One of the challenges facing the global poultry industry is the reduction or complete ban of antibiotic growth promotors (AGPs) and other pharmaceuticals in feed. This situation contributes to increased incidents in enteric diseases, mainly coccidiosis and necrotic enteritis, resulting in detrimental effects to bird’s health and growth performance. Coccidiosis is a disease caused by a protozoan parasite of the genus Eimeria. Eimeria species are transmitted via the fecal-oral route and enter the intestinal tract, replicate and cause damage to the epithelial layers. Coccidiosis increases the susceptibility of birds to other diseases, mainly affecting the intestinal epithelial barrier, and is mostly associated with necrotic enteritis. This syndrome involves toxicosis caused by Clostridium perfringens toxins. Necrotic enteritis is estimated to cause $6 billion per year in losses mostly due to its subclinical form. Enteric diseases generally cause inflammation (clinical or sub-clinical), reduced appetite, decrease nutrient absorption due to “leaky gut” and dysbiosis in the gut microbiota. Feed additives have been employed as AGP alternatives that decrease the host susceptibility to diseases by modulating the innate immunity via exploiting natural mechanisms in the host. Birds rely heavily on their innate immunity, the first line of non-specific and rapid defense against pathogens. Recent studies show that feed additives influence the microbiome composition and modulate gut health. This review will discuss the use of feed additives, such as yeast-based prebiotics, probiotics, phytogenic compounds, organic acids and enzymes, for alleviating coccidiosis and necrotic enteritis.
Key words: Coccidiosis, necrotic enteritis, feed additives, immunity, microbiome.
Annett, C. B., Viste, J. R., Chirino-Trejo, M., Classen, H. L., Middleton, D. M., & Simko, E. (2002). Necrotic enteritis: effect of barley, wheat and corn diets on proliferation of Clostridium perfringens type A. Avian Pathology, 31(6), 598-601.
Antonissen G, Van Immerseel F, Pasmans F, Ducatelle R, Haesebrouck F, et al. (2014) The Mycotoxin Deoxynivalenol Predisposes for the Development of Clostridium perfringens-Induced Necrotic Enteritis in Broiler Chickens. PLOS ONE 9(9).
Antonissen, G., Croubels, S., Pasmans, F., Ducatelle, R., Eeckhaut, V., Devreese, M., ... & Van Immerseel, F. (2015). Fumonisins affect the intestinal microbial homeostasis in broiler chickens, predisposing to necrotic enteritis. Veterinary Research, 46(1), 1-11.
Antonissen, G., Eeckhaut, V., Van Driessche, K., Onrust, L., Haesebrouck, F., Ducatelle, R., ... & Van Immerseel, F. (2016). Microbial shifts associated with necrotic enteritis. Avian Pathology, 45(3), 308-312.
Antonissen, G., Van Immerseel, F., Pasmans, F., Ducatelle, R., Haesebrouck, F., Timbermont, L., ... & Croubels, S. (2014). The mycotoxin deoxynivalenol predisposes for the development of Clostridium perfringens-induced necrotic enteritis in broiler chickens. PLoS One, 9(9), e108775.
Bedford, A., & Gong, J. (2018). Implications of butyrate and its derivatives for gut health and animal production. Animal Nutrition, 4(2), 151-159.
Bortoluzzi, C., Lumpkins, B., Mathis, G. F., França, M., King, W. D., Graugnard, D. E., ... & Applegate, T. J. (2019). Zinc source modulates intestinal inflammation and intestinal integrity of broiler chickens challenged with coccidia and Clostridium perfringens. Poultry science, 98(5), 2211-2219.
Branton, S. L., Reece, F. N., & Hagler Jr, W. M. (1987). Influence of a wheat diet on mortality of broiler chickens associated with necrotic enteritis. Poultry Science, 66(8), 1326-1330.
Broom, L. J. (2018). Gut barrier function: effects of (antibiotic) growth promoters on key barrier components and associations with growth performance. Poultry science, 97(5), 1572-1578.
Craig, A. D., Khattak, F., Hastie, P., Bedford, M. R., & Olukosi, O. A. (2020). The similarity of the effect of carbohydrase or prebiotic supplementation in broilers aged 21 days, fed mixed cereal diets and challenged with coccidiosis infection. Plos one, 15(2), e0229281.
Cuperus, T., Coorens, M., van Dijk, A., & Haagsman, H. P. (2013). Avian host defense peptides. Developmental & Comparative Immunology, 41(3), 352-369.
Drew, M. D., Syed, N. A., Goldade, B. G., Laarveld, B., & Van Kessel, A. G. (2004). Effects of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens. Poultry science, 83(3), 414-420.
