Author details:
The study aimed to evaluate tannic acid’s influence on lactating cows’ diets on milk production and lipid composition. Five crossbred cows (Holstein x Zebu), distributed in a 5 × 5 Latin square, were used to evaluate the effect of increasing tannic acid (hydrolyzable tannin). The diets were composed of 35 kg of corn silage as bulking and 6.38 kg of concentrate. The treatments consisted of increasing levels of tannic acid added to diets (0%, 1.3%, 2.6%, 3.9% and 5.2%). It was observed a decreasing linear effect (P<0.05) of the inclusion of tannic acid in the concentration of saturated butyric fatty acids (C4:0) presenting a mean of (2.99), and quadratic effect in the concentration of saturated fatty acids lauric (C12:0) presenting mean (26.74). The addition of tannic acid had effects on saturated fatty acids, decreasing the concentrations of butyric acid and increasing the concentrations of lauric acid. Atherogenicity and thrombogenicity rates reveal the potential for the prevention of coronary heart disease. However, the observed changes do not compromise the milk’s chemical composition and nutritional quality, the y nutritional quality of the milk, presenting possibilities of human health benefits, thus enabling the aggregation of value for these products.
Keywords: atherogenicity; fatty acids; nutritional quality; tannin.
Practical Application: Animal nutrition plays a fundamental role in the milk production system because in addition to being a determining tool for production, it influences the quality and is associated with a considerable share of the dairy herd.
Addis, M., Pinna, G., Molle, G., Fiori, M., Spada, S., Decandia, M., Scintu, M. F., Piredda, G., & Pirisi, A. (2006). The inclusion of a daisy plant (Chrysanthemum coronarium) in dairy sheep diet: 2. Effect on the volatile fraction of milk and cheese. Livestock Science, 101(1-3), 68-80. http://dx.doi.org/10.1016/j. livprodsci.2005.09.009.
Agiral, S., Budak, S. O., Tamer, S. I., Ozer, B., & Yazihan, N. (2020). Invitro digestion and absorption efficiency of homogenised milk lipids. International Journal of Dairy Technology, 74(1), 52-62. http:// dx.doi.org/10.1111/1471-0307.12723.
Apás, A. L., Arena, M. E., Colombo, S., & González, S. N. (2015). Probiotic administration modifies the milk fatty acid profile, intestinal morphology, and intestinal fatty acid profile of goats. Journal of Dairy Science, 98(1), 47-54. http://dx.doi.org/10.3168/ jds.2013-7805. PMid:25465559.
Benchaar, C., Petit, H. V., Berthiaume, R., Ouellet, D. R., Chiquette, J., & Chouinard, P. Y. (2007). Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn silage. Journal of Dairy Science, 90(2), 886-897http://dx.doi.org/10.3168/jds.S0022-0302(07)71572-2. PMid:17235165.
Bentes, A. S., Souza, H. A. L., Mendonça, X. M. F. D., & Simões, M. G. (2009). Caracterização física e química e perfil lipídico de três espécies de peixes amazônicos. Revista Brasileira de Tecnologia Agroindustrial, 3(2), 97-108. http://dx.doi.org/10.3895/S1981-36862009000200011.
Berchielli, T. T., Pires, A. V., & Oliveira, S. G. (2011). Nutrição de ruminantes. 2. ed. Jaboticaba, SP: Universidade Estadual Paulista.
Bobe, G., Zimmerman, S., Hammond, E.G., Gene Freeman, A.E., Lindberg, G., & Beitz, D. (2004). Texture of butters made from milks differing in indices of atherogenicity (Animal Industry Report AS 650. Iowa: Iowa State University.
Brasil. (2011, Dezembro 30) . Regulamento técnico de produção, identidade e qualidade do leite tipo A, leite cru refrigerado, leite pasteurizado, leite cru refrigerado e seu transporte a granel (Instrução Normativa nº 62, de 29 de dezembro de 2011). Diário Oficial [da] República Federativa do Brasil, seção 1.
