Fruits are vital portion of healthy diet owed to rich source of vitamins, minerals, and dietary fibers, which are highly favorable in keeping individual fit. Unfortunately, these days, onethird of fruits were infested with fungi and their toxic metabolites called mycotoxins, which is most annoying and pose significant health risk. Therefore, there is a need to suggest appropriate mitigation strategies to overcome the mycotoxins contamination in fruits. In the present study, detoxification efficiency of irradiation on zearalenone (ZEA) mycotoxin was investigated in distilled water and fruit juices (orange, pineapple, and tomato) applying statistical program response surface methodology (RSM). The independent factors were distinct doses of irradiation and ZEA, and response factor was a percentage of ZEA reduction in content. A central composite design (CCD) consists of 13 experiments were planned applying software program Design expert with distinct doses of irradiation (up to 10 kGy) and ZEA (1–5 µg). The results revealed that independent factors had a positive significant effect on the response factor. The analysis of variance (ANOVA) was followed to fit a proper statistical model and suggested that quadratic model was appropriate. The optimized model concluded that doses of irradiation and ZEA were the determinant factors for detoxification of ZEA in fruit juices. Further, toxicological safety of irradiation mediated detoxified ZEA was assessed in the cell line model by determining the cell viability (MTT and live/dead cell assays), intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), nuclear damage, and caspase-3 activity. The higher level of live cells and MMP, lower extent of intracellular ROS molecules and caspase-3, and intact nuclear material were noticed in cells treated with irradiation mediated detoxified ZEA related to non-detoxified ZEA. The results confirmed that toxicity of ZEA was decreased with irradiation treatment and detoxification of ZEA by irradiation is safe. The study concluded that irradiation could be a potential post-harvest food processing technique for detoxification of ZEA mycotoxin in fruit juices. However, irradiation of fruit juices with high dose of 10 kGy has minimally altered the quality of fruit juices.
Keywords: mycotoxins, zearalenone, detoxification, irradiation, response surface methodology, toxicological assessment.
Aldred, D., Magan, N., and Olsen, M. (2004). “The use of HACCP in the control of mycotoxins: the case of cereals,” in Mycotoxins in Food: Detection and Control (Boca Raton, FL: CRC Press) 139–173. doi: 10.1201/978143982336 1.pt2
Alghuthaymi, M. A., and Bahkali, A. H. (2015). Toxigenic profiles and trinucleotide repeat diversity of Fusarium species isolated from banana fruits. Biotechnol. Biotechnol. Equip. 29, 324–330. doi: 10.1080/13102818.2014.995519
Andersen, B., and Thrane, U. (2006). Food-borne fungi in fruit and cereals and their production of mycotoxins. Adv. Food Mycol. 137–152. doi: 10.1007/0-387-28391-9_8
Anderson, M. J., and Whitcomb, P. J. (2016). DOE Simplified: Practical Tools for Effective Experimentation. Boca Raton, MA: CRC Press.
Arjeh, E., Barzegar, M., and Sahari, M. A. (2015). Effects of gamma irradiation on physicochemical properties, antioxidant and microbial activities of sour cherry juice. Radiat. Phys. Chem.114, 18–24. doi: 10.1016/j.radphyschem.2015.05.017
Association of Office Analytical Chemists (AOAC) (1996). Official Methods of Analysis, 15th Edn. Washington, DC: George Banta.
Atkinson, A. C., and Donev, A. N. (1992). Optimum Experimental designs. Oxford: Oxford Science Publications.
Aziz, N. H., Attia, E. S., and Farag, S. A. (1997). Effect of gamma-irradiation on the natural occurrence of Fusarium mycotoxins in wheat, flour and bread. Mol. Nutr. Food Res. 41, 34–37.
Barkai-Golan, R., and Paster, N. (2011). Mycotoxins in Fruits and Vegetables. San Diego, CA: Academic Press.
