1. Tudorache, M.; Custura, I.; Van, I.; Popa, M.A. Study about chicken carcass protein content. Sci. Pap. Ser. D Anim. Sci. 2015, 58,
342–345.
2. Wu, G.; Bazer, F.W.; Cross, H.R. Land-based production of animal protein: Impacts, efficiency, and sustainability. Ann. N. Y. Acad.
Sci. 2014, 1328, 18–28. [CrossRef]
3. He, W.; Li, P.; Wu, G. Amino acid nutrition and metabolism in chickens. In Advances in Experimental Medicine and Biology 1285;
Wu, G., Ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 109–131.
4. Mavromichalis, I. Unravelling Global Soybean Meal Consumption Statistics. 2019. Available online: www.feedstrategy.com (accessed on 7 May 2021).
5. Soybean Meal Info Centre. World Soybean Meal Production 2018/2019; United Soybean Board: Chesterfield, MO, USA, 2018.
6. Dei, H.K. Soybean as a feed ingredient for livestock and poultry. In Recent Trends for Enhancing the Diversity and Quality of Soybean
Products; Krezhova, D., Ed.; IntechOpen Limited: London, UK, 2011; pp. 215–226.
7. OECD. Oilseeds and oilseed products. In OECD-FAO Agricultural Outlook 2018–2027; Organisation for Economic Cooperation and Development: Paris, France, 2018.
8. Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; ESA Working paper No.12-03; Food and
Agricultural Organisation: Rome, Italy, 2012.
9. Dabbou, S.; Gai, F.; Biasoto, I.; Capucchio, M.T.; Biasibetti, E.; Dezutto, D.; Meneguz, M.; Placha, I.; Gasco, L.; Schiavone, A.
Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2018, 9, 49. [CrossRef]
10. Recoules, E.; Lessire, M.; Labas, V.; Duclos, M.J.; Combes-Soia, L.; Lardic, L.; Peyronnet, C.; Quinsac, A.; Narcy, A.; RehaultGodbert, S. Digestion dynamics in broilers fed rapeseed meal. Sci. Rep. 2019, 9, 3052. [CrossRef] [PubMed]
11. Gasparri, N.I.; Grau, H.R.; Gutierrez, A.J. Linkages between soybean and neotropical deforestation: Coupling and transient decoupling dynamics in a multi-decadal analysis. Glob. Environ. Chang. 2013, 23, 1605–1614. [CrossRef]
12. Selle, P.H.; de Paula Dorigam, J.C.; Lemme, A.; Chrystal, P.V.; Liu, S.Y. Synthetic and crystalline amino acids: Alternatives to soybean meal in chicken-meat production. Animals 2020, 10, 729. [CrossRef] [PubMed]
13. Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [CrossRef]
14. Taherkhani, R.; Shivazad, M.; Zaghari, M.; Zareshahne, A. Male and female broilers response to different ideal amino acid ratios during the second and third weeks post-hatch. Int. J. Poult. Sci. 2005, 4, 563–567.
15. Taherkhani, R.; Shivazad, M.; Zaghari, M.; Shahneh, A.Z. Comparison of different ideal amino acid ratios in male and female broiler chickens of 21 to 42 days of age. J. Poult. Sci. 2008, 45, 15–19. [CrossRef]
16. Salehifar, E.; Shivazad, M.; Foroudi, F.; Chamani, M.; Kashani, R.B. Reevaluation of digestible amino acid requirements of male and female broilers based on different ideal amino acids ratios in starter period. Livest. Sci. 2012, 147, 154–158. [CrossRef]
17. Macelline, S.P.; Chrystal, P.V.; Toghyani, M.; Kidd, M.T.; Selle, P.H.; Liu, S.Y. Ideal protein ratios and dietary crude protein contents interact in broiler chickens from 14 to 35 days post-hatch. Proc. Aust. Poult. Sci. Symp. 2021, 32, 180–183.
18. Dean, W.F.; Scott, H.M. The development of an amino acid reference diet for the early growth of chicks. Poult. Sci. 1965, 44,
803–808. [CrossRef] [PubMed]
19. ARC. The Nutrient Requirements of Farm Livestock. 1: Poultry, Technical Reviews and Summaries, 2nd ed.; Agricultural Research
Council: Richmond, UK, 1975.
20. AEC; AEC Societe de Chimie Organique et Biologique. Animal Feeding: Energy, Amino Acids, Vitamins, Minerals; AEC: Commentry,
France, 1978.
21. NRC. Nutrient Requirements of Poultry, 8th ed.; National Research Council, National Academy Press: Washington, DC, USA, 1984.
22. NRC. Nutrient Requirements of Poultry, 9th ed.; National Research Council, National Academy Press: Washington, DC, USA, 1994.
23. Baker, D.H. Ideal amino acid profile for maximal protein accretion and minimal nitrogen excretion in swine and poultry. In
Proceedings of the Cornell Nutrition Conference for Feed Manufacturers, Rochester, NY, USA, 18–20 October 1994; pp. 134–139.
24. Roth, F.X.; Gruber, K.; Kirchgessner, M. The ideal dietary amino acid pattern for broiler-chicks of age 7 to 28 days. Arch. Gelflügelkd.