Brasil. Ministerio da Agricultura. Secretaria Nacional de Agricultura. (2001). Regulamento Ténico de Produção, Identidade e Qualidade do Leite de Cabra (Instrução Normativa nº 37, 8 de novembro de 2000). Diário Oficial da União, seção 1.
Carreño, D., Hervás, G., Toral, P. G., Belenguer, A., & Frutos, P. (2015). Ability of different types and doses of tannin extracts to modulate in vitro ruminal biohydrogenation in sheep. Animal Feed Science and Technology, 202, 42-51. http://dx.doi.org/10.1016/j. anifeedsci.2015.02.003.
Chilliard, Y., Ferlay, A., Mansbridge, R. M., & Doreau, M. (2000). Ruminant milk fat plasticity: nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Annales de Zootechnie, 49(3), 81-205. http://dx.doi.org/10.1051/animres:2000117.
Costa, R. G., Queiroga, R. C. R., & Pereira, R. A. G. (2009). Influence of feed on the production on quality of goat milk. Revista Brasileira de Zootecnia, 38, 307-321. http://dx.doi.org/10.1590/S1516-35982009001300031.
Delacroix-Buchet, A., & Lamberet, G. (2000). Sensorial properties and typicity of goat dairy products. Tours/France: International Association of Goat, 2, 559-563.
Abd El-Salam, M. H., & El-Shibiny, S. (2020). Milk fat globule membrane: An overview with particular emphasis on its nutritional and health benefits. International Journal of Dairy Technology, 63(4), 639-655. http://dx.doi.org/10.1111/1471-0307.12730.
Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226(1), 497-509. http://dx.doi. org/10.1016/S0021-9258(18)64849-5. PMid:13428781.
Fonseca, L. F. L., & Santos, M. V. (2000). Qualidade do leite e controle da mastite. São Paulo, Lemos Editorial.
Goel, G., Puniya, A. K., Aguilar, C. N., & Singh, K. (2005). Interaction of Gut Microflora with tannins in feed. Naturwissenschafte. Dairy Microbiology Division, 92, 497-503. PMid:16193308.
Hagerman, A. E., & Butler, L. G. (1981). The specificity of proanthocyanidin-protein interactions. The Journal of Biological Chemistry, 256(9), 4494-4497. http://dx.doi.org/10.1016/S0021-9258(19)69462-7. PMid:7217094.
Kramer, J. K., Fellner, V., Dugan, M. E., Sauer, F. D., Mossoba, A. M. M., & Yurawecz, M. P. (1997). Evaluating acid and base catalysts in the methylation of milk and rumen and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipid, 32(11), 1219-1228. http://dx.doi.org/10.1007/s11745-997-0156-3. PMid:9397408.
Kronberg, S. L., & Schauer, C. S. (2013). Cattle and sheep develop preference for drinking water containing grape seed tannin. Animal, 7(10), 1714-1720. http://dx.doi.org/10.1017/S1751731113001262. PMid:23880297.
Lopes, L. L., Peluzio, M. C. G., & Hermsdorff, H. H. M. (2016). Monounsaturated fatty acid intake and lipid metabolism. Jornal Vascular Brasileiro, 15, 52-60. http://dx.doi.org/10.1590/1677-5449.008515.
Lopes, M. A., Santos, G., Resende, M. C., Carvalho, F. M., & Cardoso, M. G. (2011). Estudo da rentabilidade de sistemas de produção de leite no município de Nazareno, MG. Ciência Animal Brasileira, 12(1), 58-69. http://dx.doi.org/10.5216/cab.v12i1.7725.
Madruga, M. S., Bezerra, T. K. A., Guerra, J. C. D., Batista, A. S. M., Silva, A. M. A., & Fernandes, R. P. P. (2020). The effect of feed restriction on the fat profile of Santa Inês lamb meat. Acta Scientiarum, 42, e4905.
