Poultry hatch with an under-developed acquired immune system, and rely heavily on innate immunity. However, inflammation can divert nutrients and energy away from growth and production. Strategies to reduce the intensity and duration of inflammation, and transition towards the maturing acquired immune system can allow for efficient production while maintaining bird health. Antibiotic growth promotors (AGP) directly or indirectly reduced systemic inflammation caused by microbes within the digestive tract, thus maintaining efficient production. As the poultry industry moves away from the use of AGP, successful alternative strategies will also manage systemic inflammation. Although individual products may show promise in laboratory or controlled production settings, translation to the field has been less successful. A potential reason is that AGP provided a broad protection against performance-reducing organisms. Although individual replacements may be effective against a particular group of problem organisms, or under specific conditions, no single product has yet been an effective one-for-one replacement of AGP. Therefore, a combination of different product types, with different mechanisms, may be required to match the broad-based effectiveness of AGP. Additionally, the optimum combination of alternatives may vary from company to company, location to location, and season to season over time. The transition away from AGP has been successful in many places, including Canada, but has generally involved a methodical evaluation of various combinations of alternative products. By understanding the mechanisms of each alternative approach, and the specific challenges faced on each farm, a strategic approach can be used to effectively transition from AGP use.
Adedokun, S. A., and O. C. Olojede. 2019. Optimizing gastrointestinal integrity in poultry: the role of nutrients and feed additives. Front. Vet. Sci. 5:11.
Ahsan, U., O. Cengiz, I. Raza, E. Kuter, M. F. A. Chacher, Z. Iqbal, S. Umar, and S. Cakir. 2016. Sodium butyrate in chicken nutrition: the dynamics of performance, gut microbiota, gut morphology, and immunity. World’s Poult. Sci. J. 72:265-275.
Alkie, T. N., A. Yitbarek, D. C. Hodgins, R. R. Kulkarni, K. Taha-Abdelaziz, and S. Sharif. 2019. Development of innate immunity in chicken embryos and newly hatched chicks: a disease control perspective. Avian Pathol. 48:288-310.
Araujo, L. F., M. Bonato, R. Barbalho, C. S. S. Araujo, P. S. Zorzetto, C. A. Granghelli, R. J. G. Pereira, and A. J. T. Kawaoku. 2018. Evaluating hydrolyzed yeast in the diet of broiler breeder hens. J. Appl. Poult. Res 27:65-70.
Arsenault, R. J., J. T. Lee, R. Latham, B. Carter, and M. H. Kogut. 2017. Changes in immune and metabolic gut response in broilers fed beta-mannanase in beta-mannan-containing diets. Poult. Sci. 96:4307-4316.
Attia, Y. A., H. S. Zeweil, A. A. Alsaffar, and A. S. El-Shafy. 2011. Effect of non-antibiotic feed additives as an alternative to flavomycin on productivity, meat quality and blood parameters in broilers. Archiv Geflugelk. 75:40-48.
Bar-Shira, E., and A. Friedman. 2005. Ontogeny of gut associated immune competence in the chick. Israel J. Vet. Med. 60:42-50.
Bar-Shira, E., and A. Friedman. 2006. Development and adaptations of innate immunity in the gastrointestinal tract of the newly hatched chick. Dev. and comparative immunology 30:930-941.
Bar-Shira, E., D. Sklan, and A. Friedman. 2003. Establishment of immune competence in the avian GALT during the immediate post-hatch period. Developmental Comp. Immunol. 27:147-157.
Batovska, D. I., T. Todorova, V. Tsvetkova, and H. M. Najdenski. 2009. Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: individual effects and synergistic relationships. Polish J. Microbiol. 58:43-47.
Baurhoo, B., P. Ferket, C. M. Ashwell, J. de Oliviera, and X. Zhao. 2012. Cell walls of Saccharomyces cerevisiae differentially modulated innate immunity and glucose metabolism during late systemic inflammation. PloS one 7.
Bedford, A., and J. Gong. 2018. Implications of butyrate and its derivatives for gut health and animal production. Anim. Nutr. 4:151-159.
Broom, L. J. 2017. Necrotic enteritis; current knowledge and diet-related mitigation. World’s Poult. Sci. J. 73:281-291.
Broom, L. J., and M. H. Kogut. 2018. Inflammation: friend or foe for animal production? Poult. Sci. 97:510-514.
