Simple Summary: The swine industry has an important interest in becoming more efficient and innovative, fitting with the consumer demand in terms of pork quality, meat pig welfare conditions, and the environmental aspects. This paper deals with the productive (breed, diet, stress) and technological (aging, cooking) factors that affect fresh pork and elaborates the quality of products by using proteomic tools for assessing. These technologies are a relevant approach in the meat science field to decipher the underlying mechanisms and post-mortem changes in the muscle and biofluids proteome of pigs because their study will allow better management of the outcomes such as meat quality variation and defects. In general, these new developments in molecular techniques can help researchers to control and assess this quality through biomarkers. Additionally, as food safety and pork product authentication/adulteration to avoid fraud can be evaluated with these high-throughput proteomic tools, hence they were tackled. Finally, another relevant point addressed focused on the search of bioactive peptides with a beneficial effect on human health from added-value products such as dry-cured ham. Overall, this review describes the current and emerging proteomics studies dealing with raw pork and pork products from the farm to fork.
Abstract: The quality assurance of pork meat and products includes the study of factors prior to slaughter such as handling practices, diet and castration, and others during the post-mortem period such as aging, storage, and cooking. The development over the last two decades of high-throughput techniques such as proteomics offer great opportunities to examine the molecular mechanisms and study a priori the proteins in the living pigs and main post-mortem changes and post-translational modifications during the conversion of the muscle into the meat. When the most traditional crossbreeding and rearing strategies to improve pork quality were assessed, the main findings indicate that metabolic pathways early post-mortem were affected. Among the factors, it is well documented that pre-slaughter stress provokes substantial changes in the pork proteome that led to defective meat, and consequently, novel protein biomarkers should be identified and validated. Additionally, modifications in pork proteins had a strong effect on the sensory attributes due to the impact of processing, either physical or chemical. Maillard compounds and protein oxidation should be monitored in order to control proteolysis and volatile compounds. Beyond this, the search of bioactive peptides is becoming a paramount goal of the food and nutraceutical industry. In this regard, peptidomics is a major tool to identify and quantify these peptides with beneficial effects for human health.
Keywords: pig; high-throughput proteomic tools; meat quality; molecular biomarkers; traceability; authentication.
1. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QL (accessed on 1 September 2020).
2. Mouzo, D.; Rodríguez-vázquez, R.; Lorenzo, J.M.; Franco, D.; Zapata, C.; López-Pedrouso, M. Proteomic application in predicting food quality relating to animal welfare. A review. Trends Food Sci. Technol. 2020, 99,
520–530. [CrossRef]
3. Bee, G.; Anderson, A.L.; Lonergan, S.M.; Huff-Lonergan, E. Rate and extent of pH decline affect proteolysis of cytoskeletal proteins and water-holding capacity in pork. Meat Sci. 2007, 76, 359–365. [CrossRef] [PubMed]
4. Schilling, M.W.; Suman, S.P.; Zhang, X.; Nair, M.N.; Desai, M.A.; Cai, K.; Ciaramella, M.A.; Allen, P.J.
Proteomic approach to characterize biochemistry of meat quality defects. Meat Sci. 2017, 132, 131–138.
[CrossRef] [PubMed]
5. Sionek, B.; Przybylski, W. The Impact of Ante- and Post-Mortem Factors on the Incidence of Pork Defective
Meat - A Review. Ann. Anim. Sci. 2016, 16, 333–345. [CrossRef]
6. Zhang, X.; Owens, C.M.; Schilling, M.W. Meat: The edible flesh from mammals only or does it include poultry, fish, and seafood? Anim. Front. 2017, 7, 12–18. [CrossRef]
7. Faucitano, L.; Goumon, S. Transport of Pigs to Slaughter and Associated Handling; Elsevier: Oxford, UK, 2018;
ISBN 9780081011195.