Monteiro, J. M., Albuquerque, U. P., Araújo, E. L., & Amorim, E. L. C. (2005). Taninos: uma abordagem da química à ecologia. Quimica Nova, 28(5), 892-896. http://dx.doi.org/10.1590/S0100-40422005000500029.
National Research Council – NRC. (2007). Nutrient requirements of the dairy cattle (7th ed.). Washington, DC: National Academy Press.
Nudda, A., Battacone, G., Boaventura Neto, O., Cannas, A., Fracesconi, A. H. D., Atizori, A. S., & Pulina, G. (2014) . Feeding strategies to design the fatty acid profile of sheep milk and cheese. Revista Brasileira de Zootecnia, 43(8), 445-456. http://dx.doi.org/10.1590/ S1516-35982014000800008.
Palmquist, D. L. (2010). Great discoveries of milk for a healthy diet and a helsthy life. Revista Brasileira de Zootecnia, 39(Suppl. Spe), 465-477. http://dx.doi.org/10.1590/S1516-35982010001300051.
Ruiz, J. P. A., Alonzo, M. W., & Pertiñez, M. D. (2016). Conjugated linoleic acid of dairy foods is affected by cow’s feeding system and processing of milk. Scientia Agrícola, 73(2), 103-108. http://dx.doi. org/10.1590/0103-9016-2015-0051.
Santos, L. E. S., & Borto-Lozo, E. A. F. Q. (2008). Ingestão de ômega 3: considerações sobre potenciais benefícios no metabolismo lipídico. Ciências Exatas e da Terra. Agrárias e Engenharias, 14, 161-170.
Statistical Analysis System Institute – SAS. (2010). Institute SAS/STAT software. CD-ROOM . Iowa City: SAS.
Terril, T. H., Rowan, A. M., Douglas, G. B., & Barry, T. N. (1992). Determination of extractable and bound condensed tannin concentration in forage plants, protein concentrate meals and cereal grains. Journal of the Science of Food and Agriculture, 58(3), 321-329. http://dx.doi.org/10.1002/jsfa.2740580306.
Toral, P. G., Hervás, G., Bichi, E., Belenguer, Á., & Frutos, P. (2011). Tannins as feed additives to modulate ruminal biohydrogenation: Effects on animal performance, milk fatty acid composition and ruminal fermentation in dairy ewes fed a diet containing sunflower oil. Animal Feed Science and Technology, 164(3-4), 199-206. http:// dx.doi.org/10.1016/j.anifeedsci.2011.01.011.
Turan, H., Sonmez, G., & Kaya, Y. (2007). Fatty acid profile and proximate composition of the thornback ray (Raja clavata, L. 1758) from the Sinop coast in the Black Sea. Journal Fisheries Science, 1(2), 97-103. http://dx.doi.org/10.3153/jfscom.2007012.
Ulbricht, T. L. V., & Southgate, D. A. T. (1991). Coronary heart disease: Seven dietary factors. Lancet, 338(8773), 985-992. http://dx.doi. org/10.1016/0140-6736(91)91846-M. PMid:1681350.
Urbach, G. (2006). The flavour of milk and dairy products: II. Cheese: contribution of volatile compounds. International Journal of Dairy Technology, 50(3), 79-89. http://dx.doi.org/10.1111/j.1471-0307.1997. tb01743.x.
Vargas-Bello-Perez, E., Cancino-Padillo, N., Geldsetzer-mendoza, C., Morales, M. S., Leskinen, H., Garnsworthy, P. C., Loor, J. J., & Romero, J. (2020). Effects of dietary polyunsaturated fatty acid sources on expression of lipid related genes in bovine milk somatic cells. Scientific Reports, 10(1), 14850. http://dx.doi.org/10.1038/s41598-020-71930-x. PMid:32908177.
Vasta, V., Makkar, H. P., Mele, M., & Priolo, A. (2009). Ruminal biohydrogenation as affected by tannins in vitro. British Journal of Nutrition, 102(1), 82-92. http://dx.doi.org/10.1017/S0007114508137898. PMid:19063768.