Agyekum, A.K., Kiarie, E., Walsh, M.C. & Nyachoti, C.M., 2016. Postprandial portal fluxes of essential amino acids, volatile fatty acids, and urea-nitrogen in growing pigs fed a high-fibre diet supplemented with a multi-enzyme cocktail. J. Anim. Sci. 94, 3771-3785.
Agyekum, A.K. & Nyachoti, C.M., 2017. Nutritional and metabolic consequences of feeding high fibre diets to Swine - A review. Anim. Feed Sci. Technol. 234, 88-100.
Anguita, M., Canibe, N., Perez, J.F. & Jensen, B.B., 2006. Influence of the amount of dietary fibre on the available energy from hindgut fermentation in growing pigs: Use of cannulated pigs and in vitro fermentation. J. Anim. Sci.
84, 2766-2778.
AOAC, 2006. Official methods of analysis. Association of Official Analytical Chemists International, Washington, DC,
USA.
Aumiller, T., Mosenthin, R. & Weiss, E., 2015. Potential of cereal grains and grain legumes in modulating pigs' intestinal microbiota – A review. Livest. Sci. 17, 16-32.
Awati, A., Konstantinov, S.R., Williams B.A., Akkermans A.D.L., Bosch, M.W., Smidt, H. & Verstegen, M.W.A., 2005.
Effect of substrate adaptation on the microbial fermentation and microbial composition of faecal microbiota of weaning piglets studied in vitro. J. Sci. Food Agr. 85, 1765-1772.
Bach Knudsen, K.E., 1997. Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed Sci.
Technol. 67, 319-338.
Bach Knudsen, K.E., 2014. Fibre and non-starch polysaccharide content and variation in common crops used in broiler diets. Poult. Sci. 93, 2380-2393.
Bach Knudsen, K.E., 2015. Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health. Adv. Nutr. 6, 206-213.
Bach Knudsen, K.E., Lærke, H.N., Ingerslev, A.K., Hedemann, M.S., Nielsen, T.S. & Theil, P.K., 2016. Carbohydrates in pig nutrition – Recent advances. J. Anim. Sci. 94, 1-11.
Bedford, M.R., 2000. Exogenous enzymes in monogastric nutrition - their current value and future benefits. Anim. Feed
Sci. Technol. 86, 1-13.
Bedford, M.R. & Cowieson, A.J., 2012. Exogenous enzymes and their effects on intestinal microbiology. Anim. Feed Sci.
Technol. 173, 76-85.
Biely, P., Vrˇsanská, M., Tenkanen, M. & Kluepfel, D., 1997. Endo-β-1, 4-xylanase families: differences in catalytic properties. J. Biotechnol. 57, 151-166.
Bindelle, J., Buldgen, A., Boudry, C. & Leterme, P., 2007. Effect of inoculum and pepsin–pancreatin hydrolysis on fibre fermentation measured by the gas production technique in pigs. Anim. Feed Sci. Technol. 132, 111-122.
Bindelle, J., Carlos, R.P., Montoya, A., Van Kessel, A.G. & Leterme, P., 2011. Non-starch polysaccharide-degrading enzymes alter the microbial community and the fermentation patterns of barley cultivars and wheat products in an in vitro model of the porcine gastrointestinal tract. FEMS Microb. Ecol. 76, 553-563.
Blachier, F., Mariotti, F., Huneau. J.F. & Tomé D., 2007. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33, 547-562.
Boisen, S. & Fernandez, J.A., 1997. Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Anim. Feed Sci. Technol. 68, 277-286.
Byrne, C.S., Chambers, E.S. Morrison, D.J. & Frost, G., 2015. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int. J. Obesity 39, 1331-1338.
Celi, P., Viviane, V., Estefania, P.C. Jerome, S. & Kluenter, A-M., 2018. Biomarkers of gastrointestinal functionality in animal nutrition and health. Anim. Feed Sci. Technol. https://doi.org/10.1016/j.anifeedsci.2018.07.012.
Chen, H., Mao, X.B., Che, L.Q., Yu, B., He, J., Yu, J., Han, G.Q., Huang, Z.Q. Zheng, P. & Chen, D.W., 2014. Impact of fibre types on gut microbiota, gut environment and gut function in fattening pigs. Anim. Feed Sci. Technol. 195,
101-111.
