Author details:




diversity (P-value < 0.05 for π) within at least one population by comparing to a null distribution of values produced from random permutation. We also confirmed that excluding outliers from phylogenomic approaches had no impact on topology of phylogenetic network (S2 Fig) and did not affect clustering of the strains into defined populations on the phylogenomic tree (S3 Fig). Correspondingly, the results inferred from STRUCTURE and PCA with or without outlier regions were similar (S2 Fig).
1. Boedi S, BergerH, SieberC, Mu ¨nsterko ¨tter M, Maloku I, Warth B, et al. Comparison of Fusarium grami nearumTranscriptomes on Living or DeadWheatDifferentiates Substrate-Responsive and Defense Responsive Genes. FrontMicrobiol. 2016; https://doi.org/10.3389/fmicb.2016.01113 PMID: 27507961
2. Desjardins AE. Fusarium Mycotoxins Chemistry, Genetics and Biology; American Phytopathological Society Press. 2006; St. Paul, MN, USA.
3. Audenaert K, VanheuleA, Ho ¨fte M, Haesaert G. Deoxynivalenol: a major player in the multifaceted response of Fusariumto its environment. Toxins (Basel). 2013; https://doi.org/10.3390/toxins6010001
4. Warth B, Preindl K, ManserP, WickP,MarkoD, Buerki-ThurnherrT. Transfer and Metabolismof the Xenoestrogen Zearalenone in HumanPerfusedPlacenta. Environ Health Perspect. 2019; https://doi. org/10.1289/EHP4860 PMID: 31596610
5. Smith MC,MadecS,CotonE,HymeryN.NaturalCo-OccurrenceofMycotoxins inFoodsandFeeds andTheir in vitro Combined Toxicological Effects. Toxins (Basel). 2016; https://doi.org/10.3390/ toxins8040094 PMID: 27023609
6. SunY,HuangK,LongM,YangS,ZhangY.Anupdateonimmunotoxicityandmechanismsofactionof six environmental mycotoxins. Food Chem Toxicol. 2022; https://doi.org/10.1016/j.fct.2022.112895 PMID:35219766
7. Beyer M,Klix MB, KlinkH,Verreet J-A. Quantifying the effects of previous crop, tillage, cultivar and tria zole fungicides on the deoxynivalenol content of wheat grain—a review. J Plant Dis Prot. 2006; https:// doi.org/10.1007/BF03356188.
8. Talas F, McDonald BA.Genome-wideanalysisofFusariumgraminearumfield populations reveals hot spots of recombination. BMC Genom. 2015;https://doi.org/10.1186/s12864-015-2166-0 PMID: 26602546
9. Kelly AC, WardTJ.Populationgenomicsof Fusariumgraminearumrevealssignaturesof divergentevo lution within a major cereal pathogen. PLoS One. 2028; https://doi.org/10.1371/journal.pone.0194616.
10. WaalwijkC,KasteleinP,DeVriesI, Kere ´nyi Z, Van Der LeeT,HesselinkT,et al. Major changesin Fusarium spp. in wheat in the Netherlands. 2003; Eur. J. Plant Pathol. https://doi.org/10.1023/ A:1026086510156.
11. BoutignyA-L,WardTJ,BalloisN,IancuG,IoosR.Diversityof theFusariumgraminearumspeciescom plex on Frenchcereals. Eur J Plant Pathol. 2014; https://doi.org/10.1007/s10658-013-0312-6.
12. TalasF,ParziesHK,MiedanerT.Diversityingeneticstructureand chemotypecomposition of Fusarium graminearumsensustricto populations causing wheat head blight in individual fields in Germany. Eur J Plant Pathol. 2011; https://doi.org/10.1007/s10658-011-9785-3.
