hens. Food Addit. Contam. 1988, 5, 303–308. [CrossRef] [PubMed]
19. Mackay, N.; Marley, E.; Leeman, D.; Poplawski, C.; Donnelly, C. Analysis of Aflatoxins, fumonisins, deoxynivalenol, ochratoxin A, zearalenone, HT-2, and T-2 toxins in animal feed by LC–MS/MS using cleanup with a multi-antibody immunoaffinity column. J. AOAC Int. 2022, 105, 1330–1340. [CrossRef]
20. Zhang, S.; Zhou, S.; Yu, S.; Zhao, Y.; Wu, Y.; Wu, A. LC-MS/MS analysis of fumonisin B1, B2, B3, and their hydrolyzed metabolites in broiler chicken feed and excreta. Toxins 2022, 14, 131. [CrossRef]
21. Sulyok, M.; Stadler, D.; Steiner, D.; Krska, R. Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of >500 mycotoxins and other secondary metabolites in food crops: Challenges and solutions. Anal. Bioanal. Chem. 2020, 412, 2607–2620. [CrossRef]
22. Omeralfaroug, A.; Szabó, A. Fumonisin Distorts the Cellular Membrane Lipid Profile: A Mechanistic Insight. Toxicology 2024, 506, 153860.
23. Laurain, J.; Tardieu, D.; Matard-Mann, M.; Rodriguez, M.A.; Guerre, P. Fumonisin B1 accumulates in chicken tissues over time and this accumulation was reduced by feeding algo-clay. Toxins 2021, 13, 701. [CrossRef]
24. Tardieu, D.; Matard-Mann, M.; Collén, P.N.; Guerre, P. Strong alterations in the sphingolipid profile of chickens fed a dose of fumonisins considered safe. Toxins 2021, 13, 770. [CrossRef]
25. Bullerman, L.B.; Bianchini, A. Stability of mycotoxins during food processing. Int. J. Food Microbiol. 2007, 119, 140–146. [CrossRef] [PubMed]
26. Falavigna, C.; Lazzaro, I.; Galaverna, G.; Battilani, P.; Dall’Asta, C. Fatty acid esters of fumonisins: First evidence of their presence in maize. Food Addit. Contam. Part A 2013, 30, 1606–1613. [CrossRef] [PubMed]
27. Hort, V.; Nicolas, M.; Travel, A.; Jondreville, C.; Maleix, C.; Baéza, E.; Engel, E.; Guérin, T. Carry-over assessment of fumonisins and zearalenone to poultry tissues after exposure of chickens to a contaminated diet—A study implementing stable-isotope dilution assay and UHPLC-MS/MS. Food Control. 2020, 107, 106789. [CrossRef]
28. Tardieu, D.; Travel, A.; Metayer, J.-P.; Le Bourhis, C.; Guerre, P. Fumonisin B1, B2 and B3 in muscle and liver of broiler chickens and Turkey poults fed with diets containing fusariotoxins at the EU maximum tolerable level. Toxins 2019, 11, 590. [CrossRef] [PubMed]
29. Tardieu, D.; Travel, A.; Le Bourhis, C.; Metayer, J.-P.; Mika, A.; Cleva, D.; Boissieu, C.; Guerre, P. Fumonisins and zearalenone fed at low levels can persist several days in the liver of turkeys and broiler chickens after exposure to the contaminated diet was stopped. Food Chem. Toxicol. 2021, 148, 111968. [CrossRef]
30. Travel, A.; Metayer, J.-P.; Mika, A.; Bailly, J.-D.; Cleva, D.; Boissieu, C.; Le Guennec, J.; Albaric, O.; Labrut, S.; Lepivert, G. Toxicity of fumonisins, deoxynivalenol, and zearalenone alone and in combination in turkeys fed with the maximum European Union—Tolerated level. Avian Dis. 2019, 63, 703–712. [CrossRef] [PubMed]
31. Broekaert, N.; Devreese, M.; van Bergen, T.; Schauvliege, S.; De Boevre, M.; De Saeger, S.; Vanhaecke, L.; Berthiller, F.; Michlmayr, H.; Malachová, A. In vivo contribution of deoxynivalenol-3-β-d-glucoside to deoxynivalenol exposure in broiler chickens and pigs: Oral bioavailability, hydrolysis and toxicokinetics. Arch. Toxicol. 2017, 91, 699–712. [CrossRef]