Castanon, J. 2007. History of the use of antibiotic as growth promoters in European Poult. feeds. Poult. Sci. 86:2466-2471.
Chalghoumi, R., Y. Beckers, D. Portetelle, and A. Thewis. 2009. Hen egg yolk antibodies (IgY), production and use for passive immunization against bacterial enteric infections in chicken: a review. Biotechnol. Agron. Soc. 13:295-308.
Chhabra, R., J. Chantrey, and K. Ganapathy. 2015. Immune responses to virulent and vaccine strains of infectious bronchitis viruses in chickens. Viral Immunol. 28:478-488.
Dal Pont, G. C., M. Farnell, Y. Farnell, and M. H. Kogut. 2020. Dietary factors as triggers of low-grade chronic intestinal inflammation in poultry. Microorganisms 8:10.
Daneshmand, A., H. Kermanshahi, M. H. Sekhavati, A. Javadmanesh, and M. Ahmadian. 2019. Antimicrobial peptide, cLF36, affects performance and intestinal morphology, microflora, junctional proteins, and immune cells in broilers challenged with E. coli. Scientific Rep. 9:9.
Dibner, J. J., and J. D. Richards. 2005. Antibiotic growth promoters in agriculture: history and mode of action. Poult. Sci. 84:634-643.
Dittoe, D. K., S. C. Ricke, and A. S. Kiess. 2018. Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Front. Vet. Sci. 5:12.
Elliott, K. E. C., S. L. Branton, J. D. Evans, S. A. Leigh, E. J. Kim, H. A. Olanrewaju, G. T. Pharr, H. O. Pavlidis, P. D. Gerard, and E. D. Peebles. 2020. Growth and humoral immune effects of dietary Original XPC in layer pullets challenged with Mycoplasma gallisepticum. Poult. Sci. in press. doi https://doi.org/10.1016/j.psj.2020.01.016
Friedman, A., E. Bar-shira, and D. Sklan. 2007. Ontogeny of gut associated immune competence in the chick. World's Poult. Sci. J. 59:209-219.
Gadde, U., W. H. Kim, S. T. Oh, and H. S. Lillehoj. 2017. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim. Health Res. Rev. 18:26-45.
Gaggìa, F., P. Mattarelli, and B. Biavati. 2010. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 141:S15-S28.
Galli, G. M., R. R. Gerbet, L. G. Griss, B. F. Fortuoso, T. G. Petrolli, M. M. Boiago, C. F. Souza, M. D. Baldissera, J. Mesadri, R. Wagner, G. da Rosa, R. E. Mendes, A. Gris, and A. S. Da Silva. 2020. Combination of herbal components (curcumin, carvacrol, thymol, cinnamaldehyde) in broiler chicken feed: Impacts on response parameters, performance, fatty acid profiles, meat quality and control of coccidia and bacteria. Microb. Pathog. 139:11.
Gigante, A., and R. J. Atterbury. 2019. Veterinary use of bacteriophage therapy in intensivelyreared livestock. Virol. J. 16:9.
Granstad, S., A. B. Kristoffersen, S. L. Benestad, S. K. Sjurseth, B. David, L. Sorensen, A. Fjermedal, D. H. Edvardsen, G. Sanson, A. Lovland, and M. Kaldhusdal. 2020. Effect of feed additives as alternatives to in-feed antimicrobials on production performance and intestinal Clostridium perfringens counts in broiler chickens. Animals 10:19.
Hafeez, A., K. Männer, C. Schieder, and J. Zentek. 2016. Effect of supplementation of phytogenic feed additives (powdered vs. encapsulated) on performance and nutrient digestibility in broiler chickens. Poult. Sci. 95:622-629.
Hejdysz, M., S. Kaczmarek, D. Jozefiak, D. Jamroz, and A. Rutkowski. 2018. Effect of different medium chain fatty acids, calcium butyrate, and salinomycin on performance, nutrient utilization, and fermentation products in gastrointestinal tracts of broiler chickens. J. Anim. Plant Sci. 28:377-387.
Heo, S., M. G. Kim, M. Kwon, H. S. Lee, and G. B. Kim. 2018. Inhibition of Clostridium perfringens using bacteriophages and bacteriocin producing strains. Korean J. Food Sci. Anim. Resour. 38:88-98.