Bevilacqua, A., Campaniello, D., Sinigaglia, M., Ciccarone, C., and Corbo, M. R. (2012). Sodium-benzoate and citrus extract increase the effect of homogenization towards spores of Fusarium oxysporum in pineapple juice. Food Control 28, 199–204. doi: 10.1016/j.foodcont.2012.04.038
Bevilacqua, A., Sinigaglia, M., and Corbo, M. R. (2013). Ultrasound and antimicrobial compounds: a suitable way to control Fusarium oxysporum in juices. Food Bioprocess Technol. 6, 1153–1163. doi: 10.1007/s11947-012-0782-0
Bilgrami, K. S., Sahay, S. S., Shrivastava, A. K., and Rahman, M. F. (1990). Incidence of zearalenone, D. O. N., and T-2 toxin producing strains of Fusarium sp. on food items. Proc. Indian Natl. Sci. Acad. B 56, 223–228.
Blumenthal-Yonassi, J. I. L. L., Paster, N., and Barkai-Golan, R. (1988). Differences in zearalenone production by Fusarium equiseti strains in vitro and in fruits. JSM Mycotoxins 1988, 232–233. doi: 10.2520/myco1975.1988.1Supplement_232
Bryła, M., Wa´skiewicz, A., Podolska, G., Szymczyk, K., Jedrzejczak, R., Damaziak, K., et al. (2016). Occurrence of 26 mycotoxins in the grain of cereals cultivated in Poland. Toxins 8:160. doi: 10.3390/toxins8060160
Calado, T., Venâncio, A., and Abrunhosa, L. (2014). Irradiation for mold and mycotoxin control: a review. Comprehens. Rev. Food Sci. Food Saf. 13, 1049–1061. doi: 10.1111/1541-4337.12095
Chakrabarti, D. K., and Ghosal (1986). Occurrence of free and conjugated 12, 13- epoxytrichothecenes and zearalenone in banana fruits infected with Fusarium moniliforme. Appl. Environ. Microbiol. 51, 217–219.
Chen, Y. C., Lin-Shiau, S. Y., and Lin, J. K. (1998). Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J. Cell. Physiol. 177, 324–333.
Choi, J. I., and Lim, S. (2016). Inactivation of fungal contaminants on Korean traditional cashbox by gamma irradiation. Radiat. Phys. Chem. 118, 70–74. doi: 10.1016/j.radphyschem.2015.05.009
Corbo, M. R., Bevilacqua, A., Campaniello, D., Ciccarone, C., and Sinigaglia, M. (2010). Use of high pressure homogenization as a mean to control the growth of foodborne moulds in tomato juice. Food Control 21, 1507–1511. doi: 10.1016/j.foodcont.2010.04.023
De Berardis, S., De Paola, E. L., Montevecchi, G., Garbini, D., Masino, F., Antonelli, A., et al. (2018). Determination of four Alternaria alternata mycotoxins by QuEChERS approach coupled with liquid chromatography-tandem mass spectrometry in tomato-based and fruit-based products. Food Res. Int. 106, 677–685. doi: 10.1016/j.foodres.2018.01.032
European Commission (2006). Regulation EU “2006 of 19 December 2006 (2006): Setting maximum levels for certain contaminants in foodstuff.” Off. J. Eur. Commission 1881, 5–24.
FAO/IAEA/WHO (1999). High-dose irradiation: wholesomeness of food irradiated with doses above 10 kGy. Report of a Joint FAO/IAEA/WHO study group. World Health Organ. Tech. Rep. Ser. 890, 1–197.
Fotakis, G., and Timbrell, J. A. (2006). In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett. 160, 171–177. doi: 10.1016/j.toxlet.2005.07.001
Gao, F., Jiang, L. P., Chen, M., Geng, C. Y., Yang, G., Ji, F., et al. (2013). Genotoxic effects induced by zearalenone in a human embryonic kidney cell line. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 755, 6–10. doi: 10.1016/j.mrgentox.2013.04.009
Garcia-Recio, S., Pastor-Arroyo, E. M., Marín-Aguilera, M., Almendro, V., and Gascón, P. (2015). The transmodulation of HER2 and EGFR by substance P in breast cancer cells requires c-Src and metalloproteinase activation. PLoS ONE 10:e0129661. doi: 10.1371/journal.pone.0129661
George, E., Kasipandi, M., Vekataramana, M., Kumar, K. N., Allen, J. A., Parimelazhagan, T., et al. (2016). In vitro anti-oxidant and cytotoxic analysis of Pogostemon mollis Benth. Bangladesh J. Pharmacol. 11, 148–158. doi: 10.3329/bjp.v11i1.24157
Harder, M. N. C., De Toledo, T. C. F., Ferreira, A. C. P., and Arthur, V. (2009). Determination of changes induced by gamma radiation in nectar of kiwi fruit (Actinidia deliciosa). Radiat. Phys. Chem. 78, 579–582. doi: 10.1016/j.radphyschem.2009.04.012
Haugland, R. P., MacCoubrey, I. C., and Moore, P. L. (1994). U.S. Patent No. 5,314,805. Washington, DC: U.S. Patent and Trademark Office.