8. Warner, R.D.; Kauffman, R.G.; Greaser, M.L. Muscle protein changes post mortem in relation to pork quality traits. Meat Sci. 1997, 45, 339–352. [CrossRef]
9. López-Pedrouso, M.; Franco, D.; Serrano, M.P.; Maggiolino, A.; Landete-Castillejos, T.; De Palo, P.;
Lorenzo, J.M. A proteomic-based approach for the search of biomarkers in Iberian wild deer (Cervus elaphus) as indicators of meat quality. J. Proteom. 2019, 205, 103422. [CrossRef]
10. Théron, L.; Sayd, T.; Chambon, C.; Vautier, A.; Ferreira, C.; Aubry, L.; Ferraro, V.; Santé-Lhoutellier, V.
Toward the prediction of PSE-like muscle defect in hams: Using chemometrics for the spectral fingerprinting of plasma. Food Control 2020, 109, 106929. [CrossRef]
11. Xu, Z.; Shao, Y.; Liu, G.; Xing, S.; Zhang, L.; Zhu, M.; Xu, Y.; Wang, Z. Proteomics analysis as an approach to understand the formation of pale, soft, and exudative (PSE) pork. Meat Sci. 2020, 138049. [CrossRef]
12. Munekata, P.E.S.; Pateiro, M.; López-Pedrouso, M.; Gagaoua, M.; Lorenzo, J.M. Foodomics in meat quality.
Curr. Opin. Food Sci. 2020, 163947. [CrossRef]
13. Hollung, K.; Veiseth, E.; Jia, X.; Færgestad, E.M.; Hildrum, K.I. Application of proteomics to understand the molecular mechanisms behind meat quality. Meat Sci. 2007, 77, 97–104. [CrossRef] [PubMed]
14. Gagaoua, M.; Terlouw, E.M.C.; Mullen, A.M.; Franco, D.; Warner, R.D.; Lorenzo, J.M.; Purslow, P.P.;
Gerrard, D.; Hopkins, D.L.; Troy, D.; et al. Molecular signatures of beef tenderness: Underlying mechanisms based on integromics of protein biomarkers from multi-platform proteomics studies. Meat Sci. 2020,
172, 108311. [CrossRef] [PubMed]
15. López-Pedrouso, M.; Bernal, J.; Franco, D.; Zapata, C. Evaluating two-dimensional electrophoresis profiles of the protein phaseolin as markers of genetic differentiation and seed protein quality in common bean (Phaseolus vulgaris L.). J. Agric. Food Chem. 2014, 62, 7200–7208. [CrossRef]
16. Mato, A.; Rodríguez-Vázquez, R.; López-Pedrouso, M.; Bravo, S.; Franco, D.; Zapata, C. The first evidence of global meat phosphoproteome changes in response to pre-slaughter stress. BMC Genom. 2019, 20, 1–15.
[CrossRef] [PubMed]
17. Gagaoua, M.; Hughes, J.; Terlouw, E.M.C.; Warner, R.D.; Purslow, P.P.; Lorenzo, J.M.; Picard, B. Proteomic biomarkers of beef colour. Trends Food Sci. Technol. 2020, 101, 234–252. [CrossRef]
18. Andjelkovi´c, U.; Josi´c, D. Mass spectrometry based proteomics as foodomics tool in research and assurance of food quality and safety. Trends Food Sci. Technol. 2018, 77, 100–119. [CrossRef]
19. Mittal, S.; Saluja, D. Modifications: Role in Protein Structure, Function and Stability; Springer: New Delhi, India,
2015; pp. 25–37, ISBN 9788132224679.
20. Foegeding, E.A.; Davis, J.P. Food protein functionality: A comprehensive approach. Food Hydrocoll. 2011, 25,
1853–1864. [CrossRef]
21. Hou, X.; Liu, Q.; Meng, Q.; Wang, L.; Yan, H.; Zhang, L.; Wang, L. TMT-based quantitative proteomic analysis of porcine muscle associated with postmortem meat quality. Food Chem. 2020, 328, 127133. [CrossRef]
22. Bonneau, M.; Lebret, B. Production systems and influence on eating quality of pork. Meat Sci. 2010, 84,
293–300. [CrossRef]
