High-producing cattle have increased demands for energy and nutrients. This is the main reason why feeding programs for cattle encourage the use of diets rich in grains and easily fermentable by-products. This feeding leads to a large production of short-chain fatty acids, which supply large amounts of energy and other metabolic substrates to the host, supporting high milk yields, and enhancing cost efficiency of cattle production. However, the inability to absorb large amounts of acids disrupts the homeostatic rumen acid-base regulation, which is a critical for maintaining healthy and optimal conditions for the microbiome to thrive (e.g. normobiosis). As a consequence, the rumen loses some of its main metabolic functions and a large amount of ingested substrates bypasses the rumen undigested and challenges the normobiosis in the lower parts of the digestive tract. Accumulating evidence suggests that dysbiosis leads to a disruption of homeostasis and development of inflammation in cattle. Most importantly, this disorder impairs rumen functioning and exacerbates health status of animals, triggering cascades of events that lead to many metabolic and infectious diseases such as laminitis, ketosis, milk fat depression syndrome, displaced abomasum, hindgut acidosis, shedding of pathogens, systemic inflammation and poor reproduction. This article will deal with challenges to maintain proper rumen and gut health in high-producing cattle, highlighting current data of rumen microbiome and metabolome research. This article will also show underlying mechanisms of gut health disorders and provide dietary recommendations to maintain and enhance gut health in high yielding dairy cows.
Armentano, L., and M. Pereira, M. 1997. Measuring the Effectiveness of Fiber by Animal Response Trials. J. Dairy Sci., 80(7), 1416–1425.
Ametaj, B. N., Zebeli, Q., Saleem, F., Psychogios, N., Lewis, M. J., Dunn, S. M., Xia, J., and D. S Wishart. 2010. Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics, 6(4), 583–594.
Andersen, P. H., Hesselholt, M., and N. Jarløv. 1994. Endotoxin and arachidonic acid metabolites in portal, hepatic and arterial blood of cattle with acute ruminal acidosis. Acta Vet. Scand., 35(3), 223-234.
Aschenbach, J. R., and G. Gäbel. 2000. Effect and absorption of histamine in sheep rumen: significance of acidotic epithelial damage. J. Anim. Sci., 78(2), 464.
Aschenbach, J. R., Penner, G. B., Stumpff, F., and G. Gäbel. 2011. RUMINANT NUTRITION SYMPOSIUM: Role of fermentation acid absorption in the regulation of ruminal pH12. J. Anim. Sci., 89(4), 1092–1107.
Bannink, A., Gerrits, W. J. J., France, J., and J. Dijkstra. 2012. Variation in rumen fermentation and the rumen wall during the transition period in dairy cows. Anim. Feed Sci. Tech., 172(1-2), 80–94.
Beauchemin, K. A., Eriksen, L., Nørgaard, P., and L. M. Rode. 2008. Salivary secretion during meals in lactating dairy cattle. J. Dairy Sci., 91(5), 2077-2081.
Beauchemin, K. A.. 2018. Invited review: Current perspectives on eating and rumination activity in dairy cows. J. Dairy Sci., 101(6), 4762–4784.
Bevans, D. W., Beauchemin, K. A., Schwartzkopf-Genswein, K. S., McKinnon, J. J., and T. A. McAllister. 2005. Effect of rapid or gradual grain adaptation on subacute acidosis and feed intake by feedlot cattle1,2. J. Anim. Sci., 83(5), 1116–1132.
Bramley, E., Lean, I. J., Fulkerson, W. J., Stevenson, M. A., Rabiee, A. R., and N. D. Costa. 2008. The Definition of Acidosis in Dairy Herds Predominantly Fed on Pasture and Concentrates. J. Dairy Sci., 91(1), 308–321.
Brown, M. S., Krehbiel, C. R., Galyean, M. L., Remmenga, M. D., Peters, J. P., Hibbard, B., Robinson, J., and W. M. Moseley. 2000. Evaluation of models of acute and subacute acidosis on dry matter intake, ruminal fermentation, blood chemistry, and endocrine profiles of beef steers. J. Anim. Sci., 78(12), 3155.
Calamari, L., Soriani, N., Panella, G., Petrera, F., Minuti, A., and E. Trevisi. 2014. Rumination time around calving: An early signal to detect cows at greater risk of disease. J. Dairy Sci., 97(6), 3635–3647.
Carney, E. F.. 2016. Microbiota trigger inflammation. Nat. Rev. Nephrol., 12(7), 376–376.
