In the present study, economically scalable and energy efficient colloidal silver (Ag) nanoparticles were biosynthesized from marine red seaweed Halymenia porphyroides Boergesen (crypton) collected from southeast coast of Tamilnadu, India. The silver nanoparticles were biosynthesized as per green synthesis protocol. The rich presence of phytochemicals, bioactive compounds and secondary metabolites in marine macroscopic red seaweed Halymenia porphyroides Boergesen (crypton) play a major role since they possess reducing and capping agents for the biosynthesis of silver nanoparticles that may be environmentally acceptable and eco-friendly. Therefore, the red seaweed Halymenia porphyroides Boergesen was used in the experimental study for the biosynthesis of silver nanoparticle. The biosynthesized silver nanoparticles from marine macroscopic red seaweed Halymenia porphyroides Boergesen were characterized by UV-vis spectroscopy which confirmed the surface plasmon resonance of silver nanoparticles, Fourier transform infrared (FT-IR) spectroscopy to identify the presence of various functional groups in biomolecules responsible for the bio reduction of Ag+ and capping/stabilization of silver nanoparticles. X-ray diffraction (XRD) to observe face center cubic (fcc) and crystalline nature of silver nanoparticles, thermo gravimetic analysis (TGA) which revealed the thermal stability and purity of the silver nanoparticles. Particle size distribution and morphology were investigated by scanning electron microscope (SEM) which showed silver nanoparticles in the size range of 34.3-80.5 nm. The particle distribution under different nanometers was analyzed using transmission electron microscopy (TEM).
Keywords: Silver Nanoparticles Biological Synthesis Spectral Characterization.
[1] R. Feynman, There's plenty of room at the bottom, Science 254 (1991) 1300- 1301.
[2] P. Alivisatos, The use of nanocrystals in biological detection, Nat. Biotechnol. 22 (2004) 47–52.
[3] J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev. 105 (2005) 1103–1169.
[4] C.A. Mirkin, T.A. Taton, Semiconductors meet biology, Nature 405 (2000) 626– 627.
[5] S. Nie, Y. Xing, G.J. Kim, J.W. Simons, Nanotechnology applications in cancer, Annu. Rev. Biomed. Eng. 9 (2007) 257–288.
[6] M.D. Wang, D.M. Shin, J.W. Simons, S. Nie, Nanotechnology for targeted cancer therapy, Expert. Rev. Anticancer. Ther. 7 (2007) 833–837.
[7] M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104 (2004) 293–346.
[8] A. Krolikowska, A. Kudelski, A. Michota, J. Bukowska, SERS studies on the structure of thioglycolic acid monolayers on silver and gold, Surf. Sci. 532 (2003) 227–232.
[9] A. Kumar, S. Mandal, P.R. Selvakannan, R. Parischa, A.B. Mandale, M. Sastry, Investigation into the interaction between surface-bound alkylamines and gold nanoparticles, Langmuir. 19 (2003) 6277–6282.
[10] N. Chandrasekharan, P.V. Kamat, Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles, J. Phys. Chem. B 104 (2000) 10851–10857.
[11] G. Peto, G.L. Molnar, Z. Paszti, O. Geszti, A. Beck, L. Guczi, Electronic structure of gold nanoparticles deposited on SiOx/Si, Mater. Sci. Eng. C 19 (2002) 95–99.
[12] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105 (2005) 1025–1102.
[13] P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles, Langmuir 12 (1996) 788–798.
[14] D. Bhattacharya, G. Rajinder, Nanotechnology and potential of microorganisms, Crit. Rev. Biotechnol. 25 (2005) 199– 204.
[15] M. Sastry, A. Ahmad, M.I. Khan, R. Kumar, Microbial nanoparticle production. In: Niemeyer CM, Mirkin CA (eds)., Nanobiotechnology, Wiley-VCH, Weinheim, Germany, 2004, pp.126–135.