23. Picard, B.; Lefèvre, F.; Lebret, B. Meat and fish flesh quality improvement with proteomic applications.
Anim. Front. 2012, 2, 18–25. [CrossRef]
24. D’Alessandro, A.; Marrocco, C.; Zolla, V.; D’Andrea, M.; Zolla, L. Meat quality of the longissimus lumborum muscle of Casertana and Large White pigs: Metabolomics and proteomics intertwined. J. Proteom. 2011, 75,
610–627. [CrossRef] [PubMed]
25. Mi, S.; Li, X.; Zhang, C.H.; Liu, J.Q.; Huang, D.Q. Characterization and discrimination of Tibetan and Duroc × (Landrace × Yorkshire) pork using label-free quantitative proteomics analysis. Food Res. Int. 2019, 119,
426–435. [CrossRef] [PubMed]
26. Yang, H.; Xu, X.; Ma, H.; Jiang, J. Integrative analysis of transcriptomics and proteomics of skeletal muscles of the Chinese indigenous Shaziling pig compared with the Yorkshire breed. BMC Genet. 2016, 1–13. [CrossRef]
[PubMed]
27. Picard, B.; Gagaoua, M.; Gagaoua, M. Muscle Fiber Properties in Cattle and Their Relationships with Meat
Qualities: An Overview. J. Agric. Food Chem. 2020, 68, 6021–6039. [CrossRef] [PubMed]
28. Lee, S.H.; Joo, S.T.; Ryu, Y.C. Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality.
Meat Sci. 2010, 86, 166–170. [CrossRef]
29. Lametsch, R.; Bendixen, E. Proteome analysis applied to meat science: Characterizing post mortem changes in porcine muscle. J. Agric. Food Chem. 2001, 49, 4531–4537. [CrossRef]
30. Wang, X.; Wu, W.; Lin, G.; Li, D.; Wu, G.; Wang, J. Temporal Proteomic Analysis Reveals Continuous
Impairment of Intestinal Development in Neonatal Piglets with Intrauterine Growth Restriction research articles. J. Proteome Res. 2010, 9, 924–935. [CrossRef]
31. Fu, L.; Xu, Y.; Hou, Y.; Qi, X.; Zhou, L.; Liu, H.; Luan, Y.; Jing, L.; Miao, Y.; Zhao, S.; et al. Proteomic analysis indicates that mitochondrial energy metabolism in skeletal muscle tissue is negatively correlated with feed efficiency in pigs. Sci. Rep. 2017, 7, 1–8. [CrossRef]
32. Faure, J.; Lefaucheur, L.; Bonhomme, N.; Ecolan, P.; Meteau, K.; Coustard, S.M.; Kouba, M.; Gilbert, H.;
Lebret, B. Consequences of divergent selection for residual feed intake in pigs on muscle energy metabolism and meat quality. Meat Sci. 2013, 93, 37–45. [CrossRef]
33. Vincent, A.; Louveau, I.; Gondret, F.; Tréfeu, C.; Gilbert, H.; Lefaucheur, L. Divergent selection for residual feed intake affects the transcriptomic and proteomic profiles of pig skeletal muscle. J. Anim. Sci. 2015, 93,
2745–2758. [CrossRef]