2001, 65, 199–206.
25. Tillman, P.B.; Dozier, W.A. Current amino acid considerations: Requirements, ratios, economics. In Proceedings of the PreSymposium of Arkansas Nutrition Conference, Rogers, AR, USA, 3–5 September 2013.
26. Wecke, C.; Liebert, F. Improving the reliability of optimal in-feed amino acid ratios based on individual amino acid efficiency data from N balance studies in growing chickens. Animals 2013, 3, 558–573. [CrossRef] [PubMed]
27. Wu, G. Dietary requirements of synthesizable amino acids by animals: A paradigm shift in protein nutrition. J. Anim. Sci.
Biotechnol. 2014, 5, 1–12. [CrossRef] [PubMed]
28. Li, X.; Rezaei, R.; Li, P.; Wu, G. Composition of amino acids in feed ingredients for animal diets. Amino Acids 2011, 40, 1159–1168.
[CrossRef]
29. Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.C.J. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [CrossRef]
30. Ravindran, V.; Hendriks, W.H.; Camden, B.J.; Thomas, D.V.; Morel, P.C.; Butts, C.A. Amino acid digestibility of meat and bone meals for broiler chickens. Aust. J. Agric. Res. 2002, 53, 1257–1264. [CrossRef]
31. Ravindran, V. Poultry feed availability and nutrition in developing countries. Poult. Dev. Rev. 2013, 2, 60–63.
32. Ravindran, V.; Hew, L.I.; Ravindran, G.; Bryden, W.L. Apparent ileal digestibility of amino acids in dietary ingredients for broiler chickens. Anim. Sci. 2005, 81, 85–97. [CrossRef]
33. Kluth, H.; Rodehutscord, M. Comparison of amino acid digestibility in broiler chickens, turkeys, and Pekin ducks. Poult. Sci.
2006, 85, 1953–1960. [CrossRef]
34. Adedokun, S.A.; Utterback, P.; Parsons, C.M.; Adeola, O.; Lilburn, M.S.; Applegate, T.A. Comparison of amino acid digestibility of feed ingredients in broilers, laying hens, and roosters. Br. Poult. Sci. 2009, 50, 350–358. [CrossRef]
35. Bryden, W.L.; Li, X.; Ravindran, G.; Hew, L.I.; Ravindran, V. Ileal Digestible Amino Acid Values in Feedstuffs for Poultry; Publication
Number 09/071; Rural Industries Research and Development Corporation: Barton, ACT, Australia, 2009.
36. Kim, E.J.; Utterback, P.L.; Parsons, C.M. Comparison of amino acid digestibility coefficients or soybean meal, canola meal, fish meal, and meat and bone meal among 3 different bioassays. Poult. Sci. 2012, 91, 1350–1355. [CrossRef] [PubMed]
37. Ravindran, V.; Adeola, O.; Rodehutscord, M.; Kluth, H.; Van der Klis, J.D.; Van Eerden, E.; Helmbrecht, A. Determination of ileal digestibility of amino acids in raw materials for broiler chickens—Results of collaborative studies and assay recommendations.
Anim. Feed Sci. Technol. 2017, 225, 62–72. [CrossRef]
38. Chrystal, P.V.; Greenhalgh, S.; McInerney, B.V.; McQuade, L.R.; Akter, Y.; de Paula Dorigam, J.C.; Selle, P.H.; Liu, S.Y. Maize-based diets are more conducive to crude protein reductions than wheat-based diets for broiler chickens. Anim. Feed Sci. Technol. 2021,
275, 114867. [CrossRef]
39. Lemme, A.; Rostagno, H.S.; Petri, A.; Albino, L.F. Standardised ileal digestibility of crystalline amino acids. In Proceedings of the 15th European Symposium on Poultry Nutrition, Balatonfüred, Hungary, 25–29 September 2005; WPSA: Beekbergen,
The Netherlands, 2005; pp. 462–464.
40. Alvarado, F.; Robinson, J.W.L. A kinetic study of the interaction between amino acids and monosaccharides at the intestinal brush-border membrane. J. Physiol. 1975, 295, 457–475. [CrossRef] [PubMed]
41. Murer, H.; Sigrist-Nelson, K.; Hopfer, U. On the mechanism of sugar and amino acid interaction in intestinal transport. J. Biol.
Chem. 1975, 250, 7392–7396. [CrossRef]
42. Vinardell, M.P. Mutual inhibition of sugars and amino acid intestinal absorption. Comp. Biochem. Physiol. 1990, 95, 17–21.
[CrossRef]
43. Moran, E.T. Gastric digestion of protein through pancreozyme action optimizes intestinal forms for absorption, mucin formation and villus integrity. Anim. Feed Sci. Technol. 2016, 221, 284–303. [CrossRef]
44. Krehbiel, C.R.; Matthews, J.C. Absorption of amino acids and peptides. In Amino Acids in Animal Nutrition, 2nd ed.; D’Mello,
J.P.F., Ed.; CABI Publishing: Wallingford, UK, 2003; pp. 41–70.
