Traditional Iberian pig production is characterized by outdoor systems that produce animals fed with natural resources. The aim of this study was to assess the environmental impacts of such systems through Life Cycle Assessment. Environmental impacts were analysed per kilogram of live weight at farm gate. Iberian pig production in montanera had the lowest impacts for climate change (CC), acidification (AC), eutrophication (EU) and cumulative energy demand (CED), being 3.4 kg CO2 eq, 0.091 molc H+ eq, 0.046 kg PO4 3− eq, and 20.7 MJ, respectively, due to the strict use of natural resources (acorns and grass) during the fattening period. As Iberian farms had a greater dependence on compound feed in cebo campo, environmental impacts on CC, AC, EU and CED were 22, 17, 95 and 28% higher, respectively, than with montanera. For land occupation (LO), however, cebo campo had a lower impact (31.6 m2 ·year) than montanera (43.0 m2 ·year) system. Traditional Iberian pig production systems have environmental impacts higher than conventional systems studied in literature but are similar to other traditional systems. Based on the present assessment, it is necessary to account for the contribution of emissions resulting from the consumption of natural resources to avoid the underestimation of environmental impacts.
Keywords: extensive pig production; environmental impacts; natural resources; local breed
1. De Vries, M.; De Boer, I.J.M. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [CrossRef]
2. Steinfeld, H.; Gerber, P. Livestock production and the global environment: Consume less or produce better? Proc. Natl. Acad. Sci. USA. 2010, 107, 18237–18238. [CrossRef]
3. Eldesouky, A.; Mesias, F.J.; Elghannam, A.; Escribano, M. Can extensification compensate livestock greenhouse gas emissions? A study of the carbon footprint in Spanish agroforestry systems. J. Clean. Prod. 2018, 200, 28–38. [CrossRef]
4. McAuliffe, G.A.; Chapman, D.V.; Sage, C.L. A thematic review of life cycle assessment (LCA) applied to pig production. Environ. Impact Assess. Rev. 2016, 56, 12–22. [CrossRef]
5. Van Der Werf, H.M.G.; Petit, J.; Sanders, J. The environmental impacts of the production of concentrated feed: The case of pig feed in Bretagne. Agric. Syst. 2005, 83, 153–177. [CrossRef]
6. Nguyen, T.L.T.; Hermansen, J.E.; Mogensen, L. Environmental costs of meat production: The case of typical EU pork production. J. Clean. Prod. 2012, 28, 168–176. [CrossRef]
7. Basset-Mens, C.; Van der Werf, H.; Robin, P.; Morvan, T.; Hassouna, M.; Paillat, J.M.; Vertes, F. Methods and data for the environmental inventory of contrasting pig production systems. J. Clean. Prod. 2007, 15, 1395–1405. [CrossRef]
8. Halberg, N.; Hermansen, J.E.; Kristensen, I.S.; Eriksen, J.; Tvedegaard, N.; Petersen, B.M. Impact of organic pig production systems on CO2 emission, C sequestration and nitrate pollution. Agron. Sustain. Dev. 2010, 30, 721–731. [CrossRef]
9. Dourmad, J.Y.; Ryschawy, J.; Trousson, T.; Bonneau, M.; González, J.; Houwers, H.W.; Hviid, M.; Zimmer, C.; Nguyen, T.L.; Morgensen, L. Evaluating environmental impacts of contrasting pig farming systems with life cycle assessment. Animal 2014, 8, 2027–2037. [CrossRef]
10. Rudolph, G.; Hortenhuber, S.; Bochicchio, D.; Butler, G.; Brandhofer, R.; Dippel, S.; Dourmad, J.Y.; Edwards, S.; Fruh, B.; Meier, M.; et al. Effect of three husbandry systems on environmental impact of organic pigs. Sustainability 2018, 10, 3796. [CrossRef]
11. Pirlo, G.; Care, S.; Della Casa, G.; Marcheti, R.; Ponzoni, G.; Faeti, V.; Fantin, V.; Masoni, P.; Buttol, P.; Zerbinatti, L.; et al. Environmental impact of heavy pig production in a sample of Italian farms. A cradle to farm-gate analysis. Sci. Total Environ. 2016, 565, 576–585. [CrossRef]
12. Bava, L.; Zucali, M.; Sandrucci, A.; Tamburini, A. Environmental impact of the typical heavy pig production in Italy. J. Clean. Prod. 2017, 140, 685–691. [CrossRef]
13. Espagnol, S.; Demartini, J. Environmental impacts of extensive outdoor pig production systems in Corsica. In Proceedings of the 9th International Conference Life Cycle Assessment Agri-Food Sector (LCA Food 2014), San Francisco, CA, USA, 8–10 October 2014; pp. 364–371.
