Author details:
1. Boedi S, BergerH, SieberC, Mu ¨nsterko ¨tter M, Maloku I, Warth B, et al. Comparison of Fusarium grami nearumTranscriptomes on Living or DeadWheatDifferentiates Substrate-Responsive and Defense Responsive Genes. FrontMicrobiol. 2016; https://doi.org/10.3389/fmicb.2016.01113 PMID: 27507961
2. Desjardins AE. Fusarium Mycotoxins Chemistry, Genetics and Biology; American Phytopathological Society Press. 2006; St. Paul, MN, USA.
3. Audenaert K, VanheuleA, Ho ¨fte M, Haesaert G. Deoxynivalenol: a major player in the multifaceted response of Fusariumto its environment. Toxins (Basel). 2013; https://doi.org/10.3390/toxins6010001
4. Warth B, Preindl K, ManserP, WickP,MarkoD, Buerki-ThurnherrT. Transfer and Metabolismof the Xenoestrogen Zearalenone in HumanPerfusedPlacenta. Environ Health Perspect. 2019; https://doi. org/10.1289/EHP4860 PMID: 31596610
5. Smith MC,MadecS,CotonE,HymeryN.NaturalCo-OccurrenceofMycotoxins inFoodsandFeeds andTheir in vitro Combined Toxicological Effects. Toxins (Basel). 2016; https://doi.org/10.3390/ toxins8040094 PMID: 27023609
6. SunY,HuangK,LongM,YangS,ZhangY.Anupdateonimmunotoxicityandmechanismsofactionof six environmental mycotoxins. Food Chem Toxicol. 2022; https://doi.org/10.1016/j.fct.2022.112895 PMID:35219766
7. Beyer M,Klix MB, KlinkH,Verreet J-A. Quantifying the effects of previous crop, tillage, cultivar and tria zole fungicides on the deoxynivalenol content of wheat grain—a review. J Plant Dis Prot. 2006; https:// doi.org/10.1007/BF03356188.
8. Talas F, McDonald BA.Genome-wideanalysisofFusariumgraminearumfield populations reveals hot spots of recombination. BMC Genom. 2015;https://doi.org/10.1186/s12864-015-2166-0 PMID: 26602546
9. Kelly AC, WardTJ.Populationgenomicsof Fusariumgraminearumrevealssignaturesof divergentevo lution within a major cereal pathogen. PLoS One. 2028; https://doi.org/10.1371/journal.pone.0194616.
10. WaalwijkC,KasteleinP,DeVriesI, Kere ´nyi Z, Van Der LeeT,HesselinkT,et al. Major changesin Fusarium spp. in wheat in the Netherlands. 2003; Eur. J. Plant Pathol. https://doi.org/10.1023/ A:1026086510156.
11. BoutignyA-L,WardTJ,BalloisN,IancuG,IoosR.Diversityof theFusariumgraminearumspeciescom plex on Frenchcereals. Eur J Plant Pathol. 2014; https://doi.org/10.1007/s10658-013-0312-6.
12. TalasF,ParziesHK,MiedanerT.Diversityingeneticstructureand chemotypecomposition of Fusarium graminearumsensustricto populations causing wheat head blight in individual fields in Germany. Eur J Plant Pathol. 2011; https://doi.org/10.1007/s10658-011-9785-3.
13. StępieńŁ,PopielD,KoczykG,ChełkowskiJ. Wheat-infecting Fusariumspeciesin Poland-their chemo types and frequencies revealed by PCR assay. J. Appl. Genet. 2008; https://doi.org/10.1007/ BF03195644PMID:19029692
14. BilskaK,JurczakS,Kulik T, RopelewskaE,OlszewskiJ,Zelechowski M, etal. Species Composition andTrichothecene Genotype Profiling of Fusarium Field Isolates Recovered from Wheat in Poland. Toxins (Basel). 2018 https://doi.org/10.3390/toxins10080325 PMID: 30103473
15. PasqualiM,BeyerM,BohnT,HoffmannL.Comparativeanalysisofgeneticchemotypingmethodsfor Fusarium: tri13 polymorphism does not discriminate between 3 and 15-acetylated deoxynivalenol che motypes. J Phytopathol. 2011 https://doi.org/10.1111/j.1439-0434.2011.01824.x.
