Abuelo, A., Hernández, J., Benedito, J. L. and Castillo, C. (2019). Redox Biology in Transition Periods of Dairy Cattle: Role in the Health of Periparturient and Neonatal Animals. Antioxidants (Basel). 8(1): 20
Bell, A. W. 1995. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci.73:2804–2819.
Bernal-Santos, G., Perfield II, J. W., Barbano, D. M., Bauman, D. E. and Overton, T. R. (2003) Production Responses of Dairy Cows to Dietary Supplementation with Conjugated Linoleic Acid (CLA)During the Transition Period and Early Lactation. J. Dairy Sci. 86:3218–3228.
Bradford, B. J., Yuan, K., Farney, J.K., Mamedova, L.K., Carpenter, A.J. (2015). Invited review: Inflammation during the transition to lactation: New adventures with an old flame. J. Dairy Sci. 98:6631–6650.
Bradford, B. J. (2020). Transition Cows - How Fatty Acids Affect Immunity, Production and Health. 2020 Florida Ruminant Nutrition Symposium 31st Annual Meeting. February 3 - 5, 2020. Page 2-9.
Contreras, G. A., O’Boyle, N. J. Herdt, T. H. and Sordillo, L. M. (2010). Lipomobilization in periparturient dairy cows influences the composition of plasma nonesterified fatty acids and leukocyte phospholipid fatty acids. J. Dairy Sci. 93:2508–2516.
Contreras, G. A., Strieder-Barboza, C., de Souza, J., Gandy, J., Mavangira, V., Lock, A. L. and Sordillo, L. M. (2017). Periparturient lipolysis and oxylipid biosynthesis in bovine adipose tissues. PLoS One. 2017; 12(12): e0188621.
Drackley, J. K. (2001). Adaptations of Glucose and Long-Chain Fatty Acid Metabolism in Liver of Dairy Cows during the Periparturient Period. J. Dairy Sci. 84(E. Suppl.):E100-E112.
de Souza, J. and Lock, A. L. (2018). Long-term palmitic acid supplementation interacts with parity in lactating dairy cows: Production responses, nutrient digestibility, and energy partitioning. J. Dairy Sci. 101:3044-3056.
de Veth, M. J., Castan ~eda-Gutie ´rrez, E., Dwyer, D. A., Pfeiffer, A. M., Putnam, D. E., and Bauman, D. E. (2006). Response to Conjugated Linoleic Acid in Dairy Cows Differing in Energy and Protein Status. J. Dairy Sci. 89:4620–4631.
Duckett, S. K., Furusho-Garcia, I., Rico, J. E. and McFadden, J. W. (2019). Flaxseed oil or n-7 fatty acid-enhanced fish oil supplementation alters fatty acid composition, plasma insulin and serum ceramide concentrations, and gene expression in lambs. Lipids. 54:389-399.
Elbaz, S., Nassef, E., Bakr, A., Hegazi, E. and EL-Keredy, A. M. S. (2019). Impact of dietary eicosapentaenoic and docosahexaenoic fatty acids supplementation on inflammatory response of post calving cows during transition to lactation. Slov Vet Res 2019; 56 (Suppl 22): 633–45.
Elmwtwally, M. A. (20180. Uterine Involution and Ovarian Activity in Postpartum Holstein Dairy Cows. A Review: Journal of Veterinary Healthcare Volume No: 1 Issue No: 4: Pg 29-40.
Fiore, E., Piccione, G., Rizzo, M., Morgante, M., Barberio, A., Giudice, E. and Gianesella, M. (2018). Adaptation of some energetic parameters during transition period in dairy cows. Journal of Applied Animal Research. Volume 46:1, 402-405.
Forbes, D., Gayton, S. and McKeogh, B. (1999). Improving the longevity of cows in the UK dairy herd.
file:///C:/Users/Joe/Downloads/97%20r1%2012%20-%20improving%20longevity.pdf
Garnsworthy, P. C. and J. H. Topps. 1982. The effect of body condition of dairy cows at calving on their food intake and performance when given complete diets. Anim. Sci. 35(1):113-119.