14. Garcia-Launay, F.; Rouillon, V.; Faure, J.; Fonseca, A. Life Cycle Assessment of pig production systems of the Noir de Bigorre chain. In Proceedings of the IX Simposio Internacional Sobre El Cerdo Mediterráneo, Portalegre, Portugal, 3–5 November 2016; pp. 21–25. [CrossRef]
15. Monteiro, A.N.T.R.; Wilfart, A.; Utzeri, V.; Batorek, N.; Tomazin, U.; Nanni, L.; Candek-Potokar, M.; ? Fontanesi, L.; Garcia-Launay, F. Environmental impacts of pig production systems using European local breeds: The contribution of carbon sequestration and emissions from grazing. J. Clean. Prod. 2019, 237, 117843. [CrossRef]
16. Rodríguez-Estévez, V.; García, A.; Peña, F.; Gómez, A.G. Foraging of Iberian fattening pigs grazing natural pasture in the dehesa. Livest. Sci. 2009, 120, 135–143. [CrossRef]
17. Benito, J.; Albarrán, A.; García-Casco, J.M. Extensive Iberian pig production grazing systems. In Proceedings of the 21st General Meeting of the European Grassland Federation, Badajoz, Spain, 3–6 April 2006; pp. 635–645.
18. Argemí-Armengol, I.; Villalba, D.; Ripoll, G.; Teixeira, A.; Álvarez-Rodríguez, J. Credence cues of pork are more important than consumers’ culinary skills to boost their purchasing intention. Meat Sci. 2019, 154, 11–21. [CrossRef]
19. Registro Informativo de Organismos Independientes de Control del ibérico (RIBER). Available online: https://www.mapa.gob.es/es/alimentacion/temas/calidad-agroalimentaria/calidad-comercial/mesa-deliberico/riber-publico/ (accessed on 29 July 2019).
20. Real Decreto 1135/2002, de 31 de Octubre, Relativo a Las Normas Mínimas Para la Protección de Cerdos. Available online: https://www.boe.es/buscar/pdf/2002/BOE-A-2002-22544-consolidado.pdf. (accessed on 30 May 2019).
21. Sistema Electrónico de Acceso al Banco de Datos de Referencia del Porcino Español (BDporc). Available online: http://www.bdporc.irta.es/ (accessed on 2 August 2019).
22. Duarte, J.L.; Hernández-García, F.I.; García-Gudiño, J.; Rodríguez-Ledesma, A.; Izquierdo, M. The effect of farrowing rate and number of piglets weaned per litter on production costs of commercial Iberian herds in Extremadura (Spain). Acta Argiculturae Slov. 2013, 4, 215–218.
23. Real Decreto 4/2014, de 10 de enero, por el que se aprueba la norma de calidad para la carne, el jamón, la paleta y la caña de lomo ibérico. Available online: https://www.boe.es/buscar/pdf/2014/BOE-A-2014-318- consolidado.pdf. (accessed on 1 April 2019).