45. MacDonald, A.; Singh, R.H.; Rocha, J.C.; van Spronsen, F.J. Optimising amino acid absorption: Essential to improve nitrogen balance and metabolic control in phenylketonuria. Nutr. Res. Rev. 2019, 32, 70–78. [CrossRef]
46. Cant, J.P.; McBride, B.W.; Croom, W.J. The regulation of intestinal metabolism and its impact on whole animal energetics. J. Anim.
Sci. 1996, 74, 2541–2553. [CrossRef]
47. Chen, H.; Pan, Y.X.; Wong, E.A.; Webb, K.E. Dietary protein level and stage of development affect expression of an intestinal peptide transporter (cPepT1) in chicken. J. Nutr. 2005, 135, 193–198. [CrossRef] [PubMed]
48. Gilbert, E.R.; Li, H.; Emmerson, D.A.; Webb, K.E.; Wong, E.A. Dietary protein composition influences abundance of peptide and amino acid transporter messenger ribonucleic acid in the small intestine of 2 lines of broiler chicks. Poult. Sci. 2010, 89, 1663–1676.
[CrossRef] [PubMed]
49. Zwarycz, B.; Wong, E.A. Expression of the peptide transporters PepT1, PepT2, and PHT1 in the embryonic and posthatch chick.
Poult. Sci. 2013, 92, 1314–1321. [CrossRef] [PubMed]
50. Hyde, R.; Taylor, P.M.; Hundal, H.S. Amino acid transporters: Roles in amino acid sensing and signaling in animal cells. Biochem.
J. 2003, 373, 1–18. [CrossRef] [PubMed]
51. Miska, K.B.; Fetterer, R.H. Expression of amino acid and sugar transporters, aminopeptidase, and the di- and tri-peptide transporter PepT1; differences between modern fast growing broilers and broilers not selected for rapid growth. Poult. Sci. 2019,
98, 2272–2280. [CrossRef]
52. Matthews, D.M. Intestinal absorption of peptides. Biochem. Soc. Trans. 1983, 11, 808–810. [CrossRef]
53. Matthews, D.M. Absorption of peptides, amino acids, and their methylated derivatives. In Aspartame Physiology and Biochemistry,
1st ed.; Stegink, L.D., Filer, L.J., Eds.; CRC Press: Boca Raton, FL, USA, 1984; pp. 29–46.
54. Silk, D.B.A.; Fairclough, P.D.; Clark, M.L.; Hegarty, J.E.; Addison, J.M.; Burston, D.; Clegg, K.M.; Matthews, D.M. Use of a peptide rather than free amino acid nitrogen source in chemically defined “elemental” diets. J. Parenter. Enter. Nutr. 1980, 4, 548–553.
[CrossRef]
55. Daniel, H. Molecular and integrative physiology of intestinal peptide transport. Annu. Rev. Physiol. 2004, 66, 361–384. [CrossRef]
56. Gilbert, E.R.; Wong, E.A.; Webb, K.E. Peptide absorption and utilization: Implications for animal nutrition and health. J. Anim.
Sci. 2008, 86, 2135–2155. [CrossRef]
57. Croom, W.J.; Brake, J.; Coles, B.A.; Havenstein, G.B.; Christensen, V.L.; McBride, B.W.; Peebles, E.D.; Taylor, I.L. Is intestinal absorption capacity rate-limiting for performance in poultry? J. Appl. Poult. Res. 1999, 8, 242–252. [CrossRef]
58. Shafey, T.M.; McDonald, M.W.; Dingle, J.G. Effects of dietary calcium and available phosphorus concentration on digesta pH and on the availability of calcium, iron, manganese and zinc from the intestinal contents of meat chickens. Br. Poult. Sci. 1991, 32,
185–194. [CrossRef]
59. Shires, A.; Thompson, J.R.; Turner, B.V.; Kennedy, P.M.; Goh, Y.K. Rate of passage of corn-canola meal and corn-soybean meal diets through the gastrointestinal tract of broiler and white leghorn chickens. Poult. Sci. 1978, 66, 1289–1298. [CrossRef] [PubMed]
60. Ren, L.Q.; Zhao, F.; Tan, H.Z.; Zhang, J.Z.; Zhang, H.F. Effects of dietary protein source on the digestive enzyme activities and electrolyte composition in the small intestinal fluid of chickens. Poult. Sci. 2012, 91, 1641–1646. [CrossRef]
61. Duke, G.E. Gastrointestinal motility and its regulation. Poult. Sci. 1982, 61, 1245–1256. [CrossRef]
62. Boa-Amponsem, K.; Dunnington, E.A.; Siegel, P.B. Genotype, feeding regimen, and diet interactions in meat chickens. 2. Feeding behavior. Poult. Sci. 1991, 70, 689–696. [CrossRef] [PubMed]
63. Classen, H.L.; Apajalahti, J.; Svihus, B.; Choct, M. The role of the crop in poultry production. Worlds Poult. Sci. J. 2016, 72, 1–14.