Choct, M., 2006. Enzymes for the feed industry: past, present and future. Wrld. Poult. Sci. J. 62, 5-16.
Collins, H.M., Burton, R.A., Topping, D.L., Liap, M., Bacic, A. & Fincher, D., 2010. Variability in fine structures of noncellulosic polysaccharides from cereal grains; Potential importance in human health and nutrition. Cereal Chem.
87 (4), 272-282.
Columbus, D., Cant, J.P. & De Lange, C.F.M., 2010. Estimating fermentative amino acid losses in the upper gut of pigs.
Livest. Sci., 133, 124-127.
Cone, J.W., Jongbloed, A.W., Gelder, A.H.V. & Lange, L.D., 2005. Estimation of protein fermentation in the large intestine of pigs using a gas production technique. Anim. Feed Sci. Technol. 123-124, 463-472.
Dai, Z., Wu, G. & Zhu, W., 2011. Amino acid metabolism in intestinal bacteria: links between gut ecology and gut health.
Front. Biosci. 16, 1768-1786.
Daly, K. & Shirazi-Beechey, S.P., 2006. Microarray analysis of butyrate regulated genes in colonic epithelial cells. DNA
Cell Biol. 25, 49-62.
De Vries, S., Pustjens, A.M., Schols, H.A., Hendriks, W.H. & Gerrits, W.J.J., 2012. Improving digestive utilization of fibre-rich feedstuffs in pigs and poultry by processing and enzyme technologies: A review. Anim. Feed Sci.
Technol. 178, 123-138.
De Lange, C.F., Pluske, J., Gong, J. & Nyachoti C.M., 2010. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livest. Sci. 134, 124-134.
Den Besten, G., Van Eunen G, Groen, A.K, Venema, K., Reijngoud, D. & Bakker, B.M., 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 235-2340.
Fouhse, J.M., Ganzle, M.G., Regmi, P.R., Van Kempen, T.A.T. & Zijlstra, R.T., 2015. High amylose starch with low in vitro digestibility stimulates hindgut fermentation and has a bifidogenic effect in weaned pig. J. Nutr. 145,
2464-2470.
France, J., Dhanoa, M.S., Theodorou, M.K., Lister, S.J., Davies, D.R. & Isac, D., 1993. A model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. Biol. 163, 99-111.
Fushimi, T., Suruga, K., Oshima, Y., Fukiharu, M., Tsukamoto, Y., Goda, T., 2006. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. Br. J. Nutr. 95, 916-924.
Gao, L., Chen, L., Huang, Q., Meng, L., Zhong, R., Liu, C., Tang, C. & Zhang, H., 2015. Effect of dietary fibre type on intestinal nutrient digestibility and hindgut fermentation of diets fed to finishing pigs. Livest. Sci. 174, 53-58.
Ghimire, P.S., Ouyang, H., Wang, Q, Luo, Y. Shi, B, Yang, J., Lü, Y. & Jin, C., 2016. Insight into enzymatic degradation of corn, wheat, and soybean cell wall cellulose using quantitative secretome analysis of Aspergillus fumigatus. J.
Proteome Res. 15 (12), 4387-4402.
Giuberti, G., Gallo A., Moschini, M. & Masoero, F., 2013. In vitro production of short-chain fatty acids from resistant starch by pig faecal inoculum. Animal 7, 1446-1453.
Groot, J.C.J., Cone, J.W., Williams, B.A., Debersaques, F.M.A. & Lantinga, E.A., 1996. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 64, 77-89.
Gutierrez, N.A., Kerr, B.J. & Patience, J.F., 2013. Effect of insoluble-low fermentable fiber from corn ethanol distillation origin on energy, fiber, and amino acid digestibility, hindgut degradability of fiber, and growth performance of pigs.
J. Anim. Sci. 91, 5314-5325.
Hamer, H.M., Jonkers D., Venema, K., Vanhoutvin, S., Troost, F.J. & Brummer, R.J., 2008. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27, 104-119.