24. Garcia-Launay, F.; Van der Werf, H.M.G.; Nguyen, T.T.H.; Tutour, L.; Dourmad, J.Y. Evaluation of the environmental implications of the incorporation of feed—Use amino acids in pig production using Life Cycle Assessment. Livest. Sci. 2014, 161, 158–175. [CrossRef]
25. Wilfart, A.; Espagnol, S.; Dauguet, S.; Tailleur, A.; Gac, A.; Garcia-Launay, F. ECOALIM: A dataset of environmental impacts of feed ingredients used in animal production. PLoS ONE 2016, 11, e0167343. [CrossRef]
26. Spanish Ministry of Agriculture, Fishery and Food. Available online: https://www.mapama.gob.es/ (accessed on 24 October 2018).
27. García-Serrano, P.; Lucena, J.; Ruano, S.; Nogales, M. Guía Práctica de Fertilización Racional de los Cultivos en España, 1st ed.; Spanish Ministry of Agriculture, Fishery and Food: Madrid, Spain, 2009; pp. 123–179.
28. IPCC. N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application. In Guidelines for National Greenhouse Gas Inventories; IGES: Kamiyamaguchi, Japan, 2006; pp. 2–33.
29. Sistema Español de Inventario de Emisiones. Available online: https://www.miteco.gob.es/es/calidad-yevaluacion-ambiental/temas/sistema-espanol-de-inventario-sei-/ (accessed on 14 May 2018).
30. Rivera-Ferre, M.G.; Edwards, S.A.; Mayes, R.W.; Riddoch, I.; Hovell, F.D.D.B. The effect of season and level of concentrate on the voluntary intake and digestibility of herbage by outdoor sows. Anim. Sci. 2001, 72, 501–510. [CrossRef]
31. Olea, J.; Verdasco, L.; Paredes, M. Características y producción de los pastos de las dehesas del SO de la Península Ibérica. Pastos 1990, 21, 131–156.
32. Rodríguez-Estévez, V.; Sánchez-Rodríguez, M.; García, A.; Gómez-Castro, A.G. Feed conversion rate and estimated energy balance of free grazing Iberian pigs. Livest. Sci. 2010, 132, 152–156. [CrossRef]
33. Rodríguez-Estévez, V.; Sánchez-Rodríguez, M.; García, A.R.; Gómez-Castro, A.G. Average daily weight gain of Iberian fattening pigs when grazing natural resources. Livest. Sci. 2011, 137, 292–295. [CrossRef]
34. García-Valverde, R.; Nieto, R.; Lachica, M.; Aguilera, J.F. Effects of herbage ingestion on the digestion site and nitrogen balance in heavy Iberian pigs fed on an acorn-based diet. Livest. Sci. 2007, 112, 63–77. [CrossRef]
35. Vázquez, B.; García-Ciudad, A.; Petisco, C.; García-Criado, B. Interannual variations in phosphorus content of semiarid grasslands over a long time period. Grassl. Sci. Eur. 2008, 13, 634–636.
36. Fundación Española para el Desarrollo de la Nutrición Animal (FEDNA). Available online: http: //fundacionfedna.org/ (accessed on 20 October 2018).
37. Rigolot, C.; Espagnol, S.; Pomar, C.; Dourmad, J.Y. Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part I: Animal excretion and enteric CH 4, effect of feeding and performance. Animal 2010, 4, 1401–1412. [CrossRef]
38. Freitas, A. Influencia do Nivel e Regime Alimentar em Pre-Acabamento Sobre Crescimento e Desenvolvimento do Porco Alentejano e suas Repercusssoes Sobre o Acabamento em Montanheira e com Alimento Comercial; University of Évora: Evora, Portugal, 1998.
39. Dourmad, J.Y.; Levasseur, P.; Daumer, M.L.; Hassouna, M.; Landrain, B.; Lemaire, N.; Loussouarn, A.; Salaün, Y.; Espagnol, S. Évaluation des rejets d’azote, phosphore, potassium, cuivre et zinc des porcs. RMT Elev. Environ. 2015, 1–26.