34. Costa-Lima, B.R.C.; Suman, S.P.; Li, S.; Beach, C.M.; Silva, T.J.P.; Silveira, E.T.F.; Bohrer, B.M.; Boler, D.D.
Dietary ractopamine influences sarcoplasmic proteome profile of pork Longissimus thoracis. Meat Sci. 2015,
103, 7–12. [CrossRef] [PubMed]
35. Ma, X.; Zheng, C.; Hu, Y.; Wang, L.; Yang, X.; Jiang, Z. Dietary L-arginine supplementation affects the skeletal longissimus muscle proteome in finishing pigs. PLoS ONE 2015, 10, e0117294. [CrossRef] [PubMed]
36. Choe, J.H.; Choi, Y.M.; Lee, S.H.; Shin, H.G.; Ryu, Y.C.; Hong, K.C.; Kim, B.C. The relation between glycogen, lactate content and muscle fiber type composition, and their influence on postmortem glycolytic rate and pork quality. Meat Sci. 2008, 80, 355–362. [CrossRef] [PubMed]
37. Grela, E.R.; Kowalczuk-vasilev, E.; Florek, M.; Kosior-korzecka, U.; Ska, P. An attempt of implementation of immunocastration in swine production—Impact on meat physicochemical quality and boar taint compound concentration in the meat of two native pig breeds. Livest. Sci. 2020, 232. [CrossRef]
38. Shi, X.; Li, C.; Cao, M.; Xu, X.; Zhou, G.; Xiong, Y.L. Comparative proteomic analysis of longissimus dorsi muscle in immuno- and surgically castrated male pigs. Food Chem. 2016, 199, 885–892. [CrossRef]
39. Škrlep, M.; Tomažin, U.; Lukaˇc, N.B.; Poklukar, K.; Candek-Potokar, M. Proteomic profiles of the longissimus ˇ muscles of entire male and castrated pigs as related to meat quality. Animals 2019, 9, 74. [CrossRef]
40. Terlouw, E.M.C.; Arnould, C.; Auperin, B.; Berri, C.; Le Bihan-duval, E.; Deiss, V. Pre-slaughter conditions, animal stress and welfare: current status and possible future research. Animal 2008. [CrossRef]
41. Terlouw, C. Stress reactions at slaughter and meat quality in pigs: genetic background and prior experience
A brief review of recent findings. Livest. Prod. Sci. 2005, 94, 125–135. [CrossRef]
42. Di Luca, A.; Elia, G.; Hamill, R.; Mullen, A.M. 2D DIGE proteomic analysis of early post mortem muscle exudate highlights the importance of the stress response for improved water-holding capacity of fresh pork meat. Proteomics 2013, 13, 1528–1544. [CrossRef]
43. Cui, Y.; Hao, Y.; Li, J.; Bao, W.; Li, G.; Gao, Y.; Gu, X. Chronic Heat Stress Induces Immune Response,
Oxidative Stress Response, and Apoptosis of Finishing Pig Liver: A Proteomic Approach. Int. J. Mol. Sci.
2016, 17, 393. [CrossRef]
44. Cui, Y.; Hao, Y.; Li, J.; Gao, Y.; Gu, X. Proteomic changes of the porcine skeletal muscle in response to chronic heat stress. J. Sci. Food Agric. 2018, 98, 3315–3323. [CrossRef] [PubMed]
45. Huang, H.; Scheffler, T.L.; Gerrard, D.E.; Larsen, M.R.; Lametsch, R. Quantitative Proteomics and
Phosphoproteomics Analysis Revealed Different Regulatory Mechanisms of Halothane and Rendement
Napole Genes in Porcine Muscle Metabolism. J. Proteome Res. 2018, 17, 2834–2849. [CrossRef] [PubMed]
46. Cruzen, S.M.; Baumgard, L.H.; Gabler, N.K.; Pearce, S.C.; Lonergan, S.M. Temporal proteomic response to acute heat stress in the porcine muscle sarcoplasm. J. Anim. Sci. 2017, 95, 3961. [CrossRef] [PubMed]
47. Jiang, S.; Liu, Y.; Shen, Z.; Zhou, B.; Shen, Q.W. Acetylome profiling reveals extensive involvement of lysine acetylation in the conversion of muscle to meat. J. Proteom. 2019, 205, 103412. [CrossRef]
48. Zou, B.; Zhao, D.; He, G.; Nian, Y.; Yan, J.; Li, C. Acetylation and Phosphorylation of Proteins A ff ect Energy
Metabolism and Pork Quality. J. Agric. Food Chem. 2020. [CrossRef]
49. Zhou, B.; Shen, Z.; Liu, Y.; Wang, C.; Shen, Q.W. Proteomic analysis reveals that lysine acetylation mediates the effect of antemortem stress on postmortem meat quality development. Food Chem. 2019, 293, 396–407.
[CrossRef]
50. Marco-ramell, A.; Arroyo, L.; Peña, R.; Pato, R.; Saco, Y.; Fraile, L.; Bendixen, E.; Bassols, A. Biochemical and proteomic analyses of the physiological response induced by individual housing in gilts provide new potential stress markers. BMC Vet. Res. 2016, 12, 265. [CrossRef]
51. Wang, Z.; Shang, P.; Li, Q.; Wang, L.; Chamba, Y.; Zhang, B.; Zhang, H.; Wu, C. ITRAQ-based proteomic analysis reveals key proteins affecting muscle growth and lipid deposition in pigs. Sci. Rep. 2017, 7, 1–11.