Drew, M. D., Syed, N. A., Goldade, B. G., Laarveld, B., & Van Kessel, A. G. (2004). Effects of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens. Poultry science, 83(3), 414-420.
Giannenas, I., Papadopoulos, E., Tsalie, E., Triantafillou, E. L., Henikl, S., Teichmann, K., & Tontis, D. (2012). Assessment of dietary supplementation with probiotics on performance, intestinal morphology and microflora of chickens infected with Eimeria tenella. Veterinary parasitology, 188(1-2), 31-40.
Heier, B. T., Lovland, A., Soleim, K. B., Kaldhusal, M., & Jarp, J. (2001). A field study of naturally occurring specific antibodies against Clostridium perfringens alpha toxin in Norwegian broiler flocks. Avian Diseases, 724-732.
Immerseel, F. V., Buck, J. D., Pasmans, F., Huyghebaert, G., Haesebrouck, F., & Ducatelle, R. (2004). Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian pathology, 33(6), 537-549.
Jayaraman, S., Thangavel, G., Kurian, H., Mani, R., Mukkalil, R., & Chirakkal, H. (2013). Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poultry science, 92(2), 370-374.
Johnson, J., & Reid, W. M. (1970). Anticoccidial drugs: lesion scoring techniques in battery and floor-pen experiments with chickens. Experimental parasitology, 28(1), 30-36. Karahalil, B. (2016). Overview of systems biology and omics technologies. Current medicinal chemistry, 23(37), 4221-4230.
Keyburn, A. L., Sheedy, S. A., Ford, M. E., Williamson, M. M., Awad, M. M., Rood, J. I., & Moore, R. J. (2006). Alpha-toxin of Clostridium perfringens is not an essential virulence factor in necrotic enteritis in chickens. Infection and immunity, 74(11), 6496-6500.
Kim, E.J., Mussini, F., Gruber, J., Perry, M., & Remus, JC. (2021). Field evaluation of exogenous protease in commercial turkey diets. Poultry Science Association 2021 annual meeting.
Kogut, M. H. (2019). The effect of microbiome modulation on the intestinal health of poultry. Animal feed science and technology, 250, 32-40.
Kumar, A., Toghyani, M., Kheravii, S. K., Pineda, L., Han, Y., Swick, R. A., & Wu, S. B. (2022). Organic acid blends improve intestinal integrity, modulate short-chain fatty acids profiles and alter microbiota of broilers under necrotic enteritis challenge. Animal Nutrition, 8(1), 82-90.
LaVorgna, M., Schaeffer, J. L., Bade, D., Dickson, J., Cookson, K., & Davis, S. W. (2013). Performance of broilers fed a broader spectrum antibiotic (virginiamycin) or a narrower spectrum antibiotic (bacitracin methylene disalicylate) over 3 consecutive grow-out cycles. Journal of Applied Poultry Research, 22(3), 574-582.
Lee, S. H., Lillehoj, H. S., Jang, S. I., Lillehoj, E. P., Min, W., & Bravo, D. M. (2013). Dietary supplementation of young broiler chickens with Capsicum and turmeric oleoresins increases resistance to necrotic enteritis. British Journal of Nutrition, 110(5), 840-847.
Lillehoj, H. S., Kim, D. K., Bravo, D. M., & Lee, S. H. (2011, December). Effects of dietary plant-derived phytonutrients on the genome-wide profiles and coccidiosis resistance in the broiler chickens. In BMC proceedings (Vol. 5, No. 4, pp. 1-8). BioMed Central.
Lin, Y., & Olukosi, O. A. (2021). Exogenous Enzymes Influenced Eimeria-Induced Changes in Cecal Fermentation Profile and Gene Expression of Nutrient Transporters in Broiler Chickens. Animals, 11(9), 2698.
Long, P. (1985). The biology of Coccidia. In The biology of coccidia (pp. 502-502). McDougald LR, Fitz-Coy SH. Coccidiosis (Chapter 28-Protozoal Infections). Diseases of Poultry (12th Ed.). Saif YM et al.(ed.). Wiley-Blackwell Publishing, Ames, Iowa. 2008.
M'Sadeq, S. A., Wu, S. B., Choct, M., Forder, R., & Swick, R. A. (2015). Use of yeast cell wall extract as a tool to reduce the impact of necrotic enteritis in broilers. Poultry science, 94(5), 898- 905.
Nurmi, E., & Rantala, M. (1973). New aspects of Salmonella infection in broiler production. Nature, 241(5386), 210-211. Opengart, K., & Songer, J. G. (2008). Necrotic enteritis. Diseases of poultry, 1, 972-976.
Oviedo-Rondón, E. O. (2019). Holistic view of intestinal health in poultry. Animal Feed Science and Technology, 250, 1-8.