16. PasqualiM,BeyerM,LogriecoA,AudenaertK,BalmasV,BaslerR,etal.AEuropeanDatabaseof Fusarium graminearumandF. culmorumTrichotheceneGenotypes.Front Microbiol. 2016; https://doi. org/10.3389/fmicb.2016.00406.
17. vanderLeeT,ZhangH,vanDiepeningenA,WaalwijkC.BiogeographyofFusariumgraminearumspe cies complex and chemotypes: a review. Food Addit ContamPartAChemAnalControlExpoRisk Assess. 2015; https://doi.org/10.1080/19440049.2014.984244 PMID: 25530109
18. Yli-Mattila T, GagkaevaT, WardTJ,AokiT, Kistler HC,O’Donnell K. A novel Asianclade within the Fusarium graminearumspecies complexincludes a newly discoveredcereal head blight pathogen from the Russian Far East. Mycologia. 2009; https://doi.org/10.3852/08-217 PMID: 19927749.
19. PasqualiM,MigheliQ.Geneticapproachestochemotypedetermination in type B- trichothecene pro ducing Fusaria. Int. J. Food Microbiol. 2014; https://doi.org/10.1016/j.ijfoodmicro.2014.08.011 PMID: 25150674
20. KulikT,MolcanT,Fiedorowicz G,vanDiepeningenA,StakheevA,TrederK,etal. Whole-genome sin gle nucleotide polymorphism analysis for typing the pandemic pathogen Fusarium graminearum sensu stricto. Front Microbiol. 2022; https://doi.org/10.3389/fmicb.2022.885978 PMID: 35923405
21. BolgerAM,LohseMandUsadelB.Trimmomatic:aflexibletrimmerforIllumina sequencedata. Bioin formatics 30, 2114–2120. 2014; https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404
22. KulikT,AbarenkovK,BuśkoM,BilskaK,vanDiepeningenAD,Ostrowska-KołodziejczakA, et al. Tox Gen:animprovedreference databasefor the identification of type B-trichothecene genotypes in Fusar ium. PeerJ. 2017; https://doi.org/10.7717/peerj.2992 PMID: 28229023
23. GeneiousPrime2022.0.1.https://www.geneious.com/. Accessed 4 Sep 2022.
24. LiangJM,XayamongkhonH,BrozK,DongY,McCormickSP,AbramovaS,etal.Temporaldynamics andpopulation genetic structure of Fusarium graminearum in the upper Midwestern United States. Fun gal Genet Biol. 2014; https://doi.org/10.1016/j.fgb.2014.10.002 PMID: 25312860
25. LiH,DurbinR.FastandaccurateshortreadalignmentwithBurrows–Wheelertransform.Bioinform. 2009; https://doi.org/10.1093/bioinformatics/btp324 PMID: 19451168
26. DanecekP,BonfieldJK,LiddleJ, MarshallJ, Ohan V,Pollard MO,et al. Twelveyearsof SAMtoolsand BCFtools. Gigascience. 2021; https://doi.org/10.1093/gigascience/giab008 PMID: 33590861
27. DePristoMA,BanksE,PoplinR,GarimellaKV,MaguireJR,HartlC, etal.A frameworkforvariation dis covery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011; https://doi.org/ 10.1038/ng.806 PMID: 21478889
28. NurkS,BankevichA,AntipovD,GurevichAA,KorobeynikovA,LapidusA,etal. Assembling single-cell genomesandmini-metagenomesfromchimericMDAproducts.JComputBiol.2013;https://doi.org/10. 1089/cmb.2013.0084PMID: 24093227
29. StankeM,KellerO,GunduzI,HayesA,WaackS,MorgensternB.AUGUSTUS:abinitiopredictionof alternative transcripts. Nucleic Acids Res. 2006; https://doi.org/10.1093/nar/gkl200 PMID: 16845043
30. PurcellS,NealB,Todd-BrownK,ThomasL,FerreiraM.PLINK:AToolsetforWhole-GenomeAssocia tion and Population-Based Linkage Analysis. Am J Hum Genet. 2007;https://doi.org/10.1086/519795.