He, X., Sun, W., Ge, T., Mu, C. & Zhu, W., 2017. An increase in corn resistant starch decreases protein fermentation and modulates gut microbiota during in vitro cultivation of pig large intestinal inocula. Anim. Nutr. 3, 219-224
Ivarsson, V., Roos, S., Liu, H.Y. & Lindberg, J.E., 2014. Fermentable non-starch polysaccharides increase the abundance of Bacteroides-Prevotella-Porphyromonas in ileal microbial community of growing pigs. Animal 8,
1777-1787.
Iyayi, E.A. & Adeola, O., 2015. Quantification of short-chain fatty acids and energy production from hindgut fermentation in cannulated pigs fed graded levels of wheat bran. J. Anim. Sci. 10, 4781-4782.
Jha, R. & Berrocoso, J.D., 2015. Dietary fibre utilization and its effects on physiological functions and gut health of swine:
A review. Animal 9, 1441-1452.
Jha, R. & Berrocoso, J.D., 2016. Dietary fibre and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: A review. Anim. Feed Sci. Technol. 212, 18-26.
Jha, R. & Leterme, P., 2012. Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Animal 6, 603-611.
Jha, R., Bindelle, J., Van Kessel, A. & Leterme, P., 2011. In vitro fibre fermentation of feed ingredients with varying fermentable carbohydrate and protein levels and protein synthesis by colonic bacteria isolated from pigs. Anim.
Feed Sci. Technol. 165, 191-200.
Jha, R., Woyengo, T.A., Li, J., Bedford, M.R., Vasanthan, T. & Zijlstra, R.T., 2015. Enzymes enhance degradation of the fibre–starch–protein matrix of distillers dried grains with solubles as revealed by a porcine in vitro fermentation model and microscopy. J. Anim. Sci. 93, 1039-1951.
Jonathan, M.C., Van den Borne, J.G.C., Van Wiechen, P., Da Silva, C.S., Schols, H.A. & Gruppen, H., 2012. In vitro fermentation of 12 dietary fibres by faecal inoculum from pigs and humans. Food Chem. 133, 889-897.
Kerr, B.J. & Shurson, G.C., 2013. Strategies to improve fibre utilization in swine. J. Anim. Sci. Biotechnol. 4, 11-23.
Kong, C, Park, C.S & Kim, B.G., 2015. Effects of an enzyme complex on in vitro dry matter digestibility of feed ingredients for pigs. SpringerPlus 4, 261.
Kwon, W.B., Park, S.K, Kong, C. & Kim, B.G., 2015. The effect of various inclusion levels of β-mannanase on nutrient digestibility in diets consisting of corn, soybean meal and palm kernel expellers fed to growing pigs. Am. J. Anim.
Vet. Sci. 10, 9-13.
Lee, J.W., Patterson, R. & Woyengo, T.A., 2018. Porcine in vitro degradation and fermentation characteristics of canola co-products without or with fiber-degrading enzymes. Anim. Feed Sci. Technol. 241, 133-140
Libao-Mercado, A.J., Yin, Y., Van Eys, J. & de Lange, C.F.M., 2006. True ileal amino acid digestibility and endogenous ileal amino acid losses in growing pigs fed shorts of casein-based diets. J. Anim. Sci. 84, 1351-1361.
Libao-Mercado, A.J., Zhu, C.L., Fuller, M.F., Rademacher, M., Seve, B. & De Lange, C.F.M., 2007. Effect of feeding fermentable fibre on synthesis of total and mucosal protein in the intestine of the growing pig. Livest. Sci. 109,
125-128.
Libao-Mercado, A.J., Zhu, C.L., Cant, J.P., Lapierre, H., Thibault, J., Sève, B., Fuller, M.F. & De Lange, C.F.M., 2009.
Dietary and endogenous amino acids are the main nitrogen sources for microbial protein synthesis in the upper gut of pigs. J. Nutr. 139, 1088-1094.
Macfarlane, G.T. & Macfarlane, S., 1993. Factors affecting fermentation reactions in the large bowel. Proc. Nutr. Soc. 52,
367-373.
Macfarlane, S. & Macfarlane, G.T., 2003. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 62, 67-72.
Mangian, H.F. & Tappenden, K.A., 2009. Butyrate increases GLUT2 mRNA abundance by initiating transcription in
Caco2-BBe cells. J. Parenter. Enteral. Nutr. 33, 607-617.