Hooshmand, H., and Klopfenstein, C. F. (1995). Effects of gamma irradiation on mycotoxin disappearance and amino acid contents of corn, wheat, and soybeans with different moisture contents. Plant Foods Hum. Nutr. 47, 227–238. doi: 10.1007/BF01088331
Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T., and Schlager, J. J. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 19, 975–983. doi: 10.1016/j.tiv.2005.06.034
IARC (1993). Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. Lyon: International Agency for Research on Cancer, 1–599.
JECFA (2011). Evaluation of Certain Food Additives and Contaminants: SeventyThird [73rd] Report of the Joint FAO/WHO Expert Committee on Food Additives.
Jime, M., and Mateo, R. (1997). Determination of mycotoxins produced by Fusarium isolates from banana fruits by capillary gas chromatography and high-performance liquid chromatography. J. Chromatogr. A 778, 363–372. doi: 10.1016/S0021-9673(97)00328-2
Juan, C., Mañes, J., Font, G., and Juan-García, A. (2017). Determination of mycotoxins in fruit berry by-products using QuEChERS extraction method. LWT Food Sci. Technol. 86, 344–351. doi: 10.1016/j.lwt.2017.08.020
Kalagatur, N. K., Kamasani, J. R., Mudili, V., Krishna, K., Chauhan, O. P., and Sreepathi, M. H. (2018a). Effect of high pressure processing on growth and mycotoxin production of Fusarium graminearum in maize. Food Biosci. 21, 53–59. doi: 10.1016/j.fbio.2017.11.005
Kalagatur, N. K., Karthick, K., Allen, J. A., Nirmal Ghosh, O. S., Chandranayaka, S., Gupta, V. K., et al. (2017). Application of Activated Carbon Derived from Seed Shells of Jatropha curcas for Decontamination of Zearalenone Mycotoxin. Front. Pharmacol. 8:760. doi: 10.3389/fphar.2017.00760
Kalagatur, N. K., Mudili, V., Kamasani, J. R., and Siddaiah, C. (2018b). Discrete and combined effects of Ylang-Ylang (Cananga odorata) essential oil and gamma irradiation on growth and mycotoxins production by Fusarium graminearum in maize. Food Control 94, 276–283. doi: 10.1016/j.foodcont.2018.07.030
Kalagatur, N. K., Mudili, V., Siddaiah, C., Gupta, V. K., Natarajan, G., Sreepathi, M. H., et al. (2015). Antagonistic activity of Ocimum sanctum L. essential oil on growth and zearalenone production by Fusarium graminearum in maize grains. Front. Microbiol. 6:892. doi: 10.3389/fmicb.2015.00892
Kalagatur, N. K., Reddy, J. K., Nayak, C., Krishna, K., and Gupta, V. K. (2018c). Combinational inhibitory action of Hedychium spicatum L. essential oil and γ-radiation on growth rate and mycotoxins content of Fusarium graminearum in maize: response surface methodology. Front. Microbiol. 9:1511. doi: 10.3389/fmicb.2018.01511
Kalawate, A., and Mehetre, S. (2015). Isolation and characterization of mold fungi and insects infecting sawmill wood, and their inhibition by gamma radiation. Radiat. Phys. Chem. 117, 191–197. doi: 10.1016/j.radphyschem.2015.08.016
Karlovsky, P., Suman, M., Berthiller, F., De Meester, J., Eisenbrand, G., Perrin, I., et al. (2016). Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 32, 179–205. doi: 10.1007/s12550-016-0257-7
Kouadio, J. H., Mobio, T. A., Baudrimont, I., Moukha, S., Dano, S. D., and Creppy, E. E. (2005). Comparative study of cytotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2. Toxicology 213, 56–65. doi: 10.1016/j.tox.2005.05.010