31. PritchardJK, Stephens M,DonnellyP.Inference ofpopulation structure using multilocus genotype data. Genetics. 2000; https://doi.org/10.1093/genetics/155.2.945 PMID: 10835412
32. EvannoG,RegnautS,GoudetJ.Detectingthenumberofclustersofindividuals using the software STRUCTURE:asimulationstudy.MolEcol. 2005;https://doi.org/10.1111/j.1365-294X.2005.02553.x PMID:15969739
33. Flint-Garcia SA, Thornsberry JM. Structure of linkage disequilibrium in plants. Annu RevPlant Biol. 2003; https://doi.org/10.1146/annurev.arplant.54.031902.134907 PMID: 14502995
34. EarlDA,VonholdtBM.Structureharvester: a website and programfor visualizing structure output and implementing the Evannomethod.ConservGenetResour.2012; https://doi.org/10.1007/s12686-011 9548-7.
35. ChenW,HouL,ZhangZ,PangX,LiY.Geneticdiversity,populationstructure, andlinkage disequilib rium of a Corecollection of Ziziphus jujuba assessed with genome-wide SNPs developed by genotyp ing-by-sequencing and SSR markers. Front Plant Sci. 2017; https://doi.org/10.3389/fpls.2017.00575 PMID:28458680
36. NiuS,SongQ,KoiwaH,QiaoD,ZhaoD,ChenZ,etal.Geneticdiversity,linkagedisequilibrium, and population structure analysis of the tea plant (Camellia sinensis) from an origin center, Guizhou plateau, using genome-wide SNPsdevelopedbygenotyping-by-sequencing. BMC Plant Biol. 2019; https://doi. org/10.1186/s12870-019-1917-5 PMID: 31337341
37. OrtizEM.vcf2phylipv2.0: convert a VCFmatrixinto several matrix formats for phylogenetic analysis. 2019; https://doi.org/10.5281/zenodo.2540861.
38. NguyenLT,SchmidtHA,HaeselerAV,MinhBQ.IQ-TREE:Afastandeffectivestochasticalgorithmfor estimating maximum likelihood phylogenies. Mol. Biol. Evol. 2015; https://doi.org/10.1093/molbev/ msu300PMID:25371430
39. RevellLJ.phytools:An Rpackageforphylogenetic comparative biology(and other things). Methods Ecol Evol. 2012; 3: 217–223; https://doi.org/10.1111/j.2041-210X.2011.00169.x
40. HusonDH,BryantD.Applicationofphylogenetic networksin evolutionary studies. Mol Biol Evol. 2006; https://doi.org/10.1093/molbev/msj030 PMID: 16221896
41. NieuwenhuisBP,JamesTY.Thefrequencyofsexinfungi.PhilosTransRSocLondBBiolSci.2016; https://doi.org/10.1098/rstb.2015.0540 PMID: 27619703
42. PfeiferB,Wittelsbu ¨rger U, Ramos-Onsins SE, Lercher MJ. PopGenome: an efficient Swiss armyknife for population genomic analyses in R. Mol Biol Evol. 2014; https://doi.org/10.1093/molbev/msu136 PMID:24739305
43. TakahataN,NeiM.Genegenealogyandvarianceofinterpopulational nucleotide differences. Genet. 1985; https://doi.org/10.1093/genetics/110.2.325 PMID: 4007484
44. WattersonG.Onthenumberofsegregatingsitesingenetical modelswithoutrecombination. Theor. Popul. Biol. 1975; https://doi.org/10.1016/0040-5809(75)90020-9 PMID: 1145509
45. TajimaF.Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genet. 1989; https://doi.org/10.1093/genetics/123.3.585 PMID: 2513255
46. HudsonRR,KaplanNL.Statisticalproperties of the number of recombination events in the history of a sampleof DNAsequences.Genet.1985;https://doi.org/10.1093/genetics/111.1.147 PMID: 4029609
47. WakeleyJ.Thevarianceofpairwisenucleotide differences in two populations with migration. Theor. Popul. Biol. 1996; https://doi.org/10.1006/tpbi.1996.0002 PMID: 8813013
48. HudsonRR,SlatkinM,MaddisonW.EstimationoflevelsofgeneflowfromDNAsequencedata.Genet. 1992; https://doi.org/10.1093/genetics/132.2.583 PMID: 1427045
49. EllisonCE,Hall C,KowbelD,WelchJ,BremRB,GlassNL,etal.Populationgenomicsandlocaladap tation in wild isolates of a model microbial eukaryote. Proc Natl Acad Sci U S A. 2011; https://doi.org/10. 1073/pnas.1014971108 PMID:21282627
50. KrzywinskiM,ScheinJ,BirolI, ConnorsJ, GascoyneR,HorsmanD,etal. Circos: an information aes thetic for comparative genomics. Genome Res. 2009; https://doi.org/10.1101/gr.092759.109 PMID: 19541911
51. QuinlanAR.,HallIM.BEDTools: aflexible suite of utilities for comparing genomic features, Bioinform. 2010; https://doi.org/10.1093/bioinformatics/btq033.