[CrossRef]
64. Yin, D.; Chrystal, P.V.; Moss, A.F.; Choy, K.Y.E.; Liu, S.Y.; Selle, P.H. Extending daily feed access intervals does not influence lysine
HCl utilisation but enhances amino acid digestibilities in boiler chickens. Poult. Sci. 2019, 98, 4801–4814. [CrossRef] [PubMed]
65. Klasing, K.C. Avian gastrointestinal anatomy and physiology. Semin. Avian Exot. Pet Med. 1999, 8, 42–50. [CrossRef]
66. Ferket, P.R. Feeding whole grains to poultry improves gut health. Feedstuffs 2000, 72, 12–13, 16.
67. Sklan, D.; Shachaf, B.; Baron, J.; Hurwitz, S. Retrograde movement of digesta in the duodenum of the chick: Extent, frequency, and nutritional implications. J. Nutr. 1978, 108, 1485–1490. [CrossRef]
68. Gloaguen, M.; Le Floc’h, N.; Corrent, E.; Primot, Y.; van Milgen, J. The use of free amino acids allows formulating very low crude protein diets for piglets. J. Anim. Sci. 2014, 92, 637–644. [CrossRef]
69. Belloir, P.; Méda, B.; Lambert, W.; Corrent, E.; Juin, H.; Lessire, M.; Tesseraud, S. Reducing the CP content in broiler feeds: Impact on animal performance, meat quality and nitrogen utilization. Animal 2017, 11, 1881–1889. [CrossRef] [PubMed]
70. Lemme, A.; Ravindran, V.; Bryden, W.L. Ileal digestibility of amino acids in feed ingredients for broilers. Worlds Poult. Sci. J. 2004,
60, 423–438. [CrossRef]
71. Kong, C.; Adeloa, O. Evaluation of amino acid and energy utilization in feedstuff for swine and poultry diets. Asian Aust. J. Anim.
Sci. 2014, 27, 917–925. [CrossRef] [PubMed]
72. Ravindran, V. Progress in ileal endogenous amino acid flow research in poultry. J. Anim. Sci. Biotechnol. 2021, 12, 5. [CrossRef]
73. Lien, K.A.; Sauer, W.C.; Fenton, M. Mucin output in ileal digesta of pigs fed a protein-free diet. Z. Ernährungswiss. 1997, 36,
182–190. [CrossRef]
74. Lien, K.A.; Sauer, W.C.; He, J.M. Dietary influences on the secretion into and degradation of mucin in the digestive tract of monogastric animals and humans. J. Anim. Feed Sci. 2001, 10, 223–245. [CrossRef]
75. Fang, R.I.; Mantle, M.; Ceri, H. Characterization of quail intestinal mucin as a ligand for endogenous quail lectin. Biochem. J. 1993,
293, 867–872. [CrossRef]
76. Bohak, Z. Purification and characterization of chicken pepsinogen and chicken pepsin. J. Biol. Chem. 1969, 244, 4638–4648.
[CrossRef]
77. Hermondson, M.A.; Ericsson, L.H.; Neurath, H.; Walsh, K.A. Determination of amino acid sequence of porcine trypsin by sequenator analysis. Biochemistry 1973, 12, 3146–3153. [CrossRef]
78. Buonocore, V.; Deponte, R.; Gramenzi, F.; Petrucci, T.; Poerio, E.; Silano, V. Purification and properties of α-amylase from chicken (Gallus gallus l.) pancreas. Mol. Cell. Biochem. 1977, 17, 11–16. [CrossRef]
79. Parsons, C.M.; Potter, L.M.; Brown, R.D. True metabolizable energy and amino acid digestibility of dehulled soybean meal. Poult.
Sci. 1981, 60, 2687–2696. [CrossRef]
80. Miner-Williams, W.; Moughan, P.J.; Fuller, M.F. Endogenous components of digesta protein from the terminal ileum of pigs fed a casein diet. J. Agric. Food Chem. 2009, 57, 2072–2078. [CrossRef]
81. Duvaux, C.; Guilloteau, P.; Toullec, R.; Sissons, J.W. A new method of estimating the proportions of different proteins in a mixture using amino acid profiles: Application to undigested proteins in the preruminant calf. Ann. Zootech. 1990, 39, 1–18. [CrossRef]
82. Le Guen, M.P.; Huisman, J.; Verstegen, M.W.A. Partition of the amino acids in ileal digesta from piglets fed pea proteins diets.
Livest. Prod. Sci. 1995, 44, 169–178. [CrossRef]
83. Moss, A.F.; Sydenham, C.J.; Moss, A.F.; Khoddami, A.; Naranjo, V.D.; Liu, S.Y.; Selle, P.H. Dietary starch influences growth performance, nutrient utilisation and digestive dynamics of protein and amino acids in broiler chickens offered low-protein diets.
Anim. Feed Sci. Technol. 2018, 237, 55–67. [CrossRef]
84. Greenhalgh, S.; McInerney, B.V.; McQuade, L.R.; Chrystal, P.V.; Khoddami, A.; Zhuang, M.A.; Liu, S.Y.; Selle, P.H. Capping dietary starch: Protein ratios in moderately reduced crude rotein, wheat-based diets showed promise but further reductions generated inferior growth performance in broiler chickens. Anim. Nutr. 2020, 6, 168–178. [CrossRef]
85. Ravindran, V.; Hendriks, W.H. Endogenous amino acid flows at the terminal ileum of boilers, layers and adult roosters. Anim. Sci.