Hu, Y., L. D. Wang, D. Shao, Q. Wang, Y. Y. Wu, Y. M. Han, and S. R. Shi. 2020. Selectived and reshaped early dominant microbial community in the cecum with similar proportions and better homogenization and species diversity due to organic acids as AGP alternatives mediate their effects on broilers growth. Front. Microbiol. 10:20.
Indira, M., T. C. Venkateswarulu, K. A. Peele, M. N. Bobby, and S. Krupanidhi. 2019. Bioactive molecules of probiotic bacteria and their mechanism of action: a review. 3 Biotech 9:11.
Iseri, V. J., and K. C. Klasing. 2013a. The cost of an immune response to Escherichia coli in Gallus gallus. Integr. Comp. Biol. 53:E100-E100.
Iseri, V. J., and K. C. Klasing. 2013b. Dynamics of the systemic components of the chicken (Gallus gallus domesticus) immune system following activation by Escherichia coli; implications for the costs of immunity. Dev. Comp. Immunol. 40:248-257.
Iseri, V. J., and K. C. Klasing. 2014. Changes in the amount of lysine in protective proteins and immune cells after a systemic response to dead Escherichia coli: Implications for the nutritional costs of immunity. Integr. Comp. Biol. 54:922-930.
Jackson, M., K. Geronian, A. Knox, J. McNab, and E. McCartney. 2004. A dose-response study with the feed enzyme b-mannanase in broilers provided with corn-soybean meal based diets in the absence of antibiotic growth promoters. Poult. Sci. 83:1992-1996.
Kiarie, E. G., H. Leung, R. A. M. Kakhki, R. Patterson, and J. R. Barta. 2019. Utility of feed enzymes and yeast derivatives in ameliorating deleterious effects of coccidiosis on intestinal health and function in broiler chickens. front. vet. sci. 6:13.
Klasing, K. C. 2007. Nutrition and the immune system. Br. Poult. Sci. 48:525-537.
Kogut, M. H., A. Lee, and E. Santin. 2020. Microbiome and pathogen interaction with the immune system. Poult. Sci. 99:1906-1913.
Korver, D. 1997. Modulation of the growth suppressing effects of inflammation by the use of dietary fatty acids. Ph. D. Dissertation. University of California, Davis.
Korver, D. R. 2012. Implications of changing immune function through nutrition in poultry. Anim. Feed Sci. Technol. 173:54-64.
Korver, D. R., and K. C. Klasing. 1997. Dietary fish oil alters specific and inflammatory immune responses in chicks. J. Nutr. 127:2039-2046.
Korver, D. R., P. Wakenell, and K. C. Klasing. 1997. Dietary fish oil or lofrin, a 5-lipoxygenase inhibitor, decrease the growth-suppressing effects of coccidiosis in broiler chicks. Poult. Sci. 76:1355-1363.
Lee, S. A., J. Apajalahti, K. Vienola, G. Gonzalez-Ortiz, C. Fontes, and M. R. Bedford. 2017. Age and dietary xylanase supplementation affects ileal sugar residues and short chain fatty acid concentration in the ileum and caecum of broiler chickens. Anim. Feed Sci. Technol. 234:29-42.
Leung, H., A. Yitbarek, R. Snyder, R. Patterson, J. R. Barta, N. Karrow, and E. Kiarie. 2019. Responses of broiler chickens to Eimeria challenge when fed a nucleotide-rich yeast extract. Poult. Sci. 98:1622-1633.
Li, J., Y. F. Cheng, Y. P. Chen, H. M. Qu, Y. R. Zhao, C. Wen, and Y. M. Zhou. 2019. Dietary chitooligosaccharide inclusion as an alternative to antibiotics improves intestinal morphology, barrier function, antioxidant capacity, and immunity of broilers at early age. Animals 9:12.
Massacci, F. R., C. Lovito, S. Tofani, M. Tentellini, D. A. Genovese, A. A. P. De Leo, P. Papa, C. F. Magistrali, E. Manuali, M. Trabalza-Marinucci, L. Moscati, and C. Forte. 2019. Dietary Saccharomyces cerevisiae boulardii CNCM I-1079 positively affects performance and intestinal ecosystem in broilers during a Campylobacter jejuni infection. Microorganisms 7:21.