32. Devreese, M.; Antonissen, G.; Broekaert, N.; De Baere, S.; Vanhaecke, L.; De Backer, P.; Croubels, S. Comparative toxicokinetics, absolute oral bioavailability, and biotransformation of zearalenone in different poultry species. J. Agric. Food Chem. 2015, 63, 5092–5098. [CrossRef] [PubMed]
33. Lauwers, M.; Croubels, S.; Letor, B.; Gougoulias, C.; Devreese, M. Biomarkers for exposure as a tool for efficacy testing of a mycotoxin detoxifier in broiler chickens and pigs. Toxins 2019, 11, 187. [CrossRef] [PubMed]
34. Schwartz-Zimmermann, H.E.; Fruhmann, P.; Dänicke, S.; Wiesenberger, G.; Caha, S.; Weber, J.; Berthiller, F. Metabolism of deoxynivalenol and deepoxy-deoxynivalenol in broiler chickens, pullets, roosters and turkeys. Toxins 2015, 7, 4706–4729. [CrossRef] [PubMed]
35. Osselaere, A.; Devreese, M.; Goossens, J.; Vandenbroucke, V.; De Baere, S.; De Backer, P.; Croubels, S. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-2 toxin and zearalenone in broiler chickens. Food Chem. Toxicol. 2013, 51, 350–355. [CrossRef]
36. Bouhet, S.; Oswald, I.P. The intestine as a possible target for fumonisin toxicity. Mol. Nutr. Food Res. 2007, 51, 925–931. [CrossRef]
37. Rotter, B.A. Invited review: Toxicology of deoxynivalenol (vomitoxin). J. Toxicol. Environ. Health Part A 1996, 48, 1–34. [CrossRef] [PubMed]
38. Grenier, B.; Applegate, T.J. Modulation of intestinal functions following mycotoxin ingestion: Meta-analysis of published experiments in animals. Toxins 2013, 5, 396–430. [CrossRef] [PubMed]
39. Do, D.N.; Dudemaine, P.-L.; Mathur, M.; Suravajhala, P.; Zhao, X.; Ibeagha-Awemu, E.M. miRNA regulatory functions in farm animal diseases, and biomarker potentials for effective therapies. Int. J. Mol. Sci. 2021, 22, 3080. [CrossRef] [PubMed]
40. Siedlecki-Wullich, D.; Miñano-Molina, A.J.; Rodríguez-Álvarez, J. microRNAs as early biomarkers of Alzheimer’s disease: A synaptic perspective. Cells 2021, 10, 113. [CrossRef] [PubMed]
41. Wu, Y.; Li, Q.; Zhang, R.; Dai, X.; Chen, W.; Xing, D. Circulating microRNAs: Biomarkers of disease. Clin. Chim. Acta 2021, 516, 46–54. [CrossRef]
42. Srinivasan, S.; Yeri, A.; Cheah, P.S.; Chung, A.; Danielson, K.; De Hoff, P.; Filant, J.; Laurent, C.D.; Laurent, L.D.; Magee, R. Small RNA sequencing across diverse biofluids identifies optimal methods for exRNA isolation. Cell 2019, 177, 446–462.e416. [CrossRef] [PubMed]
43. Liu, S.; Da Cunha, A.P.; Rezende, R.M.; Cialic, R.; Wei, Z.; Bry, L.; Comstock, L.E.; Gandhi, R.; Weiner, H.L. The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe 2016, 19, 32–43. [CrossRef]
44. Marques-Rocha, J.L.; Samblas, M.; Milagro, F.I.; Bressan, J.; Martínez, J.A.; Marti, A. Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J. 2015, 29, 3595–3611. [CrossRef]
45. Harrill, A.H.; McCullough, S.D.; Wood, C.E.; Kahle, J.J.; Chorley, B.N. MicroRNA biomarkers of toxicity in biological matrices. Toxicol. Sci. 2016, 152, 264–272. [CrossRef]