Kumar, K. N., Venkataramana, M., Allen, J. A., Chandranayaka, S., Murali, H. S., and Batra, H. V. (2016). Role of Curcuma longa L. essential oil in controlling the growth and zearalenone production of Fusarium graminearum. LWT Food Sci. Technol. 69, 522–528. doi: 10.1016/j.lwt.2016.02.005
Le Caër, S. (2011). Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water 3, 235–253. doi: 10.3390/w3010235
Lozano, G. M., Bejarano, I., Espino, J., Gonzalez, D., Ortiz, A., Garcia, J. F., et al. (2009). Relationship between caspase activity and apoptotic markers in human sperm in response to hydrogen peroxide and progesterone. J. Reproduct. Dev. 55, 615–621. doi: 10.1262/jrd.20250
Milano, G. D., and López, T. A. (1991). Influence of temperature on zearalenone production by regional strains of Fusarium graminearum and Fusarium oxysporum in culture. Int. J. Food Microbiol. 13, 329–333. doi: 10.1016/0168-1605(91)90092-4
Mudili, V., Siddaih, C. N., Nagesh, M., Garapati, P., Naveen Kumar, K., Murali, H. S., et al. (2014). Mould incidence and mycotoxin contamination in freshly harvested maize kernels originated from India. J. Sci. Food Agric. 94, 2674–2683. doi: 10.1002/jsfa.6608
Muniyandi, K., George, E., Mudili, V., Kalagatur, N. K., Anthuvan, A. J., Krishna, K., et al. (2017). Antioxidant and anticancer activities of Plectranthus stocksii Hook. f. leaf and stem extracts. Agricult. Nat. Resour. 51, 63–73. doi: 10.1016/j.anres.2016.07.007
Murray, J. M., Delahunty, C. M., and Baxter, I. A. (2001). Descriptive sensory analysis: past, present and future. Food Res. Int. 34, 461–471. doi: 10.1016/S0963-9969(01)00070-9
Muthulakshmi, S., Maharajan, K., Habibi, H. R., Kadirvelu, K., and Venkataramana, M. (2018). Zearalenone induced embryo and neurotoxicity in zebrafish model (Danio rerio): role of oxidative stress revealed by a multi biomarker study. Chemosphere 198, 111–121. doi: 10.1016/j.chemosphere.2018.01.141
Najafabadi, N. S., Sahari, M. A., Barzegar, M., and Esfahani, Z. H. (2017). Effect of gamma irradiation on some physicochemical properties and bioactive compounds of jujube (Ziziphus jujuba var vulgaris) fruit. Radiat. Phys. Chem. 130, 62–68. doi: 10.1016/j.radphyschem.2016.07.002
Naresh, K., Varakumar, S., Variyar, P. S., Sharma, A., and Reddy, O. V. S. (2015). Effect of γ-irradiation on physico-chemical and microbiological properties of mango (Mangifera indica L.) juice from eight Indian cultivars. Food Biosci. 12, 1–9. doi: 10.1016/j.fbio.2015.06.003
Neme, K., and Mohammed, A. (2017). Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control 78, 412–425. doi: 10.1016/j.foodcont.2017.03.012
Porter, A. G., and Jänicke, R. U. (1999). Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 6:99. doi: 10.1038/sj.cdd.4400476
Reddy, K. J., Jayathilakan, K., and Pandey, M. C. (2015). Effect of ionizing radiation on the protein and lipid quality characteristics of mutton kheema treated with rice bran oil and sunflower oil. Radiat. Phys. Chem. 117, 217–224. doi: 10.1016/j.radphyschem.2015.09.002
Restani, P. (2008). “Diffusion of mycotoxins in fruits and vegetables,” in Mycotoxins in Fruits and Vegetables (San Diego, CA: Elsevier), 105–114. doi: 10.1016/B978-0-12-374126-4.00005-X
Riss, T. L., Moravec, R. A., Niles, A. L., Duellman, S., Benink, H. A., Worzella, T. J., et al. (2016). “Cell viability assays.” in Assay Guidance Manual (Bethesda, MD: Eli Lilly & Company and the National Center for Advancing Translational Sciences), 262–291.