52. SnipenL,LilandKH.Micropan: anR-packageformicrobialpan-genomics. BMCBioinform. 2015; https://doi.org/10.1186/s12859-015-0517-0 PMID: 25888166
53. CamachoC,CoulourisG,AvagyanV,MaN,PapadopoulosJ,BealerK,etal.BLAST+:architecture andapplications. BMC Bioinform. 2009; https://doi.org/10.1186/1471-2105-10-421 PMID: 20003500
54. denBakkerHC,MorenoSwittAI,GovoniG,CummingsCA,RanieriML,DegoricijaL,etal.Genome sequencing reveals diversification of virulence factor content and possible host adaptation in distinct subpopulations of Salmonella enterica. BMC Genom. 2011; https://doi.org/10.1186/1471-2164-12-425 PMID:21859443
55. Huerta-CepasJ,ForslundK,CoelhoLP,Szklarczyk D,JensenLJ, vonMeringC,etal. FastGenome WideFunctional Annotation through Orthology Assignment by eggNOG-Mapper. Mol Biol Evol. 2017; https://doi.org/10.1093/molbev/msx148 PMID: 28460117
56. QuevillonE,Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domainsidentifier. Nucleic Acids Res. 2005; https://doi.org/10.1093/nar/gki442 PMID: 15980438
57. FrankhamR,BallouJD,andBriscoeDA.Introduction to ConservationGenetics. Cambridge: Cam bridge University Press. 2002; https://doi.org/10.1017/CBO9780511808999.
58. LuoZ,BrockJ,DyerJM,KutchanT,SchachtmanD,AugustinM,etal.GeneticDiversityandPopulation Structure of a Camelina sativa Spring Panel. Front Plant Sci. 2019; https://doi.org/10.3389/fpls.2019. 00184PMID:30842785
59. LiW,LuJ,YangC,ArildsenK,LiX,XiaS.AnAmidaseContributestoFullVirulenceofSclerotiniascler otiorum. Int. J. Mol. Sci. 2022; https://doi.org/10.3390/ijms231911207 PMID: 36232508
60. VangalisV,PapaioannouIA,MarkakisEA,KnopM,TypasMA.Hex1,theMajorComponentofWoronin Bodies, Is Required for Normal Development, Pathogenicity, and Stress Response in the Plant Patho genic FungusVerticillium dahliae. J Fungi (Basel). 2020; https://doi.org/10.3390/jof6040344 PMID: 33297524
61. YuanJ,LiD,QinL,ShenJ,GuoX,TumukundeE,etal.HexAisrequiredforgrowth,aflatoxinbiosyn thesis and virulence in Aspergillus flavus. BMC Mol Biol. 2019; https://doi.org/10.1186/s12867-019 0121-3 PMID:30744561
62. SoundararajanS,JeddG,LiX,Ramos-PamploñaM,ChuaNH,NaqviNI.Woroninbodyfunctionin Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell. 2004; https://doi.org/10.1105/tpc.020677 PMID: 15155882
63. SonM,LeeKM,YuJ,KangM,ParkJM,KwonSJ,etal.TheHEX1geneofFusariumgraminearumis required for fungal asexual reproduction and pathogenesis and for efficient viral RNA accumulation of Fusarium graminearumvirus 1. J Virol. 2013; https://doi.org/10.1128/JVI.01026-13 PMID: 23864619
64. LinHC,YuPL,ChenLH,TsaiHC,ChungKR.AMajorFacilitatorSuperfamilyTransporterRegulated by theStress-Responsive Transcription Factor Yap1 Is Required for Resistance to Fungicides, Xenobi otics, and Oxidants and Full Virulence in Alternaria alternata. Front Microbiol. 2018; https://doi.org/10. 3389/fmicb.2018.02229.