Chaucheyras-Durand, F., Walker, N. D., and A. Bach. 2008. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed Sci. Tech., 145(1-4), 5–26.
Chen, Y., Oba, M., and L. L. Guan. 2012. Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis. Vet. Microb., 159(3-4), 451–459.
Devant, M., Penner, G. B., Marti, S., Quintana, B., Fábregas, F., Bach, A., and A. Arís. 2016. Behavior and inflammation of the rumen and cecum in Holstein bulls fed high-concentrate diets with different concentrate presentation forms with or without straw supplementation1. J. Anim. Sci., 94(9), 3902–3917.
DeVries, T. J., Dohme, F., and K. A. Beauchemin. 2008. Repeated Ruminal Acidosis Challenges in Lactating Dairy Cows at High and Low Risk for Developing Acidosis: Feed Sorting. J. Dairy Sci., 91(10), 3958–3967.
Enemark, J. M. D.. 2008. The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): A review. Open Vet. J., 176(1), 32–43.
Farrhadi, A., Banan, A., Fields, J., and A. Keshavarzian. 2003. Intestinal barrier: An interface between health and disease. J. Gastroenterol. Hepatol., 18(5), 479–497.
Garcia, M., Bradford, B. J., and T. G. Nagaraja. 2017. Invited Review: Ruminal microbes, microbial products, and systemic inflammation 1,2 ARPAS Symposium: Understanding Inflammation and Inflammatory Biomarkers to Improve Animal Performance at the ADSA–ASAS Joint Annual Meeting, Salt Lake City, Utah, July 2016. The Professional Animal Scientist, 33(6), 635–650.
Golder, H. M., Celi, P., Rabiee, A. R., and I. J. Lean. 2014. Effects of feed additives on rumen and blood profiles during a starch and fructose challenge. J. Dairy Sci., 97(2), 985–1004.
Gott, P. N., Hogan, J. S., and W. P. Weiss. 2015. Effects of various starch feeding regimens on responses of dairy cows to intramammary lipopolysaccharide infusion. J. Dairy Sci., 98(3), 1786–1796.
Gressley, T. F., Hall, M. B., and L. E. Armentano. 2011. RUMINANT NUTRITION SYMPOSIUM: Productivity, digestion, and health responses to hindgut acidosis in ruminants1. J. Anim. Sci., 89(4), 1120–1130.
Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., and P. H. Janssen. 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep., 5(1).
Humer, E., Khol-Parisini, A., Gruber, L., Gasteiner, J., Abdel-Raheem, S. M., and Q. Zebeli. 2015. Long-term reticuloruminal pH dynamics and markers of liver health in early-lactating cows of various parities fed diets differing in grain processing. J. Dairy Sci., 98(9), 6433–6448.
Humer, E., Kröger, I., Neubauer, V., Schedle, K., Reisinger, N., and Q. Zebeli. 2018a. Supplementing phytogenic compounds or autolyzed yeast modulates ruminal biogenic amines and plasma metabolome in dry cows experiencing subacute ruminal acidosis. J. Dairy Sci., 101(10), 9559–9574.
Humer, E., Petri, R. M., Aschenbach, J. R., Bradford, B. J., Penner, G. B., Tafaj, M., Südekum, K. H. and Q. Zebeli. 2018b. Invited review: Practical feeding management recommendations to mitigate the risk of subacute ruminal acidosis in dairy cattle. J. Dairy Sci., 101(2), 872–888.
Khafipour, E., Li, S., Plaizier, J. C., and D. O. Krause. 2009. Rumen Microbiome Composition Determined Using Two Nutritional Models of Subacute Ruminal Acidosis. Appl. Environ. Microb., 75(22), 7115–7124.
Khafipour, E., Li, S., Tun, H. M., Derakhshani, H., Moossavi, S., and J. C. Plaizier. 2016. Effects of grain feeding on microbiota in the digestive tract of cattle. Anim. Front., 6(2), 13–19.
Khiaosa-Ard, R., and Q. Zebeli. 2014. Cattle's variation in rumen ecology and metabolism and its contributions to feed efficiency. Livest. Sci., 162, 66-75.
Kleen, J. L., Hooijer, G. A., Rehage, J., and J. P. T. M. Noordhuizen. 2003. Subacute Ruminal Acidosis (SARA): a review. J. Vet. Med. A, 50(8), 406–414.
Krause, K. M., and G. R Oetzel. 2005. Inducing Subacute Ruminal Acidosis in Lactating Dairy Cows. J. Dairy Sci., 88(10), 3633–3639.