Goff, J. (2008). Transition Cow Immune Function and Interaction with Metabolic Diseases. Tri-State Dairy Nutrition Conference. April 22 and 23, 2008
https://www.researchgate.net/publication/228350700_Transition_cow_immune_function_and_interaction_with_metabolic_diseases
Jorjong, S., van Knegsel, A. T. M., Verwaeren, J., Val Lahoz, M., Bruckmaier, R. M., De Baets, Kemp, B.B. and Fievez, V. (2014). Milk fatty acids as possible biomarkers to early diagnose elevated concentrations of blood plasma nonesterified fatty acids in dairy cows. J. Dairy Sci. 97 :7054–7064.
Kuhla, B. (2020). Review: Pro-inflammatory cytokines and hypothalamic inflammation: implications for insufficient feed intake of transition dairy cows, Animal. Volume 14, Issue S1 (XIIIth International Symposium on Ruminant Physiology (ISRP 2019), 3-6 September 2019, Leipzig, Germany). March 2020, pp. s65–s77.
Kuhn, M.J., Mavangira, V., Gandy, J.C., Zhang, C., Jones, A.D. and Sordillo, L.M. (2017).
Differences in the Oxylipid Profiles of Bovine Milk and Plasma at Different Stages of Lactation. J. Agric. Food Chem. 65:4980–4988. doi:10.1021/acs.jafc.7b01602.
Kvidera, S. K., Horst, E. A., Abuajamieh, M., Mayorga, E. J., Sanz Fernandez, M. V. and Baumgard, L. H. (2017). Glucose Requirements of an Activated Immune System in Lactating Holstein Cows. J Dairy Sci. 2017 Mar; 100(3):2360-2374.
Laguna, J., Gonzalez, M., Prom, C., Lock, A. and Contreras A. (2019). Oleic acid supplementation alters adipose tissue lipolytic responses and insulin sensitivity in early-lactation dairy cows. J. Dairy Sci. 102, Suppl. 1:E-Suppl. 1:364. (Peer Reviewed Abstract).
Leroy, J. L. M. R., Sturmey, R. G., Van Hoeck, V. De Bie, J., McKeegan, P, J. and Bols, P. E. J. (2014). Dietary Fat Supplementation and the Consequences for Oocyte and Embryo Quality: Hype or Significant Benefit for Dairy Cow Reproduction? Reproduction in Domestic Animals. Volume 49:3 pp 353-361.
Lepretti , M., Martucciello, S., Aceves, M. A. V., Putti, R. and Lionetti, L. Review: Omega-3 Fatty Acids and Insulin Resistance: Focus on the Regulation of Mitochondria and Endoplasmic Reticulum Stress. Nutrients 14 March 2018.
McFadden, J. W. and Rico, J. E. (2019). Invited Review: Sphingolipid Biology in the Dairy Cow: The Emerging Role of Ceramide. J Dairy Sci. 2019 Sep;102(9):7619-7639.
McFadden, J. W. and Rico, J. E. (2020). Fatty Acid Biology and Nutrition to Optimize Health and Production. Florida Ruminant Nutrition Symposium 31st Annual Meeting. February 3 - 5, 2020. Page 11-24.
National Research Council (2001). Nutrient Requirements of Dairy Cattle. 7th Rev. Ed. National Academy Press, Washington, DC.
Mannai, H., Charbonneau, É., Fadul-Pacheco, L., Pellerin, D. and Chouinard, P.Y. (2016). An appraisal of the concept of Rumen Unsaturated Fatty Acid Load and its relation to milk fat concentration using data from commercial dairy farms. The Professional Animal Scientist. Volume 32, Issue 5, pp 665-671.
Maollem, U. (2018). Invited review: Roles of dietary n-3 fatty acids in performance, milk fat composition, and reproductive and immune systems in dairy cattle. J Dairy Sci. 2018 Oct;101(10):8641-8661.
Moran, J. (2005). Nutrient Requirements for Dairy Cows. Landlinks Press. 6:52-54.
https://www.publish.csiro.au/ebook/chapter/SA0501051
Nogalski, Z., Wronski, M., Sobczuk-Szul, M., Mochol, M. and Pogorzelska, P. (2012). The Effect of Body Energy Reserve Mobilization on the Fatty Acid Profile of Milk in High-yielding Cows. Asian-Aust. J. Anim. Sci. Vol. 25, No. 12: 1712-1720.