65. BlandenetM,Gonc ¸alvesIR,RascleC,DupuyJ-W,GilletF-X, Poussereau N,et al. Evidencing New Roles for the Glycosyl-Transferase Cps1 in the Phytopathogenic Fungus Botrytis cinerea. J. Fungi. 2022; https://doi.org/10.3390/jof8090899 PMID: 36135623
66. ElleucheS,Po ¨ggelerS. Carbonic anhydrases in fungi. Microbiology (Reading). 2010; https://doi.org/10. 1099/mic.0.032581-0 PMID: 19833770
67. MesserPW,NeherRA.Estimatingthestrengthofselectivesweepsfromdeeppopulationdiversity data. Genet. 2012; https://doi.org/10.1534/genetics.112.138461 PMID: 22491190
68. LinHC,YuPL,ChenLH,TsaiHC,ChungKR.AMajorFacilitatorSuperfamilyTransporterRegulated by theStress-Responsive Transcription Factor Yap1 Is Required for Resistance to Fungicides, Xenobi otics, and Oxidants and Full Virulence in Alternaria alternata. Front Microbiol. 2018; https://doi.org/10. 3389/fmicb.2018.02229.
69. AjmalM,HussainA,AliA,ChenH,LinH.StrategiesforControlling the Sporulation in Fusarium spp. J. Fungi. 2023; https://doi.org/10.3390/jof9010010.
70. MinamiA,UgaiT,OzakiT,OikawaH.Predictingthechemicalspaceoffungalpolyketides byphylog eny-based bioinformatics analysis of polyketide synthase-nonribosomal peptide synthetase and its modification enzymes. Sci Rep. 2020; https://doi.org/10.1038/s41598-020-70177-w PMID: 32782278
71. LaurentB,MoinardM,SpataroC,PontsN,BarreauC,Foulongne-OriolM.Landscapeofgenomic diversity and host adaptation in Fusarium graminearum. BMC Genom. 2017;https://doi.org/10.1186/ s12864-017-3524-x PMID: 28231761
72. ZellerKA,BowdenRL,LeslieJF.Diversity of epidemic populationsof Gibberella zeae from small quad rats in Kansas and NorthDakota. Phytopathology. 2003; https://doi.org/10.1094/PHYTO.2003.93.7. 874PMID:18943169
73. WardTJ,ClearRM,RooneyAP,O’DonnellK,GabaD,PatrickS,etal.Anadaptiveevolutionaryshift in Fusarium headblight pathogen populations is driving the rapid spread of more toxigenic Fusarium gra minearumin North America.Fungal Genet. Biol. 2008; https://doi.org/10.1016/j.fgb.2007.10.003.
74. NielsenLK,JensenJD,Rodrı ´guezA,JørgensenLN,JustesenAF. TRI12basedquantitative real-time PCRassaysrevealthedistribution of trichothecene genotypes of F. graminearum and F. culmorum iso lates in Danish small grain cereals. Int. J. Food Microbiol. 2012; https://doi.org/10.1016/j.ijfoodmicro. 2012.06.010.
75. KellyAC,ClearRM,O’DonnellK,McCormickS,TurkingtonTK,TekauzA,etal.Diversity of Fusarium headblight populations and trichothecene toxin types reveals regional differences in pathogen composi tion and temporal dynamics. Fungal Genet Biol. 2015; https://doi.org/10.1016/j.fgb.2015.05.016 PMID: 26127017
76. SharmaA,SharmaD,VermaSK.ZincbindingproteomeofaphytopathogenXanthomonastranslucens pv. undulosa. R Soc OpenSci.2019;https://doi.org/10.1098/rsos.190369.