Sandoval-Contreras, T., Villarruel-López, A., Torres-Vitela, R., Garciglia-Mercado, C., Gómez-Anduro, G., Velázquez-Lizárraga, A. E., et al. (2018). Mycotoxigenic potential of phytopathogenic moulds isolated from citrus fruits from different states of Mexico. Qual. Assur. Saf. Crops Foods 10, 125–136. doi: 10.3920/QAS2016.0890
Sharma, N., Ghosh, R., and Nigam, M. (1998). Toxigenic fungi associated with stored, fruits of chironji. Indian Phytopathol. 51, 284–286.
Shier, W. T., Shier, A. C., Xie, W., and Mirocha, C. J. (2001). Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon 39, 1435–1438. doi: 10.1016/S0041-0101(00)00259-2
Škrbic, B., Anti ´ c, I., and Cvejanov, J. (2017). Determination of mycotoxins ´ in biscuits, dried fruits and fruit jams: an assessment of human exposure. Food Addit. Contamin. A 34, 1012–1025. doi: 10.1080/19440049.2017.13 03195
Taniwaki, M. H., Hoenderboom, C. J. M., De Almeida Vitali, A., and Eiroa, M. N. U. (1992). Migration of patulin in apples. J. Food Prot. 55, 902–904. doi: 10.4315/0362-028X-55.11.902
Tatay, E., Font, G., and Ruiz, M. J. (2016). Cytotoxic effects of zearalenone and its metabolites and antioxidant cell defense in CHO-K1 cells. Food Chem. Toxicol. 96, 43–49. doi: 10.1016/j.fct.2016.07.027
Van Egmond, H. P., Schothorst, R. C., and Jonker, M. A. (2007). Regulations relating to mycotoxins in food. Anal. Bioanal. Chem. 389, 147–157. doi: 10.1007/s00216-007-1317-9
Venkataramana, M., Nayaka, S. C., Anand, T., Rajesh, R., Aiyaz, M., Divakara, S. T., et al. (2014). Zearalenone induced toxicity in SHSY-5Y cells: the role of oxidative stress evidenced by N-acetyl cysteine. Food Chem. Toxicol. 65, 335–342. doi: 10.1016/j.fct.2013.12.042
Wang, Y., Zheng, W., Bian, X., Yuan, Y., Gu, J., Liu, X., et al. (2014). Zearalenone induces apoptosis and cytoprotective autophagy in primary Leydig cells. Toxicol. Lett. 226, 182–191. doi: 10.1016/j.toxlet.2014.02.003
Whitcomb, P. J., and Anderson, M. J. (2004). RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments. CRC Press.
Youssef, B. M., Asker, A. A., El-Samahy, S. K., and Swailam, H. M. (2002). Combined effect of steaming and gamma irradiation on the quality of mango pulp stored at refrigerated temperature. Food Res. Int. 35, 1–13. doi: 10.1016/S0963-9969(00)00153-8
Yun, H. J., Kim, H. J., Jung, Y. K., Jung, S., Lee, J. W., and Jo, C. R. (2010). Effect of natural ingredients and red wine for manufacturing meat products on radiation sensitivity of pathogens inoculated into ground beef. Korean J. Food Sci. Anim. Resour. 30, 819–825. doi : 10.5851/kosfa.2010.30.5.819
Zheng, W. L., Wang, B. J., Wang, L., Shan, Y. P., Zou, H., Song, R. L., et al. (2018). ROS-mediated cell cycle arrest and apoptosis induced by zearalenone in mouse sertoli cells via ER stress and the ATP/AMPK Pathway. Toxins 10:24. doi: 10.3390/toxins10010024
Zheng, X., Yang, Q., Zhang, X., Apaliya, M. T., Ianiri, G., Zhang, H., et al. (2017). Biocontrol agents increase the specific rate of patulin production by Penicillium expansum but Decrease the disease and total patulin contamination of apples. Front. Microbiol. 8:1240. doi: 10.3389/fmicb.2017. 01240
Zhu, L., Yuan, H., Guo, C., Lu, Y., Deng, S., Yang, Y., et al. (2012). Zearalenone induces apoptosis and necrosis in porcine granulosa cells via a caspase 3 and caspase 9 dependent mitochondrial signaling pathway. J. Cell. Physiol. 227, 1814–1820. doi: 10.1002/jcp.22906
Zinedine, A., Soriano, J. M., Molto, J. C., and Manes, J. (2007). Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem. Toxicol. 45, 1–18. doi: 10.1016/j.fct.2006.07.030