[CrossRef]
52. Van Laack, R.L.J.M.; Stevens, S.G.; Stalder, K.J. The influence of ultimate pH and intramuscular fat content on pork tenderness and tenderization. J. Anim. Sci. 2001, 79, 392–397. [CrossRef]
53. Carlson, K.B.; Prusa, K.J.; Fedler, C.A.; Steadham, E.M.; Huff-Lonergan, E.; Lonergan, S.M. Proteomic features linked to tenderness of aged pork loins. J. Anim. Sci. 2017, 95, 2533–2546. [CrossRef]
54. Hwang, I.H.; Park, B.Y.; Kim, J.H.; Cho, S.H.; Lee, J.M. Assessment of postmortem proteolysis by gel-based proteome analysis and its relationship to meat quality traits in pig longissimus. Meat Sci. 2005, 69, 79–91.
[CrossRef]
55. Kwasiborski, A.; Sayd, T.; Chambon, C.; Santé-lhoutellier, V.; Rocha, D.; Terlouw, C. Pig Longissimus lumborum proteome: Part II: Relationships between protein content and meat quality. Meat Sci. 2008, 80,
982–996. [CrossRef] [PubMed]
56. Traore, S.; Aubry, L.; Gatellier, P.; Przybylski, W.; Jaworska, D.; Kajak-siemaszko, K.; Santé-lhoutellier, V.
Higher drip loss is associated with protein oxidation. Meat Sci. 2012, 90, 917–924. [CrossRef] [PubMed]
57. Lu, H.; Luo, Y.; Lametsch, R. Proteomic profiling of oxidized cysteine and methionine residues by hydroxyl radicals in myosin of pork. Food Chem. 2018, 243, 277–284. [CrossRef] [PubMed]
58. Te Pas, M.F.W.; Kruijt, L.; Pierzchala, M.; Crump, R.E.; Boeren, S.; Keuning, E.; Hoving-Bolink, R.; Hortós, M.;
Gispert, M.; Arnau, J.; et al. Identification of proteomic biomarkers in M. Longissimus dorsi as potential predictors of pork quality. Meat Sci. 2013, 95, 679–687. [CrossRef] [PubMed]
59. Welzenbach, J.; Neuhoff, C.; Heidt, H.; Cinar, M.U.; Looft, C.; Schellander, K.; Tholen, E.; Große-Brinkhaus, C.
Integrative analysis of metabolomic, proteomic and genomic data to reveal functional pathways and candidate genes for drip loss in pigs. Int. J. Mol. Sci. 2016, 17, 1426. [CrossRef] [PubMed]
60. Di Luca, A.; Hamill, R.M.; Mullen, A.M.; Slavov, N.; Elia, G. Comparative Proteomic Profiling of Divergent
Phenotypes for Water Holding Capacity across the Post Mortem Ageing Period in Porcine Muscle Exudate.
PLoS ONE 2016, 11, e0150605. [CrossRef]
61. Ceciliani, F.; Lecchi, C.; Bazile, J.; Bonnet, M. Proteomics research in the adipose tissue. Proteom. Domest.
Anim. Farm Syst. Biol. 2018, 233–254. [CrossRef]
62. Pires, V.M.R.; Madeira, M.S.; Dowle, A.A.; Thomas, J.; Almeida, A.M.; Prates, J.A.M. Increased intramuscular fat induced by reduced dietary protein in finishing pigs: Effects on the longissimus lumborum muscle proteome. Mol. Biosyst. 2016, 12, 2447–2457. [CrossRef]
63. Lefaucheur, L. A second look into fibre typing – Relation to meat quality. Meat Sci. 2010, 84, 257–270.
[CrossRef]
64. Kim, G.D.; Yang, H.S.; Jeong, J.Y. Intramuscular variations of proteome and muscle fiber type distribution in semimembranosus and semitendinosus muscles associated with pork quality. Food Chem. 2018, 244, 143–152.
[CrossRef] [PubMed]
65. Stachniuk, A.; Sumara, A.; Montowska, M.; Fornal, E. Liquid chromatography–mass spectrometry bottom-up proteomic methods in animal species analysis of processed meat for food authentication and the detection of adulterations. Mass Spectrom. Rev. 2019. [CrossRef] [PubMed]
66. Zvereva, E.A.; Kovalev, L.I.; Ivanov, A.V.; Kovaleva, M.A.; Zherdev, A.V.; Shishkin, S.S.; Lisitsyn, A.B.;
Chernukha, I.M.; Dzantiev, B.B. Enzyme immunoassay and proteomic characterization of troponin I as a marker of mammalian muscle compounds in raw meat and some meat products. Meat Sci. 2015, 105, 46–52.