Krehbiel, C. R., Rust, S. R., Zhang, G., and S. E. Gilliland. 2003. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J. Anim. Sci., 81(14_suppl_2), E120-E132.
Kröger, I., Humer, E., Neubauer, V., Reisinger, N., Aditya, S., and Q, Zebeli. 2017. Modulation of chewing behavior and reticular pH in nonlactating cows challenged with concentrate-rich diets supplemented with phytogenic compounds and autolyzed yeast. J. Dairy Sci., 100(12), 9702–9714.
LeBlanc, S. J., Leslie, K. E., and T. F. Duffield. 2005. Metabolic Predictors of Displaced Abomasum in Dairy Cattle. J. Dairy Sci., 88(1), 159–170.
Ley, R. E., Turnbaugh, P. J., Klein, S., and J. I. Gordon. 2006. Human gut microbes associated with obesity. Nature, 444(7122), 1022–1023.
Li, S., Gozho, G. N., Gakhar, N., Khafipour, E., Krause, D. O., and J. C. Plaizier. 2012. Evaluation of diagnostic measures for subacute ruminal acidosis in dairy cows. Can. J. Anim. Sci., 92(3), 353–364.
Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., and R. Knight. 2012. Diversity, stability and resilience of the human gut microbiota. Nature, 489(7415), 220–230.
Mao, S. Y., Zhang, R. Y., Wang, D. S., and W. Y. Zhu. 2013. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing. Anaerobe, 24, 12–19.
Mao, S., Zhang, M., Liu, J., and W. Zhu. 2015. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Sci. Rep., 5(1).
McAllister, T. A., Beauchemin, K. A., Alazzeh, A. Y., Baah, J., Teather, R. M., and K. Stanford. 2011. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can. J. Anim. Sci., 91(2), 193–211.
McCann, J. C., Luan, S., Cardoso, F. C., Derakhshani, H., Khafipour, E., and Loor, J. J. (2016). Induction of Subacute Ruminal Acidosis Affects the Ruminal Microbiome and Epithelium. Front. Micro., 7.
Minuti, A., Palladino, A., Khan, M. J., Alqarni, S., Agrawal, A., Piccioli-Capelli, F., Cardoso, F. C., Trevisi, E., and J. J. Loor. 2015. Abundance of ruminal bacteria, epithelial gene expression, and systemic biomarkers of metabolism and inflammation are altered during the peripartal period in dairy cows. J. Dairy Sci., 98(12), 8940–8951.
Nagaraja, T. G., Bartley, E. E., Fina, L. R., and H. D. Anthony. 1978. Relationship of Rumen Gram-Negative Bacteria and Free Endotoxin to Lactic Acidosis in Cattle. J. Anim. Sci., 47(6), 1329–1337.
Nagaraja, T. G., and M. M. Chengappa. 1998. Liver abscesses in feedlot cattle: a review.J. Anim. Sci., 76(1), 287.
Nagaraja, T. G., and E. C. Titgemeyer. 2007. Ruminal Acidosis in Beef Cattle: The Current Microbiological and Nutritional Outlook. J. Dairy Sci., 90, E17–E38.
Neubauer, V., Petri, R., Humer, E., Kröger, I., Mann, E., Reisinger, N., and Q. Zebeli. 2018. High-grain diets supplemented with phytogenic compounds or autolyzed yeast modulate ruminal bacterial community and fermentation in dry cows. J. Dairy Sci., 101(3), 2335–2349.
Nocek, J. E.. 1997. Bovine Acidosis: Implications on Laminitis. J. Dairy Sci., 80(5), 1005–1028.
Owens, F. N., Secrist, D. S., Hill, W. J., and D. R. Gill. 1998. Acidosis in cattle: a review. J. Anim. Sci., 76(1), 275.
Penner, G. B., Beauchemin, K. A., and T. Mutsvangwa. 2007. Severity of Ruminal Acidosis in Primiparous Holstein Cows During the Periparturient Period. J. Dairy Sci., 90(1), 365–375.
Penner, G. B., Aschenbach, J. R., Gäbel, G., Rackwitz, R., and M. Oba. 2009. Epithelial Capacity for Apical Uptake of Short Chain Fatty Acids Is a Key Determinant for Intraruminal pH and the Susceptibility to Subacute Ruminal Acidosis in Sheep. J. Nutri., 139(9), 1714–1720.