Overton, T. R. and Waldron, M. R. (2004). Nutritional Management of Transition Dairy Cows: Strategies to Optimize Metabolic Health. J. Dairy Sci. 87:(E. Suppl.):E105–E119.
Perfield II, J. W., Bernal-Santos, G., Overton, T. R. and Bauman, D. E. Effects of dietary supplementation of rumen-protected conjugated linoleic acid in dairy cows during established lactation. J. Dairy Sci. 85:2609–2617
Pires, J.A.A. and Grummer, R.R. (2008). Specific fatty acids as metabolic modulators in the dairy cow. R. Bras. Zootec., v.37, suplemento especial p.287-298, 2008.
Raphael, W. and Sordillo, L. M. (2013). Dietary Polyunsaturated Fatty Acids and Inflammation: The Role of Phospholipid Biosynthesis. Int J Mol Sci. 2013 Oct; 14(10): 21167–21188.
Rico, J. E., Mathews, A. T. Lovett, J., Haughey, N. J. McFadden, and J. W. (2016). Palmitic acid feeding increases ceramide supply in association with increased milk yield, circulating nonesterified fatty acids, and adipose tissue responsiveness to a glucose challenge. J. Dairy Sci. 99:8817-8830.
Rico, J. E., Myers, W. A., Laub, D. J., Davis, A. N., Zeng, Q. and McFadden. J. W. (2018b). Hot topic: Ceramide inhibits insulin sensitivity in primary bovine adipocytes. J. Dairy Sci. 101:3428-3432.
Santos, J.E.P., Bisinotto, R.S., Ribeiro, E.S. Lima, F.S. and Thatcher, W.W. (2012).Impacts of Metabolism and Nutrition During the Transition Period on Fertility of Dairy Cows. 2012 High Plains Dairy Conference, Amarillo, Texas. http://highplainsdairy.org/2012/20_Santos_Impacts%20of%20Metabolism%20and%20Nutrition_2012%20HPDC_Final.pdf
Schäfers, S., von Soosten, D., Meyer, U., Drong, C. Frahm, J., Kluess, J., Raschka, C., Rehage, J., Tröscher, A., Pelletier, W. and Dänicke, S. (2017). Influence of conjugated linoleic acid and vitamin E on performance, energy metabolism, and change of fat depot mass in transitional dairy cows. J. Dairy Sci. 100:3193–3208.
Silvestre, T., Carvalho, T. S. M., Francisco, N., Santos, J. E. P.E., Staples, C. R., Jenkin, T. C. and Thatcher, W. W. (2011) Effects of differential supplementation of fatty acids during the peripartum and breeding periods of Holstein cows: I. Uterine and metabolic responses, reproduction, and lactation. J. Dairy Sci. 94:189–204.
Sinclair, L. A., Weerasinghe, P., Wilkinson, R. G., deVeth, M. J. and Bauman, D. E. (2010). Supplement Containing Trans-10, Cis-12 Conjugated Linoleic Acid Reduces Milk Fat Yield but Does Not Alter Organ Weight or Body Fat Deposition in Lactating Ewes. Journal of Nutrition 140(11):1949-55.
Summers, S. A. (2006). Ceramides in insulin resistance and lipotoxicity. Prog. Lipid Res. 45:42-72.
von Soosten, D., Meyer, U. Piechotta, M., Flachowsky, G. and Dänicke, S. (2012). Effect of conjugated linoleic acid supplementation on body composition, body fat mobilization, protein accretion, and energy utilization in early lactation dairy cows. J. Dairy Sci. 95 :1222–1239.
Wankhade, P. R., Manimaran, A., Kumaresan, A., Jeyakumar, S., Ramesha, K. P., Sejian, V., Rajendran, D. and Varghese, M. Rachel. (2017). Metabolic and immunological changes in transition dairy cows: A review. Vet World. 2017 Nov; 10(11): 1367–1377.