13. StępieńŁ,PopielD,KoczykG,ChełkowskiJ. Wheat-infecting Fusariumspeciesin Poland-their chemo types and frequencies revealed by PCR assay. J. Appl. Genet. 2008; https://doi.org/10.1007/ BF03195644PMID:19029692
14. BilskaK,JurczakS,Kulik T, RopelewskaE,OlszewskiJ,Zelechowski M, etal. Species Composition andTrichothecene Genotype Profiling of Fusarium Field Isolates Recovered from Wheat in Poland. Toxins (Basel). 2018 https://doi.org/10.3390/toxins10080325 PMID: 30103473
15. PasqualiM,BeyerM,BohnT,HoffmannL.Comparativeanalysisofgeneticchemotypingmethodsfor Fusarium: tri13 polymorphism does not discriminate between 3 and 15-acetylated deoxynivalenol che motypes. J Phytopathol. 2011 https://doi.org/10.1111/j.1439-0434.2011.01824.x.
16. PasqualiM,BeyerM,LogriecoA,AudenaertK,BalmasV,BaslerR,etal.AEuropeanDatabaseof Fusarium graminearumandF. culmorumTrichotheceneGenotypes.Front Microbiol. 2016; https://doi. org/10.3389/fmicb.2016.00406.
17. vanderLeeT,ZhangH,vanDiepeningenA,WaalwijkC.BiogeographyofFusariumgraminearumspe cies complex and chemotypes: a review. Food Addit ContamPartAChemAnalControlExpoRisk Assess. 2015; https://doi.org/10.1080/19440049.2014.984244 PMID: 25530109
18. Yli-Mattila T, GagkaevaT, WardTJ,AokiT, Kistler HC,O’Donnell K. A novel Asianclade within the Fusarium graminearumspecies complexincludes a newly discoveredcereal head blight pathogen from the Russian Far East. Mycologia. 2009; https://doi.org/10.3852/08-217 PMID: 19927749.
19. PasqualiM,MigheliQ.Geneticapproachestochemotypedetermination in type B- trichothecene pro ducing Fusaria. Int. J. Food Microbiol. 2014; https://doi.org/10.1016/j.ijfoodmicro.2014.08.011 PMID: 25150674
20. KulikT,MolcanT,Fiedorowicz G,vanDiepeningenA,StakheevA,TrederK,etal. Whole-genome sin gle nucleotide polymorphism analysis for typing the pandemic pathogen Fusarium graminearum sensu stricto. Front Microbiol. 2022; https://doi.org/10.3389/fmicb.2022.885978 PMID: 35923405
21. BolgerAM,LohseMandUsadelB.Trimmomatic:aflexibletrimmerforIllumina sequencedata. Bioin formatics 30, 2114–2120. 2014; https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404
22. KulikT,AbarenkovK,BuśkoM,BilskaK,vanDiepeningenAD,Ostrowska-KołodziejczakA, et al. Tox Gen:animprovedreference databasefor the identification of type B-trichothecene genotypes in Fusar ium. PeerJ. 2017; https://doi.org/10.7717/peerj.2992 PMID: 28229023
23. GeneiousPrime2022.0.1.https://www.geneious.com/. Accessed 4 Sep 2022.
24. LiangJM,XayamongkhonH,BrozK,DongY,McCormickSP,AbramovaS,etal.Temporaldynamics andpopulation genetic structure of Fusarium graminearum in the upper Midwestern United States. Fun gal Genet Biol. 2014; https://doi.org/10.1016/j.fgb.2014.10.002 PMID: 25312860
25. LiH,DurbinR.FastandaccurateshortreadalignmentwithBurrows–Wheelertransform.Bioinform. 2009; https://doi.org/10.1093/bioinformatics/btp324 PMID: 19451168
26. DanecekP,BonfieldJK,LiddleJ, MarshallJ, Ohan V,Pollard MO,et al. Twelveyearsof SAMtoolsand BCFtools. Gigascience. 2021; https://doi.org/10.1093/gigascience/giab008 PMID: 33590861
27. DePristoMA,BanksE,PoplinR,GarimellaKV,MaguireJR,HartlC, etal.A frameworkforvariation dis covery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011; https://doi.org/ 10.1038/ng.806 PMID: 21478889
28. NurkS,BankevichA,AntipovD,GurevichAA,KorobeynikovA,LapidusA,etal. Assembling single-cell genomesandmini-metagenomesfromchimericMDAproducts.JComputBiol.2013;https://doi.org/10. 1089/cmb.2013.0084PMID: 24093227
29. StankeM,KellerO,GunduzI,HayesA,WaackS,MorgensternB.AUGUSTUS:abinitiopredictionof alternative transcripts. Nucleic Acids Res. 2006; https://doi.org/10.1093/nar/gkl200 PMID: 16845043
30. PurcellS,NealB,Todd-BrownK,ThomasL,FerreiraM.PLINK:AToolsetforWhole-GenomeAssocia tion and Population-Based Linkage Analysis. Am J Hum Genet. 2007;https://doi.org/10.1086/519795.