[16] F. Furno, K.S. Morley, B. Wong, B.L. Sharp, P.L. Arnold, et al., Silver nanoparticles and polymeric medical devices: A new approach to prevention of infection, J. Antimicrobial Chemother. 54(6) (2004) 1019-1024.
[17] C.F. Mao, M.A. Vannice, Formaldehyde oxidation over Ag catalysts, J. Catal. 154 (1995) 230-244.
[18] J. Hu, B. Zhao, W. Xu, B. Li, Y. Fan, Surface enhanced Raman spectroscopy study on the structure changes of 4-ercaptopyridine adsorbed on silver substrates and silver colloids, Spectrochim. Acta. A 58 (2002) 2827-2834.
[19] H.J. Klasen, Historical review of the use of silver in the treatment of burns, I. Early uses, Burns. 26 (2000) 117–130.
[20] S. Silver, L.T. Phung, G. Silver, Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds, J. Ind. Microbiol. Biotechnol. 33(7) (2006) 627-634.
[21] C.A. Moyer, A treatment of burns, Trans. Stud. Coll. Physicians. Philadelphia 33 (1965) 53–103.
[22] C.A. Moyer, Some effects of 0.5 per cent silver nitrate and high humidity upon the illness associated with large burns, J. Natl. Med. Assoc. 57 (1965) 95–100.
[23] C.A. Moyer, L. Brentano, D.L. Gravens, H.W. Margraf, W.W. Monafo Jr, Treatment of large human burns with 0.5 per cent silver nitrate solution, Arch. Surg. 90 (1965) 812–867.
[24] H.J. Klasen, A historical review of the use of silver in the treatment of burns, II. Renewed interest for silver, Burns. 26 (2000) 131–138.
[25] B.S. Atiyeh, M. Costagliola, S.N. Hayek, S.A. Dibo, Effect of silver on burn wound infection control and healing: review of the literature, Burns. 33 (2007) 139– 148.
[26] R.O. Darouiche, Anti-infective efficacy of silver-coated medical prostheses, Clin. Infect. Dis. 29 (1999) 1371–1377.
[27] H. Li, F. Li, L. Wang, J. Shengv, Z. Xin, L. Zhao, Effect of nanopacking on preservation quality of Chinese jujube (Ziziphus jujube Mill. Var. inermis (Bunge) Rehd), Food. Chem. 114 (2009) 547–552.
[28] K. Chaloupka, Y. Malam, A.M. Seifalian, Nanosilver as a new generation of nanoproduct in biomedical applications, Trends. Biotechnol. 28 (2010) 580– 588.
[29] H.J. Park, H.K. Sung, H.J. Kim, S.H.A. Choi, A new composition of nanosized silicasilver for control of various plant diseases, J. Plant. Pathol. 22 (2006) 295–302.
[30] S. Sinha, I. Pan, P. Chanda, S.K. Sen, Nanoparticle’s fabrication using ambient biological resources, J. Appl. Biosci. 19 (2009) 1113–1130.
[31] J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, et al., Biosynthesis of silver and gold nano particles by novel sundried Cinnamomum camphora leaf, Nanotechnol. 18 (2007) 105104–105114.
[32] T. Klaus, R. Joerger, E. Olsson, C.G. Granqvist, Silver-based crystalline nanoparticles, microbially fabricated, Proc. Natl. Acad. Sci. USA 96 (1999) 13611-13614.
[33] Y. Konishi, K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, et al., Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae, J. Biotechnol. 128 (2007) 648–653.
[34] B. Nair, T. Pradeep, Coalescense of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains, Cryst. Growth. Des. 2(4) (2002) 293–298.
[35] I. Willner, R. Baron, B. Willner, Growing metal nanoparticles by enzymes, Adv. Mater. 18 (2006) 1109–1120.
[36] S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, J. Colloid. Interface. Sci. 275 (2004) 496–502.