Mehdi, Y., M. P. Letourneau-Montminy, M. L. Gaucher, Y. Chorfi, G. Suresh, T. Rouissi, S. K. Brar, C. Cote, A. A. Ramirez, and S. Godbout. 2018. Use of antibiotics in broiler production: Global impacts and alternatives. Anim. Nutr. 4:170-178.
Moore, P. R., A. Evenson, T. D. Luckey, E. McCoy, E. A. Elvehjem, and E. B. Hart. 1946. Use of sulphasuccidine, streptothricin and streptomycin in nutrition studies with the chick. J. Biol. Chem. 165:437–441.
Niewold, T. A. 2007. The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poult. Sci. 86:605-609.
Oh, S., H. S. Lillehoj, Y. Lee, D. Bravo, and E. P. Lillehoj. 2019. Dietary antibiotic growth promoters down-regulate intestinal inflammatory cytokine expression in chickens challenged with LPS or co-infected with Eimeria maxima and Clostridium perfringens. Front. Vet. Sci. 6:13.
Osho, S. O., and O. Adeola. 2019. Impact of dietary chitosan oligosaccharide and its effects on coccidia challenge in broiler chickens. Br. Poult. Sci. 60:766-776.
Pascual, A., M. Pauletto, M. Giantin, G. Radaelli, C. Ballarin, M. Birolo, C. Zomeno, M. Dacasto, M. Bortoletti, M. Vascellari, G. Xiccato, and A. Trocino. 2020. Effect of dietary supplementation with yeast cell wall extracts on performance and gut response in broiler chickens. J. Anim. Sci. Biotechnol. 11:11.
Pham, V. H., L. G. Kan, J. Y. Huang, Y. Q. Geng, W. R. Zhen, Y. M. Guo, W. Abbas, and Z. Wang. 2020. Dietary encapsulated essential oils and organic acids mixture improves gut health in broiler chickens challenged with necrotic enteritis. J. Anim. Sci. Biotechnol. 11:18.
Polycarpo, G. V., I. Andretta, M. Kipper, V. C. Cruz-Polycarpo, J. C. Dadalt, P. H. M. Rodrigues, and R. Albuquerque. 2017. Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens. Poult. Sci. 96:3645-
3653.
Ramlucken, U., S. O. Ramchuran, G. Moonsamy, R. Lalloo, M. S. Thantsha, and C. J. van Rensburg. 2020. A novel Bacillus based multi-strain probiotic improves growth performance and intestinal properties of Clostridium perfringens challenged broilers. Poult. Sci. 99:331-341.
Reis, J. H., R. R. Gebert, M. Barreta, M. D. Baldissera, I. D. dos Santos, R. Wagner, G. Campigotto, A. M. Jaguezeski, A. Gris, J. L. F. de Lima, R. E. Mendes, M. Fracasso, M. M. Boiago, L. M. Stefani, D. S. dos Santos, W. S. Robazza, and A. S. Da Silva. 2018. Effects of phytogenic feed additive based on thymol, carvacrol and cinnamic aldehyde on body weight, blood parameters and environmental bacteria in broilers chickens. Microb. Pathog. 125:168-176.
Remus, A., L. Hauschild, I. Andretta, M. Kipper, C. R. Lehnen, and N. K. Sakomura. 2014. A meta-analysis of the feed intake and growth performance of broiler chickens challenged by bacteria. Poult. Sci. 93:1149-1158.
Ricke, S. C. 2015. Potential of fructooligosaccharide prebiotics in alternative and nonconventional poultry production systems. Poult Sci 94:1411-1418.
Rodrigues, D. R., K. M. Wilson, M. Trombetta, W. N. Briggs, A. F. Duff, K. M. Chasser, W. G. Bottje, and L. Bielke. 2020. A proteomic view of the cross-talk between early intestinal microbiota and poultry immune system. Front. Physiol. 11:13.
Roura, E., J. Homedes, and K. C. Klasing. 1992. Prevention of immunologic stress contributes to the growth-permitting ability of dietary antibiotics in chicks. J. Nutr. 122:2383-2390.
Schijns, V. E. J. C., S. van de Zande, B. Lupiani, and S. M. Reddy. 2014. Chapter 20 - Practical Aspects of Poultry Vaccination. Pages 345-362 in: Avian Immunology (Second Edition). K. A. Schat, B. Kaspers, and P. Kaiser eds. Academic Press, Boston.