2004, 79, 265–271. [CrossRef]
86. Macelline, S.P.; Chrystal, P.V.; McQuade, L.R.; Mclnerney, B.V.; Kim, Y.; Bao, Y.; Selle, P.H.; Liu, S.Y. Graded inclusions of l-methionine in diets for broiler chickens enhance growth performance to 21 days post-hatch and influence apparent ileal amino acid digestibility coefficients and disappearance rates. Anim. Nutr. 2021. submitted for publication.
87. Chrystal, P.V.; Moss, A.F.; Khoddami, A.; Naranjo, V.D.; Selle, P.H.; Liu, S.Y. Impacts of reduced-crude protein diets on key parameters in male broiler chickens offered maize-based diets. Poult. Sci. 2020, 99, 505–516. [CrossRef] [PubMed]
88. He, L.; Wu, L.; Xu, Z.; Li, T.; Yao, K.; Cui, Z.; Yin, Y.; Wu, G. Low-protein diets affect ileal amino acid digestibility and gene expression of digestive enzymes in growing and finishing pigs. Amino Acids 2016, 48, 21–30. [CrossRef]
89. Amerah, A.M.; Plumstead, P.W.; Barnard, L.P.; Kumar, A. Effect of calcium level and phytase addition on ileal phytate degradation and amino acid digestibility of broilers fed corn-based diets. Poult. Sci. 2014, 93, 906–915. [CrossRef] [PubMed]
90. Truong, H.H.; Bold, R.M.; Liu, S.Y.; Selle, P.H. Standard phytase inclusion in maize-based broiler diets enhances digestibility coefficients of starch, amino acids and sodium in four small intestinal segments and digestive dynamics of starch and protein.
Anim. Feed Sci. Technol. 2015, 209, 240–248. [CrossRef]
91. Selle, P.H.; Cowieson, A.J.; Cowieson, N.P.; Ravindran, V. Protein-phytate interactions in pig and poultry nutrition; a reappraisal.
Nutr. Res. Rev. 2012, 25, 1–17. [CrossRef]
92. Csonka, F.A.; Murphy, J.C.; Jones, D.B. The iso-electric points of various proteins. J. Am. Chem. Soc. 1926, 48, 763–768. [CrossRef]
93. Lawlor, P.G.; Lynch, P.B.; Caffrey, P.J.; O’Reilly, J.J.; O’Connell, M.K. Measurements of the acid-binding capacity of ingredients used in pig diets. Ir. Vet. J. 2005, 58, 447–452. [CrossRef]
94. Selle, P.H.; Partridge, G.G.; Ravindran, V. Beneficial effects of xylanase and/or phytase inclusions on ileal amino acid digestibility energy utilisation mineral retention and growth performance in wheat-based broiler diets. Anim. Feed Sci. Technol. 2009, 153,
303–313. [CrossRef]
95. Truong, H.H.; Yu, S.; Peron, A.; Cadogan, D.J.; Khoddami, A.; Roberts, T.H.; Liu, S.Y.; Selle, P.H. Phytase supplementation of maize-
, sorghum- and wheat-based broiler diets, with identified starch pasting properties, influences jejunal and ileal digestibilities of phytate (IP6
) and sodium. Anim. Feed Sci. Technol. 2014, 198, 248–256. [CrossRef]
96. Therein, A.G.; Blostein, R. Mechanisms of sodium pump regulation. Am. J. Physiol. Cell Physiol. 2000, 279, C541–C566. [CrossRef]
97. Liu, N.; Ru, Y.J.; Li, F.D.; Cowieson, A.J. Effect of diet containing phytate and phytase on the activity and messenger ribonucleic acid expression of carbohydrase and transporter in chickens. J. Anim. Sci. 2008, 86, 3432–3439. [CrossRef] [PubMed]
98. Liu, S.Y.; Selle, P.H.; Court, S.G.; Cowieson, A.J. Protease supplementation of sorghum-based broiler diets enhances amino acid digestibility coefficients in four small intestinal sites and accelerates their rates of digestion. Anim. Feed Sci. Technol. 2013, 183,
175–183. [CrossRef]
99. Ravindran, V.; Selle, P.H.; Bryden, W.L. Effects of phytase supplementation, individually and in combination, with glycanase on the nutritive value of wheat and barley. Poult. Sci. 1999, 78, 1588–1595. [CrossRef]
100. Reeds, P.J.; Burrin, D.G.; Stoll, B.; van Goudoever, J.B. Role of the gut in the amino acid economy of the host. In Proteins, Peptides and Amino Acids in Enteral Nutrition; Vevey/Karger AG: Basel, Switzerland, 2000; Volume 3, pp. 25–46.
101. Reeds, P.J.; Burrin, D.G.; Stoll, B.; van Goudoever, J.B. Consequences and regulation of gut metabolism. In Proceedings of the
VIIIth International Symposium on Protein Metabolism and Nutrition, Aberdeen, UK, 1–4 September 1999; EAAP Publication 96.
Wageningen Press: Wageningen, The Netherlands, 1999; pp. 127–153.