46. Han, B.; Lian, L.; Li, X.; Zhao, C.; Qu, L.; Liu, C.; Song, J.; Yang, N. Chicken gga-miR-103-3p targets CCNE1 and TFDP2 and inhibits MDCC-MSB1 cell migration. G3 Genes Genomes Genet. 2016, 6, 1277–1285. [CrossRef] [PubMed]
47. Dai, Z.; Ji, J.; Yan, Y.; Lin, W.; Li, H.; Chen, F.; Liu, Y.; Chen, W.; Bi, Y.; Xie, Q. Role of gga-miR-221 and gga-miR-222 during tumour formation in chickens infected by subgroup J avian leukosis virus. Viruses 2015, 7, 6538–6551. [CrossRef] [PubMed]
48. Fu, M.; Wang, B.; Chen, X.; He, Z.; Wang, Y.; Li, X.; Cao, H.; Zheng, S.J. MicroRNA gga-miR-130b suppresses infectious bursal disease virus replication via targeting of the viral genome and cellular suppressors of cytokine signaling 5. J. Virol. 2018, 92, 10–1128. [CrossRef]
49. Peng, X.; Gao, Q.; Zhou, L.; Chen, Z.; Lu, S.; Huang, H.; Zhan, C.; Xiang, M. MicroRNAs in avian influenza virus H9N2-infected and non-infected chicken embryo fibroblasts. Genet. Mol. Res. 2015, 14, 9081–9091. [CrossRef] [PubMed]
50. Pham, T.T.; Ban, J.; Hong, Y.; Lee, J.; Vu, T.H.; Truong, A.D.; Lillehoj, H.S.; Hong, Y.H. MicroRNA gga-miR-200a-3p modulates immune response via MAPK signaling pathway in chicken afflicted with necrotic enteritis. Vet. Res. 2020, 51, 1–11. [CrossRef]
51. Liu, X.; Kumar Mishra, S.; Wang, T.; Xu, Z.; Zhao, X.; Wang, Y.; Yin, H.; Fan, X.; Zeng, B.; Yang, M. AFB1 induced transcriptional regulation related to apoptosis and lipid metabolism in liver of chicken. Toxins 2020, 12, 290. [CrossRef] [PubMed]
52. Zeferino, C.P.; Wells, K.D.; Moura, A.S.A.; Rottinghaus, G.E.; Ledoux, D.R. Changes in renal gene expression associated with induced ochratoxicosis in chickens: Activation and deactivation of transcripts after varying durations of exposure. Poult. Sci. 2017, 96, 1855–1865. [CrossRef] [PubMed]
53. Kubena, L.; Edrington, T.; Harvey, R.; Buckley, S.; Phillips, T.; Rottinghaus, G.; Casper, H. Individual and combined effects of fumonisin B1 present in Fusarium moniliforme culture material and T-2 toxin or deoxynivalenol in broiler chicks. Poult. Sci. 1997, 76, 1239–1247. [CrossRef]
54. Liu, J.; Doupovec, B.; Schatzmayr, D.; Murugesan, G.; Bortoluzzi, C.; Villegas, A.; Applegate, T. The impact of deoxynivalenol, fumonisins, and their combination on performance, nutrient, and energy digestibility in broiler chickens. Poult. Sci. 2020, 99, 272–279. [CrossRef]
55. Dänicke, S. Prevention and control of mycotoxins in the poultry production chain: A European view. World’s Poult. Sci. J. 2002, 58, 451–474. [CrossRef]
56. Awad, W.A.; Ruhnau, D.; Hess, C.; Doupovec, B.; Schatzmayr, D.; Hess, M. Feeding of deoxynivalenol increases the intestinal paracellular permeability of broiler chickens. Arch. Toxicol. 2019, 93, 2057–2064. [CrossRef]
57. Sousa, M.C.; Galli, G.M.; Alba, D.F.; Griss, L.G.; Gebert, R.R.; Souza, C.F.; Baldissera, M.D.; Gloria, E.M.; Mendes, R.E.; Zanelato, G.O. Pathogenetic effects of feed intake containing of fumonisin (Fusarium verticillioides) in early broiler chicks and consequences on weight gain. Microb. Pathog. 2020, 147, 104247. [CrossRef] [PubMed]
58. Paraskeuas, V.; Griela, E.; Bouziotis, D.; Fegeros, K.; Antonissen, G.; Mountzouris, K.C. Effects of deoxynivalenol and fumonisins on broiler gut cytoprotective capacity. Toxins 2021, 13, 729. [CrossRef]