31. PritchardJK, Stephens M,DonnellyP.Inference ofpopulation structure using multilocus genotype data. Genetics. 2000; https://doi.org/10.1093/genetics/155.2.945 PMID: 10835412
32. EvannoG,RegnautS,GoudetJ.Detectingthenumberofclustersofindividuals using the software STRUCTURE:asimulationstudy.MolEcol. 2005;https://doi.org/10.1111/j.1365-294X.2005.02553.x PMID:15969739
33. Flint-Garcia SA, Thornsberry JM. Structure of linkage disequilibrium in plants. Annu RevPlant Biol. 2003; https://doi.org/10.1146/annurev.arplant.54.031902.134907 PMID: 14502995
34. EarlDA,VonholdtBM.Structureharvester: a website and programfor visualizing structure output and implementing the Evannomethod.ConservGenetResour.2012; https://doi.org/10.1007/s12686-011 9548-7.
35. ChenW,HouL,ZhangZ,PangX,LiY.Geneticdiversity,populationstructure, andlinkage disequilib rium of a Corecollection of Ziziphus jujuba assessed with genome-wide SNPs developed by genotyp ing-by-sequencing and SSR markers. Front Plant Sci. 2017; https://doi.org/10.3389/fpls.2017.00575 PMID:28458680
36. NiuS,SongQ,KoiwaH,QiaoD,ZhaoD,ChenZ,etal.Geneticdiversity,linkagedisequilibrium, and population structure analysis of the tea plant (Camellia sinensis) from an origin center, Guizhou plateau, using genome-wide SNPsdevelopedbygenotyping-by-sequencing. BMC Plant Biol. 2019; https://doi. org/10.1186/s12870-019-1917-5 PMID: 31337341
37. OrtizEM.vcf2phylipv2.0: convert a VCFmatrixinto several matrix formats for phylogenetic analysis. 2019; https://doi.org/10.5281/zenodo.2540861.
38. NguyenLT,SchmidtHA,HaeselerAV,MinhBQ.IQ-TREE:Afastandeffectivestochasticalgorithmfor estimating maximum likelihood phylogenies. Mol. Biol. Evol. 2015; https://doi.org/10.1093/molbev/ msu300PMID:25371430
39. RevellLJ.phytools:An Rpackageforphylogenetic comparative biology(and other things). Methods Ecol Evol. 2012; 3: 217–223; https://doi.org/10.1111/j.2041-210X.2011.00169.x
40. HusonDH,BryantD.Applicationofphylogenetic networksin evolutionary studies. Mol Biol Evol. 2006; https://doi.org/10.1093/molbev/msj030 PMID: 16221896
41. NieuwenhuisBP,JamesTY.Thefrequencyofsexinfungi.PhilosTransRSocLondBBiolSci.2016; https://doi.org/10.1098/rstb.2015.0540 PMID: 27619703
42. PfeiferB,Wittelsbu ¨rger U, Ramos-Onsins SE, Lercher MJ. PopGenome: an efficient Swiss armyknife for population genomic analyses in R. Mol Biol Evol. 2014; https://doi.org/10.1093/molbev/msu136 PMID:24739305
43. TakahataN,NeiM.Genegenealogyandvarianceofinterpopulational nucleotide differences. Genet. 1985; https://doi.org/10.1093/genetics/110.2.325 PMID: 4007484
44. WattersonG.Onthenumberofsegregatingsitesingenetical modelswithoutrecombination. Theor. Popul. Biol. 1975; https://doi.org/10.1016/0040-5809(75)90020-9 PMID: 1145509
45. TajimaF.Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genet. 1989; https://doi.org/10.1093/genetics/123.3.585 PMID: 2513255
46. HudsonRR,KaplanNL.Statisticalproperties of the number of recombination events in the history of a sampleof DNAsequences.Genet.1985;https://doi.org/10.1093/genetics/111.1.147 PMID: 4029609
47. WakeleyJ.Thevarianceofpairwisenucleotide differences in two populations with migration. Theor. Popul. Biol. 1996; https://doi.org/10.1006/tpbi.1996.0002 PMID: 8813013
48. HudsonRR,SlatkinM,MaddisonW.EstimationoflevelsofgeneflowfromDNAsequencedata.Genet. 1992; https://doi.org/10.1093/genetics/132.2.583 PMID: 1427045
49. EllisonCE,Hall C,KowbelD,WelchJ,BremRB,GlassNL,etal.Populationgenomicsandlocaladap tation in wild isolates of a model microbial eukaryote. Proc Natl Acad Sci U S A. 2011; https://doi.org/10. 1073/pnas.1014971108 PMID:21282627
50. KrzywinskiM,ScheinJ,BirolI, ConnorsJ, GascoyneR,HorsmanD,etal. Circos: an information aes thetic for comparative genomics. Genome Res. 2009; https://doi.org/10.1101/gr.092759.109 PMID: 19541911
51. QuinlanAR.,HallIM.BEDTools: aflexible suite of utilities for comparing genomic features, Bioinform. 2010; https://doi.org/10.1093/bioinformatics/btq033.