Marten, G.C. & Barnes, R.F., 1980. Prediction of energy digestibility of forages with in vitro rumen fermentation and fungal enzyme systems, in standardization of analytical methodology for feeds. Proceedings of a workshop in
Ottawa, Canada. 12-14 March 1979. IDRC, Ottawa, Ontario.
McDougall, G.J., Morrison, I.M., Stewart, D. & Hillman, J.R., 1996. Plant cell walls as dietary fibre: Range, structure, processing and function. J. Sci. Food Agr. 70, 133-150.
Molist, F., Gómez de Segura, A., Pérez, J.F., Bhandari, S.K., Krause, D.O. & Nyachoti, C.M., 2010. Effect of wheat bran on the health and performance of weaned pigs challenged with Escherichia coli K88+. Livest. Sci. 133, 214-217.
Nahm, K.H., 2003. Influences of Fermentable carbohydrates on shifting nitrogen excretion and reducing ammonia emission of pigs. Crit. Rev. Env. Sci. Technol. 33 (2), 165-186.
National Research Council, 1998. Nutrient Requirements for Swine. 10th edition. National Academy Press, Washington
DC., USA.
Neis, E, P.J.G., Dejong, C.H.C. & Rensen, S.S., 2015. The role of microbial amino acid metabolism in host-metabolism.
Nutrients 7, 2930-2946.
Noblet, J. & Le Goff, G., 2001. Effect of dietary fibre on the energy value of feeds for pigs. Anim. Feed Sci. Technol. 90,
35-52.
Noblet, J. & Perez, J.M., 1993. Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. J. Anim. Sci. 71, 3389-3398.
Paes, G., Berrin, J.G. & Beaugrand, J., 2012. GH11 xylanases: structure/function/properties relationships and applications. Biotechnol. Adv. 30, 564-592.
Park, K.R., Park, C.S. & Kim B.G., 2016a. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs. SpringerPlus 5, 598. Https://doi.org/10.1186/s40064-016-2194-5
Park, C.S., Park, I. & Kim, B.G., 2016b. Effects of an enzyme cocktail on digestible and metabolizable energy concentrations in barley, corn, and wheat fed to growing pigs. Livest. Sci. 187, 1-5.
Pedersen, M.B., Dalsgaard, S., Bach Knudsen, K.E., Yua, S. & Lærke, H.N., 2014. Compositional profile and variation of distillers dried grains with solubles from various origins with focus on non-starch polysaccharides. Anim. Feed Sci.
Technol. 197, 130-141.
Pedersen, M.B., Dalsgaard, S., Arenta, S., Lorentsena, R., Bach Knudsen, K.E.B., Yua, S. & Lærke, H.N., 2015.
Xylanase and protease increase solubilization of non-starch polysaccharides and nutrient release of corn- and wheat distillers dried grains with solubles. Biochem. Eng. J. 98, 99-106.
Pieper, R.C., Villodre Tudela, C.V., Taciak, M., Bindelle, J.F., Pérez, J.F. & Zentek, J., 2016. Health relevance of intestinal protein fermentation in young pigs. Anim. Health. Res. Rev. 17 (2), 137-147.
Rho, Y., Jarie, E. & de Lange, C.F.M., 2018. Nutritive value of corn distiller’s dried grains with solubles steeped without or with exogenous feed enzymes for 24 h and fed to growing pigs. J. Anim. Sci. 96, 2352-2360.
Rideout, T.C., Fan, M.Z., Cant, J.P., Wagner-Riddle, C. & Stonehouse, P., 2004. Excretion of major odour causing and acidifying compounds in response to dietary fibre supplementation of chicory in growing pigs. J. Anim. Sci. 82,
1678-1684.
Ríos-Covián, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., de los Reyes-Gavilán, C.G. & Salazar, N., 2016.
Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 7, 185. Doi:
10.3389/fmicb.2016.00185
Rowland, I., Gibsonm, G., Heinken, A., Scott, K., Swann, J., Thiele, I. & Tuohy, K., 2018. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57, 1-24.
Simpson, H.L. & Campbell, B.J., 2015. Review article: Dietary fibre–microbiota interactions. Aliment. Pharmacol. Ther.
42, 158-179.