102. Wu, G. Intestinal mucosal amino acid catabolism. J. Nutr. 1998, 128, 1249–1252. [CrossRef] [PubMed]
103. Stoll, B.; Henry, J.; Reeds, P.J.; Yu, H.; Jahoor, F.; Burrin, D.G. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J. Nutr. 1998, 128, 606–614. [CrossRef]
104. Windmueller, H.G.; Spaeth, A.E. Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. J. Biol. Chem. 1978, 253, 69–76. [CrossRef]
105. Ashy, A.; Ardawi, M.S.M. Glucose, glutamine and ketone-body metabolism in human enterocytes. Metabolism 1988, 37, 602–609.
[CrossRef]
106. Fleming, S.E.; Zambell, K.L.; Fitch, M.D. Glucose and glutamine provide similar proportions of energy to mucosal cells of rat small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 1997, 273, G968–G978. [CrossRef] [PubMed]
107. Watford, M.; Lund, P.; Krebs, K.A. Isolation and metabolic characteristics of rat and chicken enterocytes. Biochem. J. 1979, 178,
589–596. [CrossRef]
108. Porteous, J.W. Glutamate, glutamine, aspartate, asparagine, glucose and ketone-body metabolism in chick intestinal brush-border cells. Biochem. J. 1980, 188, 619–632. [CrossRef] [PubMed]
109. Enting, H.; Pos, J.; Weurding, R.E.; Veldman, A. Starch digestion rates affect broiler performance. Proc. Aust. Poult. Sci. Symp.
2005, 17, 17–20.
110. Van der Meulen, J.; Bakker, J.G.M.; Smits, B.; DeVisser, H. Effect of source of starch on net portal flux of glucose, lactate, volatile fatty acids and amino acids in the pig. Br. J. Nutr. 1997, 78, 533–544. [CrossRef] [PubMed]
111. Yin, F.; Zhang, Z.; Huang, J.; Yin, Y. Digestion rate of dietary starch affects systemic circulation of amino acids in weaned pigs. Br.
J. Nutr. 2010, 103, 1404–1412. [CrossRef]
112. Batterham, E.S. The effect of frequency of feeding on the utilization of free lysine by growing pigs. Br. J. Nutr. 1974, 31, 237–242.
[CrossRef]
113. Batterham, E.S.; O’Neill, G.H. The effect of frequency of feeding on the response by growing pigs to supplements of free lysine.
Br. J. Nutr. 1978, 39, 265–270. [CrossRef] [PubMed]
114. Batterham, E.S.; Murison, R.D. Utilization of free lysine by growing pigs. Br. J. Nutr. 1981, 46, 87–92. [CrossRef] [PubMed]
115. Batterham, E.S.; Bayley, H.S. Effect of frequency of feeding of diets containing free or protein-bound lysine on the oxidation of
[C]lysine or [C]phenylalanine by growing pigs. Br. J. Nutr. 1989, 62, 647–655. [CrossRef] [PubMed]
116. Yen, J.T.; Kerr, B.J.; Easter., R.A.; Parkhurst, A.M. Difference in rates of net portal absorption between crystalline and protein-bound lysine and threonine in growing pigs fed once daily. J. Anim. Sci. 2004, 82, 1079–1090. [CrossRef] [PubMed]
117. Truong, H.H.; Chrystal, P.V.; Moss, A.F.; Selle, P.H.; Liu, S.Y. Rapid protein disappearance rates along the small intestine advantage poultry performance and influence the post-enteral availability of amino acids. Br. J. Nutr. 2017, 118, 1031–1042. [CrossRef]
118. Newsholme, E.A.; Carrié, A.-L. Quantitative aspects of glucose and glutamine metabolism by intestinal cells. Gut 1994, 35,
S13–S17. [CrossRef]
119. Chrystal, P.V.; Moss, A.F.; Yin, D.; Khoddami, A.; Naranjo, V.D.; Selle, P.H.; Liu, S.Y. Glycine equivalent and threonine inclusions in reduced-crude protein, maize-based diets impact on growth performance, fat deposition starch-protein digestive dynamics and amino acid metabolism in broiler chickens. Anim. Feed Sci. Technol. 2020, 261, 114387. [CrossRef]
120. Nolles, J.A.; Verreijen, A.M.; Koopmanschap, R.E.; Verstegen, M.W.A.; Schreurs, V.V.A.M. Postprandial oxidative losses of free and protein-bound amino acids in the diet: Interactions and adaptation. J. Anim. Physiol. Anim. Nutr. 2009, 93, 431–438. [CrossRef]
121. Wu, G. Functional amino acids in nutrition and health. Amino Acids 2013, 45, 407–411. [CrossRef]
122. Davis, A.T.; Austic, R.E. Threonine-degrading enzymes in the chicken. Poult. Sci. 1982, 61, 2107–2111. [CrossRef]
123. Akagi, S.; Sato, K.; Ohmori, S. Threonine metabolism in Japanese quail liver. Amino Acids 2004, 26, 235–242. [CrossRef]
124. D’Mello, J.P.F. Aspects of threonine and glycine metabolism in the chick (Gallus domesticus). Nutr. Metab. 1973, 15, 357–367.