59. Guerre, P. Mycotoxin and gut microbiota interactions. Toxins 2020, 12, 769. [CrossRef] [PubMed]
60. McGill, M.R. The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI J. 2016, 15, 817.
61. Faixová, Z.; Faix, Š.; Boˇrutová, R.; Leng, L’. Effects of feeding diets contaminated with Fusarium mycotoxins on blood biochemical parameters of broiler chickens. Acta Vet. Hung. 2010, 58, 275–285. [CrossRef]
62. Klapáˇcová, K.; Faixová, Z.; Faix, Š.; Miklósová, L.; Leng, L. Effects of feeding wheat naturally contaminated with Fusarium mycotoxins on blood biochemistry and the effectiveness of dietary lignin treatment to alleviate mycotoxin adverse effects in broiler chickens. Acta Vet. 2011, 61, 227–237. [CrossRef]
63. Wen, J.; Mu, P.; Deng, Y. Mycotoxins: Cytotoxicity and biotransformation in animal cells. Toxicol. Res. 2016, 5, 377–387. [CrossRef]
64. Dzeja, P.P.; Terzic, A. Phosphotransfer networks and cellular energetics. J. Exp. Biol. 2003, 206, 2039–2047. [CrossRef] [PubMed]
65. Saks, V. The phosphocreatine-creatine kinase system helps to shape muscle cells and keep them healthy and alive. J. Physiol. 2008, 586, 2817. [CrossRef] [PubMed]
66. Baldissera, M.D.; Müller, L.K.; Souza, C.F.; Santurio, J.M.; Gloria, E.M.; Machado, G.; Boiago, M.M.; Paiano, D.; da Silva, A.S. Creatine kinase and ATPase activities in piglets fed a fungal mycotoxin co-contaminated diet: Consequences in the pathogenesis of subclinical intoxication. Microb. Pathog. 2018, 122, 13–18. [CrossRef] [PubMed]
67. Andretta, I.; Kipper, M.; Lehnen, C.; Lovatto, P. Meta-analysis of the relationship of mycotoxins with biochemical and hematological parameters in broilers. Poult. Sci. 2012, 91, 376–382. [CrossRef] [PubMed]
68. Kim, D.-H.; Yoo, H.-S.; Lee, Y.-M.; Kie, J.-H.; Jang, S.; Oh, S. Elevation of sphinganine 1-phosphate as a predictive biomarker for fumonisin exposure and toxicity in mice. J. Toxicol. Environ. Health Part A 2006, 69, 2071–2082. [CrossRef] [PubMed]
69. Ali, O.; Mézes, M.; Balogh, K.; Kovács, M.; Szabó, A. The effects of mixed Fusarium mycotoxins at EU-permitted feed levels on weaned piglets’ tissue lipids. Toxins 2021, 13, 444. [CrossRef]
70. Li, L.; Zhang, X.; Zhang, J.; Liu, M.; Zhao, L.; Ji, C.; Zhang, J.; Huang, S.; Ma, Q. Growth performance, bone development and phosphorus metabolism in chicks fed diets supplemented with phytase are associated with alterations in gut microbiota. Animals 2022, 12, 940. [CrossRef]
71. Cao, S.; Li, T.; Shao, Y.; Zhang, L.; Lu, L.; Zhang, R.; Hou, S.; Luo, X.; Liao, X. Regulation of bone phosphorus retention and bone development possibly by related hormones and local bone-derived regulators in broiler chicks. J. Anim. Sci. Biotechnol. 2021, 12, 88. [CrossRef] [PubMed]
72. Awad, W.A.; Vahjen, W.; Aschenbach, J.R.; Zentek, J. A diet naturally contaminated with the Fusarium mycotoxin deoxynivalenol (DON) downregulates gene expression of glucose transporters in the intestine of broiler chickens. Livest. Sci. 2011, 140, 72–79. [CrossRef]
73. Awad, W.; Böhm, J.; Razzazi-Fazeli, E.; Zentek, J. In vitro effects of deoxynivalenol on electrical properties of intestinal mucosa of laying hens. Poult. Sci. 2005, 84, 921–927. [CrossRef] [PubMed]
74. Ren, Z.; Guo, C.; Yu, S.; Zhu, L.; Wang, Y.; Hu, H.; Deng, J. Progress in mycotoxins affecting intestinal mucosal barrier function. Int. J. Mol. Sci. 2019, 20, 2777. [CrossRef]
75. Jia, R.; Liu, W.; Zhao, L.; Cao, L.; Shen, Z. Low doses of individual and combined deoxynivalenol and zearalenone in naturally moldy diets impair intestinal functions via inducing inflammation and disrupting epithelial barrier in the intestine of piglets. Toxicol. Lett. 2020, 333, 159–169. [CrossRef] [PubMed]
76. Yunus, A.W.; Böhm, J. Serum cation profile of broilers at various stages of exposure to deoxynivalenol. Mycotoxin Res. 2013, 29, 113–117. [CrossRef]