Spring, P. C. Wenk, K. A. Dawson, and K. E. Newman. 2000. The effects of dietary mannanoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of Salmonella-challenged broiler chicks. Poult. Sci. 79:205-211.
Stevanovic, Z. D., J. Bosnjak-Neumuller, I. Pajic-Lijakovic, J. Raj, and M. Vasiljevic. 2018. Essential oils as feed additives - future perspectives. Molecules 23.
Swaggerty, C. L., T. R. Callaway, M. H. Kogut, A. Piva, and E. Grilli. 2019. modulation of the immune response to improve health and reduce foodborne pathogens in poultry. Microorganisms 7:10.
Sylte, M. J., and D. L. Suarez. 2012. Vaccination and acute phase mediator production in chickens challenged with low pathogenic avian influenza virus; novel markers for vaccine efficacy? Vaccine 30:3097-3105.
Tarradas, J., N. Tous, E. Esteve-Garcia, and J. Brufau. 2020. The control of intestinal inflammation: a major objective in the research of probiotic strains as alternatives to antibiotic growth promoters in poultry. Microorganisms 8:16.
Thomke, S., and K. Elwinger. 1998. Growth promotants in feeding pigs and poultry. II. Mode of action of antibiotic growth promotants. Ann. Zootech. 47:153-167.
Upadhaya, S. D., and I. H. Kim. 2017. Efficacy of phytogenic feed additive on performance, production and health status of monogastric animals - a review. Ann. Anim. Sci. 17:929-948.
Visek, W. 1978. The mode of growth promotion by antibiotics. J. Anim. Sci. 46:1447-1469.
Wang, G., Q. L. Song, S. Huang, Y. M. Wang, S. Cai, H. T. Yu, X. L. Ding, X. F. Zeng, and J. Zhang. 2020. Effect of antimicrobial peptide microcin J25 on growth performance, immune regulation, and intestinal microbiota in broiler chickens challenged with Escherichia coli and Salmonella. Animals 10:11.
Wils-Plotz, E., and K. Klasing. 2015. Immune response to a Salmonella enteritidis infection in chickens fed different immunomodulatory nutrients. FASEB J. 29:1.
Wils-Plotz, E. L., M. C. Jenkins, and R. N. Dilger. 2013. Modulation of the intestinal environment, innate immune response, and barrier function by dietary threonine and purified fiber during a coccidiosis challenge in broiler chicks. Poult. Sci. 92:735-745.
Wils-Plotz, E. L., and K. C. Klasing. 2017. Effects of immunomodulatory nutrients on growth performance and immune-related gene expression in layer chicks challenged with lipopolysaccharide. Poult. Sci. 96:548-555.
Wu, W., Z. B. Xiao, W. Y. An, Y. Y. Dong, and B. K. Zhang. 2018. Dietary sodium butyrate improves intestinal development and function by modulating the microbial community in broilers. PloS one 13:21.
Xue, G. D., S. B. Wu, M. Choct, and R. A. Swick. 2017. Effects of yeast cell wall on growth performance, immune responses and intestinal short chain fatty acid concentrations of broilers in an experimental necrotic enteritis model. Anim. Nutr. 3:399-405.
Yang, C. B., M. A. K. Chowdhury, Y. Q. Hou, and J. Gong. 2015. Phytogenic compounds as alternatives to in-feed antibiotics: Potentials and challenges in application. Pathogens 4:137-156.
Yang, Y., P. Iji, and M. Choct. 2009. Dietary modulation of gut microflora in broiler chickens: a review of the role of six kinds of alternatives to in-feed antibiotics. World's Poult. Sci. J. 65:97-114.
Yegani, M., and D. R. Korver. 2010. Application of egg yolk antibodies as replacement for antibiotics in poultry. World’s Poult. Sci. J. 66:27-37.
Zhang, G., G. F. Mathis, C. L. Hofacre, P. Yaghmaee, R. A. Holley, and T. D. Duranc. 2010. Effect of a radiant energy-treated lysozyme antimicrobial blend on the control of clostridial necrotic enteritis in broiler chickens. Avian Dis. 54:1298-1300.
Zhou, Z. X., J. Huang, H. H. Hao, H. K. Wei, Y. F. Zhou, and J. Peng. 2019. Applications of new functions for inducing host defense peptides and synergy sterilization of medium chain fatty acids in substituting in-feed antibiotics. J. Funct. Foods 52:348-359.