Sleeth, M.L., Thompson, E.L., Ford, H.E., Zac-Varghese, S.E.K. & Frost, G., 2010. Free fatty acid receptor 2 and nutrient sensing a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation.
Nutr. Res. Rev. 23, 135-145.
Statistical Analysis Systems Institute 2010. Statistical analysis systems. Version 9.3. SAS Institute Inc., Cary, NC.
Swiatkiewicz, S., Swiatkiewicz, M., Arczewska-Wlosek, A. & Jozefiak, D., 2016. Efficacy of feed enzymes in pig and poultry diets containing distillers dried grains with solubles: A review. J. Anim. Physiol. Anim. Nutr. 100, 15-26.
Tanner SA, Zihler Berner, A, Rigozzi, E, Grattepanche, F., Chassard. C, et al. 2014. In vitro Continuous Fermentation
Model (PolyFermS) of the swine proximal colon for simultaneous testing on the same gut microbiota. PLOS ONE
9(4): e94123. https://doi.org/10.1371/journal.pone.0094123
Theil, P.K., Jørgensen, H., Serena, A., Hendrickson, J. & Bach Knudsen, K.E., 2011. Products deriving from microbial fermentation are linked to insulinaemic response in pigs fed breads prepared from whole-wheat grain and wheat and rye ingredients. Br. J. Nutr. 105, 373-383.
Tonel, I., Pinho, M., Lordelo, M.M., Cunha, L.F., Garres, P. & Freire, J.P.B., 2010. Effect of butyrate on gut development and intestinal mucosa morphology of piglets. Livest. Sci. 133, 222–224.
Torrallardona, D., Harris, C.I. & Fuller, M.F., 2003. Pigs’ gastrointestinal microflora provides them with essential amino acids. J. Nutr. 133, 1127-1131.
Van Soest, P.J., Robertson, J.B. & Lewis, B.D., 1991. Methods of dietary fibre neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597.
Velayudhan, D.E., Kim, I.H. & Nyachoti, C.M., 2015. Characterization of dietary energy in swine feed and feed ingredients: A review of recent research results. Asian-Australas. J. Anim. Sci. 28, 1-13.
Verbeke, K.A., Boobis, A.R., Chiodini, A., Edwards, C.A., Franck, A., Kleerebezem, M., Nauta, A., Raes, J., Van Tol.,
E.A.F. & Tuohy, K.M., 2015. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr. Res. Rev. 28, 42-66.
Willamil, J., Badiola, I., Devillard, E, Geraert, P.A. & Torrallardona, D., 2012. Wheat-barley-rye- or corn-fed growing pigs respond differently to dietary supplementation with a carbohydrase complex. J. Anim. Sci. 90, 824-832.
Woyengo, T.A., Beltranena, E. & Zijlstra, R.T., 2014. Controlling feed cost by including alternative ingredients into pig diets: A review. J. Anim. Sci. 92, 1293-1305.
Yao, C.K., Muir, J.G. & Gibson, P.R., 2016. Review article: Insights into colonic protein fermentation, its modulation and potential health implications. Aliment Pharmacol Ther. 43, 181-196.
Zervas, S. & Zijlstra, R.T., 2002. Effects of dietary protein and fermentable fibre on nitrogen excretion patterns and plasma urea in grower pigs. J. Anim. Sci. 80, 3247-3256.
Zhu, C.L., Rademacher, M. & de Lange, C.F.M., 2005. Increasing dietary pectin level reduces utilization of digestible threonine intake, but not lysine intake, or body protein deposition in growing pigs. J. Anim. Sci. 83, 1044-1053.
Zhu, C.L., Rademacher, M. & de Lange, C.F.M., 2007. Intake of fermentable fibre and body protein deposition in pigs fed methionine or tryptophan limiting diets. EAAP Public. 124, 553-554.
Zijlstra, R.T. & Beltranena, E., 2013. Swine convert co-products from food and biofuel industries into animal protein for food. Anim. Frontiers 3 (2), 48-53.
Zijlstra, R.T., Owusu-Asiedu, A. & Simmins, P.H., 2010. Future of NSP-degrading enzymes to improve nutrient utilization of co-products and gut health in pigs. Livest. Sci. 134, 255-257.