[37] M. Vishnu Kiran, S. Murugesan, Biogenic silver nanoparticles by Halymenia poryphyroides and its in vitro anti-diabetic efficacy, J. Chem. Pharm. Res. 5 (12) (2013) 1001-1008.
[38] M. Vishnu Kiran, S. Murugesan, Biosynthesis of silver nanoparticles from marine alga Colpomenia sinuosa and its antibacterial efficacy, Int. J. Curr. Microbiol. App. Sci. 3(4) (2014) 1-7.
[39] C.M.Niemeyer, Nanoparticles, Proteins, and nucleic acids: biotechnology meets materials science, Angew. Chem. Int. Ed. 40 (2001) 4128-4158.
[40] P. Rajasulochana, R. Dhamotharan, P. Murugakoothan, S. Murugesan, P. Krishnamoorthy, Biosynthesis and characterization of gold nanoparticles using the alga Kappaphycus alvarezii, Int. J. Nanosci. 9(5) (2010) 511-519.
[41] S. Swaminathan, S. Murugesan, S. Damodarkumar, R. Dhamotharan, S. Bhuvaneswari, Synthesis and characterization of gold nano particles from alga Acanthophora specifera (VAHL) Boergesen, Intl. J. Nanosci. Nanotech. 2(2) (2011) 85-94.
[42] R. Dhamotharan, D. Punitha, S. Murugesan, T.S. Subha, Brown algal biomass mediated biosynthesis of gold nanoparticles, Intl. J. Nanosci. Nanotech. 1(1) (2010) 37-44.
[43] D. Radhika, C. Veerabahu, L. Sakthibama, S. Murugesan, Green synthesis of gold nanoparticles by the marine alga Stoechospermum marginatum, Intl. J. Nanotech. Appl. 6(1) (2012) 61-70.
[44] K.S. Rajesh, C. Malrakodi, K.S. Venkat, Synthesis and characterization of silver nanoparticles from marine brown seaweeds and its antifungal efficiency against clinical fungal pathogens, Asian. J. Pharm. Clin. Res. 10 (2017) 190-193.
[45] A. Henglein, Physicochemical properties of small metal properties in solution: “micrelectrode” reactions, chemisorption’s, composite metal particles and the atom to metal transition, J. Phy. Chem. 97 (1993) 5457–5471.
[46] P. Kumar, S. Senthamilselvi, A. Lakshmi Prabha, K. Prem Kumar, R.S. Ganesh Kumar, M. Govindaraju, Synthesis of silver nano particles from Sargassum tenerrimum and screening phytochemicals on its antibacterial activity, Nano. Biomed. Engg. 4 (2012) 12–16.
[47] M. Sastry, V. Patil, S.R. Sainkar, Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films, J. Phy. Chem. B 102 (1998) 1404–1410.
[48] R.M. Silverstein, F.X. Webster, Spectrometric identification of organic compounds, John Wiley and Sons, Inc., New York, 1998.
[49] M.O. O’Coinceanainn, C. Astill, S. Schumm, Potentiometric FTIR and NMR studies of the complexation of metals with theaflavin, Dalton. Trans. 5 (2003) 801–807.
[50] Inbakandan, Venkatesan, A. Khan, Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905), Colloids Surf. B: Biointerf. 81(2) (2010) 634–639.
[51] R. Sathyavathi, M. Balamurali Krishna, S.R. Venugopal Rao, R. Saritha, D. Narayana Rao, Biosynthesis of silver nano particles using Coriandrum sativum leaf extract and their application in nonlinear optics, Adv. Sci. Lett. 3(2) (2010) 1–6.
[52] S. Rashmi, V. Preeti, P. Sadhna, Enzymatic formation of gold nanoparticles using Phanerochaete chrysosprium, Adv. Chem. Eng. Sci. 1(3) (2011) 154–162.
[53] Q. Chen, G. Liu, G. Chen, T. Mi, J. Tai, Green synthesis of silver nanoparticles with glucose for conductivity enhancement of conductive ink, Bioresources 12 (2016) 608-621.