52. SnipenL,LilandKH.Micropan: anR-packageformicrobialpan-genomics. BMCBioinform. 2015; https://doi.org/10.1186/s12859-015-0517-0 PMID: 25888166
53. CamachoC,CoulourisG,AvagyanV,MaN,PapadopoulosJ,BealerK,etal.BLAST+:architecture andapplications. BMC Bioinform. 2009; https://doi.org/10.1186/1471-2105-10-421 PMID: 20003500
54. denBakkerHC,MorenoSwittAI,GovoniG,CummingsCA,RanieriML,DegoricijaL,etal.Genome sequencing reveals diversification of virulence factor content and possible host adaptation in distinct subpopulations of Salmonella enterica. BMC Genom. 2011; https://doi.org/10.1186/1471-2164-12-425 PMID:21859443
55. Huerta-CepasJ,ForslundK,CoelhoLP,Szklarczyk D,JensenLJ, vonMeringC,etal. FastGenome WideFunctional Annotation through Orthology Assignment by eggNOG-Mapper. Mol Biol Evol. 2017; https://doi.org/10.1093/molbev/msx148 PMID: 28460117
56. QuevillonE,Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domainsidentifier. Nucleic Acids Res. 2005; https://doi.org/10.1093/nar/gki442 PMID: 15980438
57. FrankhamR,BallouJD,andBriscoeDA.Introduction to ConservationGenetics. Cambridge: Cam bridge University Press. 2002; https://doi.org/10.1017/CBO9780511808999.
58. LuoZ,BrockJ,DyerJM,KutchanT,SchachtmanD,AugustinM,etal.GeneticDiversityandPopulation Structure of a Camelina sativa Spring Panel. Front Plant Sci. 2019; https://doi.org/10.3389/fpls.2019. 00184PMID:30842785
59. LiW,LuJ,YangC,ArildsenK,LiX,XiaS.AnAmidaseContributestoFullVirulenceofSclerotiniascler otiorum. Int. J. Mol. Sci. 2022; https://doi.org/10.3390/ijms231911207 PMID: 36232508
60. VangalisV,PapaioannouIA,MarkakisEA,KnopM,TypasMA.Hex1,theMajorComponentofWoronin Bodies, Is Required for Normal Development, Pathogenicity, and Stress Response in the Plant Patho genic FungusVerticillium dahliae. J Fungi (Basel). 2020; https://doi.org/10.3390/jof6040344 PMID: 33297524
61. YuanJ,LiD,QinL,ShenJ,GuoX,TumukundeE,etal.HexAisrequiredforgrowth,aflatoxinbiosyn thesis and virulence in Aspergillus flavus. BMC Mol Biol. 2019; https://doi.org/10.1186/s12867-019 0121-3 PMID:30744561
62. SoundararajanS,JeddG,LiX,Ramos-PamploñaM,ChuaNH,NaqviNI.Woroninbodyfunctionin Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell. 2004; https://doi.org/10.1105/tpc.020677 PMID: 15155882
63. SonM,LeeKM,YuJ,KangM,ParkJM,KwonSJ,etal.TheHEX1geneofFusariumgraminearumis required for fungal asexual reproduction and pathogenesis and for efficient viral RNA accumulation of Fusarium graminearumvirus 1. J Virol. 2013; https://doi.org/10.1128/JVI.01026-13 PMID: 23864619
64. LinHC,YuPL,ChenLH,TsaiHC,ChungKR.AMajorFacilitatorSuperfamilyTransporterRegulated by theStress-Responsive Transcription Factor Yap1 Is Required for Resistance to Fungicides, Xenobi otics, and Oxidants and Full Virulence in Alternaria alternata. Front Microbiol. 2018; https://doi.org/10. 3389/fmicb.2018.02229.