[CrossRef]
125. Macelline, S.P.; Chrystal, P.V.; Liu, S.Y.; Selle, P.H. Implications of elevated threonine plasma concentrations in the development of reduced-crude protein diets for broiler chickens. Anim. Prod. Sci. 2021. [CrossRef]
126. Franco, S.M.; Tavernari, F.D.; Maia, R.C.; Barros, V.R.; Albino, L.F.; Rostagno, H.S.; Lelis, G.R.; Calderano, A.A.; Dilger, R.N.
Estimation of optimal ratios of digestible phenylalanine+ tyrosine, histidine, and leucine to digestible lysine for performance and breast yield in broilers. Poult. Sci. 2017, 96, 829–837. [CrossRef] [PubMed]
127. Sasse, C.E.; Baker, D.H. The phenylalanine and tyrosine requirements and their interrelationship for the young chick. Poult. Sci.
1972, 51, 1531–1536. [CrossRef] [PubMed]
128. Elkin, R.G.; Featherston, W.R.; Rogler, J.C. Effects of dietary phenylalanine and tyrosine on circulating thyroid hormone levels and growth in the chick. J. Nutr. 1980, 110, 130–138. [CrossRef]
129. Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J. Nutr. 2007,
137, 1539S–1547S. [CrossRef]
130. Birkl, P.; Franke, L.; Rodenburg, T.B.; Ellen, E.; Harlander-Matauschek, A. A role for plasma aromatic amino acids in injurious pecking behavior in laying hens. Physiol. Behav. 2017, 175, 88–96. [CrossRef]
131. De Haas, E.N.; Van der Eijk, J.A. Where in the serotonergic system does it go wrong? Unravelling the route by which the serotonergic system affects feather pecking in chickens. Neurosci. Biobehav. Rev. 2018, 95, 170–188. [CrossRef]
132. Swick, R.W. Growth and protein turnover in animals. CRC Crit. Rev. Food Sci. Nutr. 1982, 16, 117–126. [CrossRef] [PubMed]
133. Muramatsu, T. Nutrition and whole-body protein turnover in the chicken in relation to mammalian species. Nutr. Res. Rev. 1990,
3, 211–228. [CrossRef] [PubMed]
134. Rathmacher, J.A. Measurement and significance of protein turnover. In Farm Animal Metabolism and Nutrition; D’Mello, J.P.F., Ed.;
CABI Publishing: Wallingford, UK, 2000; pp. 25–47.
135. Maruyama, K.; Sunde, M.L.; Swick, R.W. Growth and muscle protein turnover in the chick. Biochem. J. 1978, 176, 573–582.
[CrossRef] [PubMed]
136. Tesseraud, S.; Chagneau, A.M.; Grizard, J. Muscle protein turnover during early development in chickens divergently selected for growth rate. Poult. Sci. 2000, 79, 1465–1471. [CrossRef]
137. Goldberg, A.L. Protein degradation and protection against misfolded or damaged proteins. Nature 2003, 426, 895–899. [CrossRef]
[PubMed]
138. Aoyagi, Y.; Tasaki, I.; Okumura, J.; Muramatsu, T. Energy cost of whole-body protein synthesis measured in vivo in chicks. Comp.
Biochem. Physiol. 1988, 91A, 165–168. [CrossRef]
139. Klasing, K.C.; Calvert, C.C.; Jarrell, V.L. Growth characteristics, protein synthesis, and protein degradation in muscles from fast and slow-growing chickens. Poult. Sci. 1987, 66, 1189–1196. [CrossRef]
140. Bender, D.A. The metabolism of “surplus” amino acids. Br. J. Nutr. 2012, 108, S113–S121. [CrossRef]
141. Sklan, D.; Noy, Y. Catabolism and deposition of amino acids in growing chicks: Effect of dietary supply. Poult. Sci. 2004, 83,
952–961. [CrossRef] [PubMed]
142. Selle, P.H.; Chrystal, P.V.; Liu, S.Y. The cost of deamination in reduced-crude protein broiler diets. Proc. Aust. Poult. Sci. Symp.
2020, 31, 63–66.
143. Stern, R.A.; Mozdziak, P.E. Differential ammonia metabolism and toxicity between avian and mammalian species, and effect of ammonia on skeletal muscle: A comparative review. J. Anim. Physiol. Anim. Nutr. 2019, 103, 774–785. [CrossRef] [PubMed]
144. Salway, J.G. The Krebs uric acid cycle: A forgotten Krebs cycle. Trends Biochem. Sci. 2018, 43, 847–849. [CrossRef] [PubMed]
145. Selle, P.H.; Cantor, D.I.; McQuade, L.R.; McInerney, B.V.; Dorigam, J.C.d.P.; Macelline, S.P.; Chrystal, P.V.; Liu, S.Y. Implications of excreta uric acid concentrations in broiler chickens offered reduced-crude protein, maize- and wheat-based diets and dietary glycine requirements for uric acid synthesis. Anim. Nutr. 2021. accepted for publication.