P. G. Hermans & K. L. Morgan (2007) Prevalence and associated risk factors of necrotic enteritis on broiler farms in the United Kingdom; a cross-sectional survey, Avian Pathology, 36:1, 43-51.
Paiva, D. M., Walk, C. L., & McElroy, A. P. (2013). Influence of dietary calcium level, calcium source, and phytase on bird performance and mineral digestibility during a natural necrotic enteritis episode. Poultry Science, 92(12), 3125-3133.
Patterson, J. A., & Burkholder, K. M. (2003). Application of prebiotics and probiotics in poultry production. Poultry science, 82(4), 627-631.
Pellerdy, L. (1974). Anseriformes. Coccidia and: coccidiosis, 158-170.
R. B. Williams (2002) Anticoccidial vaccines for broiler chickens: Pathways to success, Avian Pathology, 31:4, 317-353.
Rautenschlein, S. (2019). The Avian Immune System. Diseases of Poultry, 80.
Ricke, S. C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry science, 82(4), 632-639.
Rood, J. I., Keyburn, A. L., & Moore, R. J. (2016). NetB and necrotic enteritis: the hole movable story. Avian Pathology, 45(3), 295-301.
Rose, M. E., & Hesketh, P. A. T. R. I. C. I. A. (1979). Immunity to coccidiosis: T-lymphocyteor B-lymphocyte-deficient animals. Infection and immunity, 26(2), 630-637.
Rothwell, L., Young, J. R., Zoorob, R., Whittaker, C. A., Hesketh, P., Archer, A., ... & Kaiser, P. (2004). Cloning and characterization of chicken IL-10 and its role in the immune response to Eimeria maxima. The Journal of Immunology, 173(4), 2675-2682.
Shanmugasundaram, R., Sifri, M., & Selvaraj, R. K. (2013). Effect of yeast cell product (CitriStim) supplementation on broiler performance and intestinal immune cell parameters during an experimental coccidial infection. Poultry Science, 92(2), 358-363.
Shanmugasundaram, R., Sifri, M., & Selvaraj, R. K. (2013). Effect of yeast cell product supplementation on broiler cecal microflora species and immune responses during an experimental coccidial infection. Poultry science, 92(5), 1195-1201.
Shawkat A. M'Sadeq, Shubiao Wu, Robert A. Swick, Mingan Choct (2015). Towards the control of necrotic enteritis in broiler chickens with in-feed antibiotics phasing-out worldwide. Animal Nutrition, Volume 1, Issue 1, Pages 1-11, ISSN 2405-6545.
Shirley, M. W., Smith, A. L., & Tomley, F. M. (2005). The biology of avian Eimeria with an emphasis on their control by vaccination. Advances in parasitology, 60, 285-330.
Smith, A. L., Hesketh, P., Archer, A., & Shirley, M. W. (2002). Antigenic diversity in Eimeria maxima and the influence of host genetics and immunization schedule on cross-protective immunity. Infection and Immunity, 70(5), 2472-2479.
Smith, A. L., Powers, C., & Beal, R. (2022). The avian enteric immune system in health and disease. In Avian immunology (pp. 303-326). Academic Press.
Trout, J. M., & Lillehoj, H. S. (1996). T lymphocyte roles during Eimeria acervulina and Eimeria tenella infections. Veterinary Immunology and Immunopathology, 53(1-2), 163-172.
V. Tsiouris, I. Georgopoulou, C. Batzios, N. Pappaioannou, R. Ducatelle & P. Fortomaris (2015a) High stocking density as a predisposing factor for necrotic enteritis in broiler chicks, Avian Pathology, 44:2, 59-66.
V. Tsiouris, I. Georgopoulou, C. Batzios, N. Pappaioannou, R. Ducatelle & P. Fortomaris (2015b) The effect of cold stress on the pathogenesis of necrotic enteritis in broiler chicks, Avian Pathology, 44:6, 430-435.
Vieco-Saiz, N., Belguesmia, Y., Raspoet, R., Auclair, E., Gancel, F., Kempf, I., & Drider, D. (2019). Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Frontiers in microbiology, 10, 57.
Zanu, H. K., Kheravii, S. K., Bedford, M. R., & Swick, R. A. (2020). Dietary calcium and meat and bone meal as potential precursors for the onset of necrotic enteritis. World's Poultry Science Journal, 76(4), 743-756.
Zanu, H. K., Kheravii, S. K., Morgan, N. K., Bedford, M. R., & Swick, R. A. (2020). Overprocessed meat and bone meal and phytase effects on broilers challenged with subclinical necrotic enteritis: Part 1. Performance, intestinal lesions and pH, bacterial counts and apparent ileal digestibility. Animal Nutrition, 6(3), 313-324.