65. BlandenetM,Gonc ¸alvesIR,RascleC,DupuyJ-W,GilletF-X, Poussereau N,et al. Evidencing New Roles for the Glycosyl-Transferase Cps1 in the Phytopathogenic Fungus Botrytis cinerea. J. Fungi. 2022; https://doi.org/10.3390/jof8090899 PMID: 36135623
66. ElleucheS,Po ¨ggelerS. Carbonic anhydrases in fungi. Microbiology (Reading). 2010; https://doi.org/10. 1099/mic.0.032581-0 PMID: 19833770
67. MesserPW,NeherRA.Estimatingthestrengthofselectivesweepsfromdeeppopulationdiversity data. Genet. 2012; https://doi.org/10.1534/genetics.112.138461 PMID: 22491190
68. LinHC,YuPL,ChenLH,TsaiHC,ChungKR.AMajorFacilitatorSuperfamilyTransporterRegulated by theStress-Responsive Transcription Factor Yap1 Is Required for Resistance to Fungicides, Xenobi otics, and Oxidants and Full Virulence in Alternaria alternata. Front Microbiol. 2018; https://doi.org/10. 3389/fmicb.2018.02229.
69. AjmalM,HussainA,AliA,ChenH,LinH.StrategiesforControlling the Sporulation in Fusarium spp. J. Fungi. 2023; https://doi.org/10.3390/jof9010010.
70. MinamiA,UgaiT,OzakiT,OikawaH.Predictingthechemicalspaceoffungalpolyketides byphylog eny-based bioinformatics analysis of polyketide synthase-nonribosomal peptide synthetase and its modification enzymes. Sci Rep. 2020; https://doi.org/10.1038/s41598-020-70177-w PMID: 32782278
71. LaurentB,MoinardM,SpataroC,PontsN,BarreauC,Foulongne-OriolM.Landscapeofgenomic diversity and host adaptation in Fusarium graminearum. BMC Genom. 2017;https://doi.org/10.1186/ s12864-017-3524-x PMID: 28231761
72. ZellerKA,BowdenRL,LeslieJF.Diversity of epidemic populationsof Gibberella zeae from small quad rats in Kansas and NorthDakota. Phytopathology. 2003; https://doi.org/10.1094/PHYTO.2003.93.7. 874PMID:18943169
73. WardTJ,ClearRM,RooneyAP,O’DonnellK,GabaD,PatrickS,etal.Anadaptiveevolutionaryshift in Fusarium headblight pathogen populations is driving the rapid spread of more toxigenic Fusarium gra minearumin North America.Fungal Genet. Biol. 2008; https://doi.org/10.1016/j.fgb.2007.10.003.
74. NielsenLK,JensenJD,Rodrı ´guezA,JørgensenLN,JustesenAF. TRI12basedquantitative real-time PCRassaysrevealthedistribution of trichothecene genotypes of F. graminearum and F. culmorum iso lates in Danish small grain cereals. Int. J. Food Microbiol. 2012; https://doi.org/10.1016/j.ijfoodmicro. 2012.06.010.
75. KellyAC,ClearRM,O’DonnellK,McCormickS,TurkingtonTK,TekauzA,etal.Diversity of Fusarium headblight populations and trichothecene toxin types reveals regional differences in pathogen composi tion and temporal dynamics. Fungal Genet Biol. 2015; https://doi.org/10.1016/j.fgb.2015.05.016 PMID: 26127017
76. SharmaA,SharmaD,VermaSK.ZincbindingproteomeofaphytopathogenXanthomonastranslucens pv. undulosa. R Soc OpenSci.2019;https://doi.org/10.1098/rsos.190369.