[CrossRef] [PubMed]
67. Pan, X.D.; Chen, J.; Chen, Q.; Huang, B.F.; Han, J.L. Authentication of pork in meat mixtures using PRM mass spectrometry of myosin peptides. RSC Adv. 2018, 8, 11157–11162. [CrossRef]
68. Kim, G.; Jeong, T.; Yang, H.; Joo, S.; Jin, S.; Jeong, J. Proteomic analysis of meat exudates to discriminate fresh and freeze-thawed porcine longissimus thoracis muscle. LWT Food Sci. Technol. 2015, 62, 1235–1238.
[CrossRef]
69. Kim, G.; Jeong, J.; Yang, H.; Jin, S. Differential abundance of proteome associated with intramuscular variation of meat quality in porcine longissimus thoracis et lumborum muscle. Meat Sci. 2019, 149, 85–95. [CrossRef]
70. Ma, C.; Wang, W.; Wang, Y.; Sun, Y.; Kang, L.; Zhang, Q.; Jiang, Y. TMT-labeled quantitative proteomic analyses on the longissimus dorsi to identify the proteins underlying intramuscular fat content in pigs.
J. Proteom. 2020, 213, 103630. [CrossRef]
71. Collado-Romero, M.; Aguilar, C.; Arce, C.; Lucena, C.; Codrea, M.C.; Morera, L.; Bendixen, E.; Moreno, Á.;
Garrido, J.J. Quantitative proteomics and bioinformatic analysis provide new insight into the dynamic response of porcine intestine to Salmonella Typhimurium. Front. Cell. Infect. Microbiol. 2015, 5. [CrossRef]
72. Di Luccia, A.; la Gatta, B.; Rutigliano, M.; Rusco, G.; Gagliardi, R.; Picariello, G. Protein Modifications in Cooked
Pork Products; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128040577.
73. Di Luccia, A.; la Gatta, B.; Nicastro, A.; Petrella, G.; Lamacchia, C.; Picariello, G. Protein modifications in cooked pork products investigated by a proteomic approach. Food Chem. 2015, 172, 447–455. [CrossRef]
74. Vidal, V.A.S.; Lorenzo, J.M.; Munekata, P.E.S.; Pollonio, M.A.R. Challenges to reduce or replace NaCl by chloride salts in meat products made from whole pieces–a review. Crit. Rev. Food Sci. Nutr. 2020, 1–13.
[CrossRef] [PubMed]
75. Domínguez, R.; Purriños, L.; Pérez-Santaescolástica, C.; Pateiro, M.; Barba, F.J.; Tomasevic, I.;
Campagnol, P.C.B.; Lorenzo, J.M. Characterization of Volatile Compounds of Dry-Cured Meat Products
Using HS-SPME-GC/MS Technique. Food Anal. Methods 2019, 12, 1263–1284. [CrossRef]
76. López-Pedrouso, M.; Pérez-Santaescolástica, C.; Franco, D.; Fulladosa, E.; Carballo, J.; Zapata, C.; Lorenzo, J.M.
Comparative proteomic profiling of myofibrillar proteins in dry-cured ham with different proteolysis indices and adhesiveness. Food Chem. 2018, 244, 238–245. [CrossRef] [PubMed]
77. Paredi, G.; Benoni, R.; Pighini, G.; Ronda, L.; Dowle, A.; Ashford, D.; Thomas, J.; Saccani, G.; Virgili, R.;
Mozzarelli, A. Proteomics of Parma Dry-Cured Ham: Analysis of Salting Exudates. J. Agric. Food Chem. 2017,
65, 6307–6316. [CrossRef] [PubMed]
78. López-Pedrouso, M.; Pérez-Santaescolástica, C.; Franco, D.; Carballo, J.; Zapata, C.; Lorenzo, J.M. Molecular insight into taste and aroma of sliced dry-cured ham induced by protein degradation undergone high-pressure conditions. Food Res. Int. 2019, 122, 635–642. [CrossRef]
79. López-Pedrouso, M.; Pérez-Santaescolástica, C.; Franco, D.; Carballo, J.; Garcia-Perez, J.V.; Benedito, J.;
Zapata, C.; Lorenzo, J.M. Proteomic footprint of ultrasound intensification on sliced dry-cured ham subjected to mild thermal conditions. J. Proteom. 2019, 193, 123–130. [CrossRef]
80. Sun, X.; Acquah, C.; Aluko, R.E.; Udenigwe, C.C. Considering food matrix and gastrointestinal effects in enhancing bioactive peptide absorption and bioavailability. J. Funct. Foods 2020, 64, 103680. [CrossRef]
81. López-Pedrouso, M.; Borrajo, P.; Pateiro, M.; Lorenzo, J.M.; Franco, D. Antioxidant activity and peptidomic analysis of porcine liver hydrolysates using alcalase, bromelain, flavourzyme and papain enzymes.