77. Pitts, R.F. Physiology of the Kidney and Body Fluids; Year Book Medical Publishers: Chicago, IL, USA, 1968.
78. Rhee, K.H.; Yang, S.A.; Pyo, M.C.; Lim, J.-M.; Lee, K.-W. MiR-155-5p elevated by Ochratoxin a induces intestinal fibrosis and epithelial-to-mesenchymal transition through TGF-β regulated signaling pathway in vitro and in vivo. Toxins 2023, 15, 473. [CrossRef]
79. Zhang, J.; Yang, S.; Xu, B.; Qin, Z.; Guo, X.; Wei, B.; Wu, Q.; Kuca, K.; Li, T.; Wu, W. Foodborne toxin aflatoxin B1 induced glomerular podocyte inflammation through proteolysis of RelA, downregulation of miR-9 and CXCR4/TXNIP/NLRP3 pathway. Food Sci. Hum. Wellness 2024, 13, 2289–2309. [CrossRef]
80. Ding, K.; Yu, Z.-H.; Yu, C.; Jia, Y.-Y.; He, L.; Liao, C.-S.; Li, J.; Zhang, C.-J.; Li, Y.-J.; Wu, T.-C. Effect of gga-miR-155 on cell proliferation, apoptosis and invasion of Marek’s disease virus (MDV) transformed cell line MSB1 by targeting RORA. BMC Vet. Res. 2020, 16, 1–9. [CrossRef]
81. Liu, Z.; Zhang, H.; Sun, L.; Zhu, K.; Lang, W. MiR-29c-3p increases cell viability and suppresses apoptosis by regulating the TNFAIP1/NF-κB signaling pathway via TNFAIP1 in Aβ-treated neuroblastoma cells. Neurochem. Res. 2020, 45, 2375–2384. [CrossRef]
82. Zou, T.; Gao, Y.; Qie, M. MiR-29c-3p inhibits epithelial-mesenchymal transition to inhibit the proliferation, invasion and metastasis of cervical cancer cells by targeting SPARC. Ann. Transl. Med. 2021, 9, 125. [CrossRef] [PubMed]
83. Flum, M.; Kleemann, M.; Schneider, H.; Weis, B.; Fischer, S.; Handrick, R.; Otte, K. MiR-217-5p induces apoptosis by directly targeting PRKCI, BAG3, ITGAV and MAPK1 in colorectal cancer cells. J. Cell Commun. Signal. 2018, 12, 451–466. [CrossRef] [PubMed]
84. Zhang, J.; Ren, Q.; Chen, J.; Lv, L.; Wang, J.; Shen, M.; Xing, B.; Wang, X. Downregulation of miR-192 alleviates oxidative stress-induced porcine granulosa cell injury by directly targeting Acvr2a. Cells 2022, 11, 2362. [CrossRef]
85. Zhang, Z.; Qiu, M.; Du, H.; Li, Q.; Gan, W.; Xiong, X.; Yu, C.; Peng, H.; Xia, B.; Song, X. Small RNA sequencing of pectoral muscle tissue reveals microRNA-mediated gene modulation in chicken muscle growth. J. Anim. Physiol. Anim. Nutr. 2020, 104, 867–875. [CrossRef]
86. Jebessa, E.; Ouyang, H.; Abdalla, B.A.; Li, Z.; Abdullahi, A.Y.; Liu, Q.; Nie, Q.; Zhang, X. Characterization of miRNA and their target gene during chicken embryo skeletal muscle development. Oncotarget 2018, 9, 17309. [CrossRef]
87. Huang, H.; Liu, R.; Zhao, G.; Li, Q.; Zheng, M.; Zhang, J.; Li, S.; Liang, Z.; Wen, J. Integrated analysis of microRNA and mRNA expression profiles in abdominal adipose tissues in chickens. Sci. Rep. 2015, 5, 16132. [CrossRef]