77. XiaP,LianS,WuY,YanL,QuanG,ZhuG.Zincisanimportantinter-kingdomsignalbetweenthehost andmicrobe. Vet Res. 2021; https://doi.org/10.1186/s13567-021-00913-1 PMID: 33663613
78. JohnE,SinghKB,OliverRP,TanKC.Transcriptionfactor controlof virulence in phytopathogenic fungi. Mol Plant Pathol. 2021; https://doi.org/10.1111/mpp.13056 PMID: 33973705
79. StaatsCC,KmetzschL,SchrankA,VainsteinMH.Fungalzincmetabolismandits connections toviru lence. Front Cell Infect Microbiol. 2013; https://doi.org/10.3389/fcimb.2013.00065 PMID: 24133658
80. ShelestE.Transcription factors in fungi. FEMS Microbiol Lett. 2008; https://doi.org/10.1111/j.1574 6968.2008.01293.x PMID: 18789126
81. DimouS,DiallinasG.LifeandDeathofFungalTransporters underthe Challenge of Polarity. Int J Mol Sci. 2020; https://doi.org/10.3390/ijms21155376 PMID: 32751072
82. DouglasLM,KonopkaJB.Plasmamembraneorganizationpromotesvirulenceofthehumanfungal pathogen Candidaalbicans. J Microbiol. 2016; https://doi.org/10.1007/s12275-016-5621-y.
83. CavalheiroM,PaisP,GalochaM,TeixeiraMC.Host-PathogenInteractions Mediated byMDR Trans porters in Fungi: As Pleiotropic as it Gets! Genes. 2018; https://doi.org/10.3390/genes9070332 PMID: 30004464
84. LucasJA,HawkinsNJ,FraaijeBA.Theevolutionoffungicideresistance. Adv Appl Microbiol. 2015; https://doi.org/10.1016/bs.aambs.2014.09.001 PMID: 25596029
85. PrasadR,RawalMK.Effluxpumpproteinsinantifungal resistance. Front Pharmacol. 2014; https://doi. org/10.3389/fphar.2014.00202 PMID: 25221515
86. Anonymous.(2023)EUPlantProtectionProducts Regulation (EU PPP).https://www.reach24h.com/ en/service/agrochemical-service/eu-ppp-pesticide-regulatory-compliance.html. Accessed 4 Sep 2023.
87. DongD,HeG,ZhangS,ZhangZ.Evolutionofolfactoryreceptorgenesinprimatesdominated by birth and-death process. Genome Biol Evol. 2009; https://doi.org/10.1093/gbe/evp026 PMID: 20333195
88. BlaisJ,RicoC,vanOosterhoutC,CableJ,TurnerGF,Bernatchez L. MHCAdaptiveDivergence betweenClosely Related and Sympatric African Cichlids. PLoS ONE. 2007; https://doi.org/10.1371/ journal.pone.0000734 PMID: 17710134
89. BrownAJ,HaynesK,QuinnJ.Nitrosativeandoxidativestressresponses in fungal pathogenicity. Curr Opin Microbiol. 2009; https://doi.org/10.1016/j.mib.2009.06.007 PMID: 19616469
90. GrahlN,ShepardsonKM,ChungD,CramerRA.Hypoxiaandfungalpathogenesis:toairornottoair? Eukaryot Cell. 2012; https://doi.org/10.1128/EC.00031-12 PMID: 22447924
91. Jime ´nezN,Esteban-TorresM, MancheñoJM,deLasRivasB,MuñozR.Tannindegradationbya novel tannase enzymepresentin someLactobacillus plantarumstrains. Appl Environ Microbiol. 2014; https://doi.org/10.1128/AEM.00324-14 PMID: 24610854
92. GitongaHW,KyamanywaS,AruseiP,LukandaMM,EdemaR,DramandriIO.Genotypexenvironment interaction influence secondary metabolite in cowpea infested by flower bud thrips. Agronomy. 2022; https://doi.org/10.3390/agronomy12123210.