77. XiaP,LianS,WuY,YanL,QuanG,ZhuG.Zincisanimportantinter-kingdomsignalbetweenthehost andmicrobe. Vet Res. 2021; https://doi.org/10.1186/s13567-021-00913-1 PMID: 33663613
78. JohnE,SinghKB,OliverRP,TanKC.Transcriptionfactor controlof virulence in phytopathogenic fungi. Mol Plant Pathol. 2021; https://doi.org/10.1111/mpp.13056 PMID: 33973705
79. StaatsCC,KmetzschL,SchrankA,VainsteinMH.Fungalzincmetabolismandits connections toviru lence. Front Cell Infect Microbiol. 2013; https://doi.org/10.3389/fcimb.2013.00065 PMID: 24133658
80. ShelestE.Transcription factors in fungi. FEMS Microbiol Lett. 2008; https://doi.org/10.1111/j.1574 6968.2008.01293.x PMID: 18789126
81. DimouS,DiallinasG.LifeandDeathofFungalTransporters underthe Challenge of Polarity. Int J Mol Sci. 2020; https://doi.org/10.3390/ijms21155376 PMID: 32751072
82. DouglasLM,KonopkaJB.Plasmamembraneorganizationpromotesvirulenceofthehumanfungal pathogen Candidaalbicans. J Microbiol. 2016; https://doi.org/10.1007/s12275-016-5621-y.
83. CavalheiroM,PaisP,GalochaM,TeixeiraMC.Host-PathogenInteractions Mediated byMDR Trans porters in Fungi: As Pleiotropic as it Gets! Genes. 2018; https://doi.org/10.3390/genes9070332 PMID: 30004464
84. LucasJA,HawkinsNJ,FraaijeBA.Theevolutionoffungicideresistance. Adv Appl Microbiol. 2015; https://doi.org/10.1016/bs.aambs.2014.09.001 PMID: 25596029
85. PrasadR,RawalMK.Effluxpumpproteinsinantifungal resistance. Front Pharmacol. 2014; https://doi. org/10.3389/fphar.2014.00202 PMID: 25221515
86. Anonymous.(2023)EUPlantProtectionProducts Regulation (EU PPP).https://www.reach24h.com/ en/service/agrochemical-service/eu-ppp-pesticide-regulatory-compliance.html. Accessed 4 Sep 2023.
87. DongD,HeG,ZhangS,ZhangZ.Evolutionofolfactoryreceptorgenesinprimatesdominated by birth and-death process. Genome Biol Evol. 2009; https://doi.org/10.1093/gbe/evp026 PMID: 20333195
88. BlaisJ,RicoC,vanOosterhoutC,CableJ,TurnerGF,Bernatchez L. MHCAdaptiveDivergence betweenClosely Related and Sympatric African Cichlids. PLoS ONE. 2007; https://doi.org/10.1371/ journal.pone.0000734 PMID: 17710134
89. BrownAJ,HaynesK,QuinnJ.Nitrosativeandoxidativestressresponses in fungal pathogenicity. Curr Opin Microbiol. 2009; https://doi.org/10.1016/j.mib.2009.06.007 PMID: 19616469
90. GrahlN,ShepardsonKM,ChungD,CramerRA.Hypoxiaandfungalpathogenesis:toairornottoair? Eukaryot Cell. 2012; https://doi.org/10.1128/EC.00031-12 PMID: 22447924
91. Jime ´nezN,Esteban-TorresM, MancheñoJM,deLasRivasB,MuñozR.Tannindegradationbya novel tannase enzymepresentin someLactobacillus plantarumstrains. Appl Environ Microbiol. 2014; https://doi.org/10.1128/AEM.00324-14 PMID: 24610854
92. GitongaHW,KyamanywaS,AruseiP,LukandaMM,EdemaR,DramandriIO.Genotypexenvironment interaction influence secondary metabolite in cowpea infested by flower bud thrips. Agronomy. 2022; https://doi.org/10.3390/agronomy12123210.