88. Cai, J.; Yang, J.; Liu, Q.; Gong, Y.; Zhang, Y.; Zheng, Y.; Yu, D.; Zhang, Z. Mir-215-5p induces autophagy by targeting PI3K and activating ROS-mediated MAPK pathways in cardiomyocytes of chicken. J. Inorg. Biochem. 2019, 193, 60–69. [CrossRef]
89. Cai, J.; Yang, J.; Liu, Q.; Gong, Y.; Zhang, Y.; Zhang, Z. Selenium deficiency inhibits myocardial development and differentiation by targeting the mir-215-5p/CTCF axis in chicken. Metallomics 2019, 11, 415–428. [CrossRef] [PubMed]
90. Yakovlev, A. The Role of miRNA in differentiation, cell proliferation, and pathogenesis of poultry diseases. Russ. J. Dev. Biol. 2019, 50, 102–112. [CrossRef]
91. Chen, Y.; Liu, W.; Xu, H.; Liu, J.; Deng, Y.; Cheng, H.; Zhan, T.; Lu, X.; Liao, T.; Guo, L. Gga-miR-19b-3p inhibits newcastle disease virus replication by suppressing inflammatory response via targeting RNF11 and ZMYND11. Front. Microbiol. 2019, 10, 2006. [CrossRef] [PubMed]
92. Song, Z.; Bai, J.; Jiang, R.; Wu, J.; Yang, W. MicroRNA-215-5p promotes proliferation, invasion, and inhibits apoptosis in liposarcoma cells by targeting MDM2. Cancer Med. 2023, 12, 13455–13470. [CrossRef]
93. Chen, J.; Yang, S.; Li, P.; Wu, A.; Nepovimova, E.; Long, M.; Wu, W.; Kuca, K. MicroRNA regulates the toxicological mechanism of four mycotoxins in vivo and in vitro. J. Anim. Sci. Biotechnol. 2022, 13, 37. [CrossRef] [PubMed]
94. Ren, Z.; Deng, H.; Deng, Y.; Deng, J.; Zuo, Z.; Yu, S.; Shen, L.; Cui, H.; Xu, Z.; Hu, Y. Effect of the Fusarium toxins, zearalenone and deoxynivalenol, on the mouse brain. Environ. Toxicol. Pharmacol. 2016, 46, 62–70. [CrossRef]
95. Thapa, A.; Horgan, K.A.; White, B.; Walls, D. Deoxynivalenol and zearalenone—Synergistic or antagonistic agri-food chain co-contaminants? Toxins 2021, 13, 561. [CrossRef] [PubMed]
96. Lo, K.; Wan, L.; Turner, P.; El-Nezami, H. Individual and combined effects of deoxynivalenol and zearalenone on modulation of mucin expression on intestinal epithelial cells. Toxicol. Lett. 2016, 259, S135–S136. [CrossRef]
97. Council, N.R. Nutrient Requirements of Poultry: 1994, 9th ed.; National Academies Press: Washington, DC, USA, 1994.
98. Han, W.; Zhu, Y.; Su, Y.; Li, G.; Qu, L.; Zhang, H.; Wang, K.; Zou, J.; Liu, H. High-throughput sequencing reveals circulating miRNAs as potential biomarkers for measuring puberty onset in chicken (Gallus gallus). PLoS ONE 2016, 11, e0154958. [CrossRef] [PubMed]
99. Xu, S.; Chang, Y.; Wu, G.; Zhang, W.; Man, C. Potential role of miR-155-5p in fat deposition and skeletal muscle development of chicken. Biosci. Rep. 2020, 40, BSR20193796. [CrossRef] [PubMed]
100. Yildirim, E.; Yalcinkaya, I.; Kanbur, M.; Cinar, M.; Oruc, E. Effects of yeast glucomannan on performance, some biochemical parameters and pathological changes in experimental aflatoxicosis in broiler chickens. Rev. Med. Vet. 2011, 162, 413–420.