Food Res. Int. 2020, 137. [CrossRef]
82. Udenigwe, C.C.; Fogliano, V. Food matrix interaction and bioavailability of bioactive peptides: Two faces of the same coin? J. Funct. Foods 2017, 35, 9–12. [CrossRef]
83. López-Pedrouso, M.; Lorenzo, J.M.; Zapata, C.; Franco, D. Proteins and amino acids. In Innovative Thermal and
Non-Thermal Processing; Barba, F.J., Saraiba, J.M.A., Cravotto, G., Lorenzo, J.M., Eds.; Elsevier Inc.: Duxford,
UK, 2019; pp. 139–168, ISBN 9781469816593.
84. Dupont, D. Peptidomic as a tool for assessing protein digestion. Curr. Opin. Food Sci. 2017, 16, 53–58.
[CrossRef]
85. Gallego, M.; Mora, L.; Aristoy, M.C.; Toldrá, F. Titin-derived peptides as processing time markers in dry-cured ham. Food Chem. 2015, 167, 326–339. [CrossRef]
86. Zhou, C.Y.; Wang, C.; Tang, C.B.; Dai, C.; Bai, Y.; Yu, X.B.; Li, C.B.; Xu, X.L.; Zhou, G.H.; Cao, J.X. Label-free proteomics reveals the mechanism of bitterness and adhesiveness in Jinhua ham. Food Chem. 2019, 297, 125012.
[CrossRef] [PubMed]
87. Gallego, M.; Mora, L.; Aristoy, M.C.; Toldrá, F. Evidence of peptide oxidation from major myofibrillar proteins in dry-cured ham. Food Chem. 2015, 187, 230–235. [CrossRef] [PubMed]
88. Wen, S.; Zhou, G.; Li, L.; Xu, X.; Yu, X.; Bai, Y.; Li, C. Effect of cooking on in vitro digestion of pork proteins:
A peptidomic perspective. J. Agric. Food Chem. 2015, 63, 250–261. [CrossRef] [PubMed]
89. Zhu, C.; Zhao, G.; Cui, W.; Li, S.; Yu, X.; Zhang, Q. Utilization of i-TRAQ technology to determine protein modifications in pork soup in response to addition of salt. J. Food Compos. Anal. 2020, 88, 103453. [CrossRef]
90. Lorenzo, J.M.; Munekata, P.E.S.; Gómez, B.; Barba, F.J.; Mora, L.; Pérez-Santaescolástica, C.; Toldrá, F.
Bioactive peptides as natural antioxidants in food products—A review. Trends Food Sci. Technol. 2018, 79,
136–147. [CrossRef]
91. Daliri, E.B.-M.; Oh, D.H.; Lee, B.H. Bioactive peptides. Foods 2017, 6, 32. [CrossRef]
92. Xing, L.; Liu, R.; Gao, X.; Zheng, J.; Wang, C.; Zhou, G.; Zhang, W. The proteomics homology of antioxidant peptides extracted from dry-cured Xuanwei and Jinhua ham. Food Chem. 2018, 266, 420–426. [CrossRef]
93. Gallego, M.; Mora, L.; Aristoy, M.C.; Toldrá, F. The use of label-free mass spectrometry for relative quantification of sarcoplasmic proteins during the processing of dry-cured ham. Food Chem. 2016, 196,
437–444. [CrossRef]