40. García-Valverde, R.; Nieto, R.; Aguilera, J.F. Effects of herbage ingestion upon ileal digestibility of amino acids in heavy Iberian pigs fed on an acorn-based diet. J. Anim. Physiol. Anim. Nutr. 2010, 94, 203–214. [CrossRef]
41. Rigolot, C.; Espagnol, S.; Robin, P.; Hassouna, M.; Béline, F.; Paillat, J.M.; Dourmad, J.Y. Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part II: Effect of animal housing, manure storage and treatment practices. Animal 2010, 4, 1413–1424. [CrossRef]
42. European Commission, Joint Research Centre, Institute for Environment and Sustainability. Characterisation Factors of the ILCD Recommanded Life Cycle Impact Assessment Methods. Database and Supporting Information, 1st ed.; Publications Office of the European Union: Luxembourg, 2012; pp. 7–12.
43. SimaPro Database Manual. Available online: https://www.pre-sustainability.com/download/ DatabaseManualMethods.pdf (accessed on 22 May 2017).
44. The Ecoinvent Database: Overview and Methodology, Data Quality Guideline for the Ecoinvent Database Version 3. Available online: https://www.ecoinvent.org (accessed on 20 May 2017).
45. Barszcz, M.; Skomial, J. The development of the small intestine of piglets—Chosen aspects. J. Anim. Feed Sci. 2011, 20, 3–15. [CrossRef]
46. De Miguel, A.; Hoekstra, A.Y.; García-Calvo, E. Sustainability of the water footprint of the Spanish pork industry. Ecol. Indic. 2015, 57, 465–474. [CrossRef]
47. Basset-Mens, C.; Van Der Werf, H.M.G. Scenario-based environmental assessment of farming systems: The case of pig production in France. Agric. Ecosyst. Environ. 2005, 105, 127–144. [CrossRef]
48. González-García, S.; Belo, S.; Dias, A.C.; Rodrigues, J.V.; Da Costa, R.R.; Ferreira, A.; Pinto de Andrade, L.; Arroja, L. Life cycle assessment of pigmeat production: Portuguese case study and proposal of improvement options. J. Clean. Prod. 2015, 100, 126–139. [CrossRef]
49. Pelletier, N.; Lammers, P.; Stender, D.; Pirog, R. Life cycle assessment of high- and low-profitability commodity and deep-bedded niche swine production systems in the Upper Midwestern United State. Agric. Syst. 2010, 103, 599–608. [CrossRef]
50. Mackenzie, S.G.; Leinonen, I.; Ferguson, N.; Kyriazakis, I. Can the environmental impact of pig systems be reduced by utilising co-products as feed? J. Clean. Prod. 2016, 115, 172–181. [CrossRef]
51. Monteiro, A.N.T.R.; Garcia-Launay, F.; Brossard, L.; Wilfart, A.; Dourmad, J.Y. Effect of feeding strategy on environmental impacts of pig fattening in different contexts of production: Evaluation through life cycle assessment. J. Anim. Sci. 2016, 94, 4832–4847. [CrossRef]
52. Wilfart, A.; Dusart, L.; Méda, B.; Gac, A.; Espagnol, S.; Morin, L.; Dronne, Y.; Garcia-Launay, F. Réduire les impacts environnementaux des aliments pour les animaux d’élevage. INRA Prod. Anim. 2019, 31, 289–306. [CrossRef]
53. Muñoz, M.; Bozzi, R.; García, F.; Núñez, Y.; Geraci, C.; Crovetti, A.; García-Casco, J.; Alves, E.; Škrlep, M.; Charneca, R.; et al. Diversity across major and candidate genes in European local pig breeds. PLoS ONE 2018, 13, 1–30. [CrossRef]
54. Rodríguez-Estévez, V.; Avilez, J.P.; Félix, E.; Perea, J.; García, A.; Gómez, G. Eficiencia del cerdo ibérico en el decorticado de la bellota. Arch. Zootec. 2007, 56, 535–539.
55. Stanley, P.L.; Rowntree, J.E.; Beede, D.K.; DeLonge, M.S.; Hamm, M.W. Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. Agric. Syst. 2018, 162, 249–258. [CrossRef]