146. Tomas, F.M.; Pym, R.A.; Johnson, R.J. Muscle protein turnover in chickens selected for increased growth rate, food consumption or efficiency of food utilisation: Effects of genotype and relationship to plasma IGF-I and growth hormone. Br. Poult. Sci. 1991, 32,
363–376. [CrossRef] [PubMed]
147. Urdaneta-Rincon, M.; Leeson, S. Muscle (Pectoralis Major) protein turnover in young broiler chickens fed graded levels of lysine and crude protein. Poult. Sci. 2004, 83, 1897–1903. [CrossRef]
148. Petracci, M.; Soglia, F.; Madruga, M.; Carvalho, L.; Ida, E.; Estevez, M. Wooden-breast, white striping, and spaghetti meat: Causes, consequences and consumer perception of emerging broiler meat abnormalities. Comp. Rev. Food Sci. Food Saf. 2019, 18, 565–583.
[CrossRef]
149. Vignale, K.; Caldas, J.V.; England, J.A.; Boonsinchai, N.; Magnuson, A.; Pollock, E.D.; Dridi, S.; Owens, C.M.; Coon, C.N. Effect of white striping myopathy on breast muscle (Pectoralis major) protein turnover and gene expression in broilers. Poult. Sci. 2017, 96,
886–893. [CrossRef]
150. Eits, R.M.; Kwakkel, R.P.; Verstegen, M.W.A.; Den Hartog, L.A. Dietary balanced protein in broiler chickens. 1. A flexible and practical tool to predict dose—Response curves. Br. Poult. Sci. 2005, 46, 300–309. [CrossRef]
151. Eits, R.M.; Giesen, G.W.J.; Kwakkel, R.P.; Verstegen, M.W.A.; Den Hartog, L.A. Dietary balanced protein in broiler chickens. 2. An economic analysis. Br. Poult. Sci. 2005, 46, 310–317. [CrossRef] [PubMed]
152. Moughan, P.J. Simulating the partitioning of dietary amino acids: New directions. J. Anim. Sci. 2003, 81, E60–E67.
153. Liu, S.Y.; Selle, P.H. A consideration of starch and protein digestive dynamics in chicken-meat production. Worlds Poult. Sci. J.
2015, 71, 297–310. [CrossRef]
154. Selle, P.H.; Liu, S.Y. The relevance of starch and protein digestive dynamics in poultry. J. Appl. Poult. Res. 2019, 28, 531–545.
[CrossRef]
155. Liu, S.Y.; Selle, P.H. Starch and protein digestive dynamics in low-protein diets supplemented with crystalline amino acids. Anim.
Prod. Sci. 2017, 57, 2250–2256. [CrossRef]
156. Geiger, E. The role of time factor in protein synthesis. Science 1950, 111, 594–599. [CrossRef]
157. Qiu, K.; Qin, C.F.; Luo, M.; Zhang, X.; Sun, W.J.; Jiao, N.; Le, D.F.; Yin, J.D. Protein restriction with amino acid-balanced diets shrinks circulating pool size of amino acid by decreasing expression of specific transporters in the small intestine. PLoS ONE
2016, 11, e0162475. [CrossRef]
158. Rérat, A.A. Nutritional supply of proteins and absorption of their hydrolysis products: Consequences on metabolism. Proc. Nutr.
Soc. 1993, 52, 335–344. [CrossRef]
159. Selle, P.H.; Liu, S.Y.; Cai, J.; Cowieson, A.J. Steam-pelleting temperatures, grain variety, feed form and protease supplementation of mediumly-ground, sorghum-based broiler diets: Influences on growth performance, relative gizzard weights, nutrient utilisation, starch and nitrogen digestibility. Anim. Prod. Sci. 2013, 53, 378–387. [CrossRef]
160. Sydenham, C.J.; Truong, H.H.; Moss, A.F.; Selle, P.H.; Liu, S.Y. The differing impacts of fishmeal and corn starch inclusions in sorghum-soybean meal diets on growth performance, nutrient utilisation, starch and protein digestive dynamics of broiler chickens. Anim. Feed Sci. Technol. 2017, 227, 32–41. [CrossRef]
161. Karasov, W.H.; Diamond, J.M. Adaptive regulation of sugar and amino acid transport by vertebrate intestine. Am. J. Physiol.
Gastrointest. Liver Physiol. 1983, 245, G443–G462. [CrossRef] [PubMed]
162. Roder, P.V.; Geillinger, K.E.; Zietek, T.S.; Thorens, B.; Koepsells, H.; Daniel, H. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS ONE 2014, 9, e89977. [CrossRef] [PubMed]
163. Glynn, I.M. All hands to the sodium pump. J. Physiol. 1993, 462, 1–30. [CrossRef]
164. Herwig, E.; Abbott, D.; Schwean-Lardner, K.V.; Classen, H.L. Effect of rate and extent of starch digestion on broiler chicken performance. Poult. Sci. 2019, 98, 3676–3684. [CrossRef]
165. Pedersen, N.B.; Hanigan, M.; Zaefarian, F.; Cowieson, A.J.; Nielsen, M.O.; Storm, A.C. The influence of feed ingredients on CP and starch disappearance rate in complex diets for broiler chickens. Poult. Sci. 2021, 100, 101068. [CrossRef] [PubMed]
166. Liu, S.Y.; Chrystal, P.V.; Selle, P.H. Pre-determined starch and protein digestion rates attain optimal feed conversion ratios in broiler chickens. Proc. Aust. Poult. Sci. Symp. 2020, 31, 90–93.