Petri, R. M., Schwaiger, T., Penner, G. B., Beauchemin, K. A., Forster, R. J., McKinnon, J. J., and T. A. McAllister. 2013. Characterization of the Core Rumen Microbiome in Cattle during Transition from Forage to Concentrate as Well as during and after an Acidotic Challenge. PLoS ONE, 8(12), e83424.
Petri, R. M., Kleefisch, M. T., Metzler-Zebeli, B. U., Zebeli, Q., and F. Klevenhusen. 2018. Changes in the Rumen Epithelial Microbiota of Cattle and Host Gene Expression in Response to Alterations in Dietary Carbohydrate Composition. Appl. Environ. Microb., 84(12), e00384–18.
Petri, R. M., Wetzels, S. U., Qumar, M., Khiaosa-ard, R., and Q. Zebeli. 2019. Adaptive responses in short-chain fatty acid absorption, gene expression, and bacterial community of the bovine rumen epithelium recovered from a continuous or transient high-grain feeding. J. Dairy Sci., 102(6), 5361–5378.
Plaizier, J. C., Khafipour, E., Li, S., Gozho, G. N., and D. O. Krause. 2012. Subacute ruminal acidosis (SARA), endotoxins and health consequences. Anim. Feed Sci. Tech., 172(1-2), 9–21.
Plaizier, J. C., Li, S., Danscher, A. M., Derakshani, H., Andersen, P. H., and E. Khafipour. 2017. Changes in Microbiota in Rumen Digesta and Feces due to a Grain-Based Subacute Ruminal Acidosis (SARA) Challenge. Microb. Ecol., 74(2), 485–495.
Plaizier, J. C., Danesh Mesgaran, M., Derakhshani, H., Golder, H., Khafipour, E., Kleen, J. L., Lean, I., Loor, J., Penner, G., and Q. Zebeli. 2018. Review: Enhancing gastrointestinal health in dairy cows. Animal, 12(s2), s399–s418.
Russell, J. B., and D. B. Dombrowski. 1980. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl. Environ. Microb., 39(3), 604–610. doi:10.1128/aem.39.3.604-610.1980
Russell, J. B. and J. L. Rychlik. 2001. Factors That Alter Rumen Microbial Ecology. Science, 292(5519), 1119–1122.
Russell, J. B., and D. B. Wilson. 1996. Why Are Ruminal Cellulolytic Bacteria Unable to Digest Cellulose at Low pH? J. Dairy Sci., 79(8), 1503–1509.
Saleem, F., Ametaj, B. N., Bouatra, S., Mandal, R., Zebeli, Q., Dunn, S. M., and D. S. Wishart. 2012. A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. J. Dairy Sci., 95(11), 6606–6623.
Staples, C. R., and D. S. Lough. 1989. Efficacy of supplemental dietary neutralizing agents for lactating dairy cows. A review. Anim. Feed Sci. Tech., 23(4), 277–303.
Steele, M. A., Penner, G. B., Chaucheyras-Durand, F., and L. L. Guan. 2016. Development and physiology of the rumen and the lower gut: Targets for improving gut health. J. Dairy Sci., 99(6), 4955–4966.
Turner, J. R. 2009. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immuno., 9(11), 799–809.
Wetzels, S. U., Mann, E., Pourazad, P., Qumar, M., Pinior, B., Metzler-Zebeli, B. U., and Q. Zebeli. 2017. Epimural bacterial community structure in the rumen of Holstein cows with different responses to a long-term subacute ruminal acidosis diet challenge. J. Dairy Sci., 100(3), 1829–1844.
Zebeli, Q., Dunn, S. M., and B. N. Ametaj. 2011. Perturbations of plasma metabolites correlated with the rise of rumen endotoxin in dairy cows fed diets rich in easily degradable carbohydrates. J. Dairy Sci., 94(5), 2374–2382.
Zebeli, Q., Aschenbach, J. R., Tafaj, M., Boguhn, J., Ametaj, B. N., and W.Drochner. 2012. Invited review: Role of physically effective fiber and estimation of dietary fiber adequacy in high-producing dairy cattle. J. Dairy Sci., 95(3), 1041–1056.
Zebeli, Q., and B. U. Metzler-Zebeli. 2012. Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle. Res. Vet. Sci., 93(3), 1099–1108.
Zebeli, Q., Ghareeb, K., Humer, E., Metzler-Zebeli, B. U., and U. Besenfelder. 2015. Nutrition, rumen health and inflammation in the transition period and their role on overall health and fertility in dairy cows. Res. Vet. Sci., 103, 126–136.