[54] S. Zavoi, F. Fetea, F. Ranga, R. Pop, A. Baciu, C. Socaciu, Comparative fingerprint and extraction yield of medicinal herb phenolics with hepatoprotective potential, as determined by UV-Vis and FT-MIR spectroscopy, Not. Bot. Horti Agrobot. Cluj-Napoca. 39 (2011) 82-89.
[55] D.V. Leff, L. Brandt, J.R. Heath, Synthesis and characterization of hydrophobic, organically soluble gold nanocrystals functionalized with primary amines, Langmuir 12 (1996) 4723–4730.
[56] C. Paneerselvam, S. Ponarulselvam, K. Murugan, K. Kalimuthu, S. Thangamani, Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Donn and their antiplasmodial activities, Asian. Pac. J. Trop. Biomed. 2(7) (2012) 574-580.
[57] D. Alak Chandra, S. Swapan Kumar, Mycogenic silver nanoparticle biosynthesis and its pesticide degradation potentials, Int. J. Tech. Enhanc. Emer. Eng. Res. 3(5) (2015) 108–113.
[58] P. Daizy, Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract, Spectrochim. Acta A 73(2) (2009) 374–381.
[59] S.K. Bajpai, Y. Murali Mohan, Recent advances in nanoscience and technology, Bentham Science Publishers, Dubai, 2009.
[60] M.L. Assael, K. Gialou, Measurement of the thermal conductivity of stainless steel AISI 304 L up to 550 K, Int. J. Therm. Phy. 24(4) (2003) 1145-1153.
[61] A.N. Ananth, S. Umapathy, J. Sophia, T. Mathavan, D. Mangalaraj, On the optical and thermal properties of in situ/ex situ reduced Ag NP’s/PVA composites and its role as a simple SPR-based protein sensor, App. Nanosci. 1(2) (2011) 87– 96.
[62] Z.H. Mbhele, M.G. Salemane, D.G.C.E. Van Sittert, J.M. Nedeljkovic, V. Djokovic, A.S. Luyt, Fabrication and characterization of silver-polyvinyl alcohol nano composites, Chem. Mater. 15 (2003) 5019–5024.
[63] B. Xu, L. Qian, X. Liu, C. Song, Z. Yan, Synthesis and characterization of magnesium substituted aluminophosphate molecular sieves with AEL Structure, J. Nat. Gas. Chem. 13 (2004) 231–237.
[64] S. Yu-yuan, B. Sun, Z. Zhou, W. Yong-Tao, Z. Mei-Fang, Size-controlled and largescale synthesis of organic-soluble Ag nanocrystals in water and their formation mechanism, Prog. Nat. Sci.: Mat. Intl. 21(6) (2011) 447-454.
[65] A. Smith, Particle growth in suspensions, Academic Press, London, 1983.
[66] M. Forough, K. Farhadi, Biological and green synthesis of silver nanoparticles, Turkish J. Eng. Env. Sci. 34 (2010) 281–287.
[67] H. Amjad, K. Jamaroz, F.K Muhammad, Synthesis and characterization of antimicrobial polymer containing silver nano particles. Pakis. Oral Dent. J. 32(3) (2012) 539–539.
[68] P. Dhandapani, N. Supraja, Extracellular synthesis of silver nano particles by marine thermophilic bacteria, Intl. J. Pharm. Biol. Arch. 3(6) (2012) 1418– 1423.
[69] S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, Synthesis of gold and silver nano particles using aloe vera plant extract. J. Biotechnol. Prog. 22 (2006) 577–583.
[70] B.J. Crawford, R.D. Burke, Application of SEM and TEM techniques for Mgbased hydrogen storage, Cell. Biol. 74 (2004) 411–441.
[71] Z.J. Jiang, C.Y. Liu, L.W. Sun, Catalytic properties of silver nanoparticles supported on silica spheres, Am. Chem. Soc. 109(5) (2004) 4459–4463.
[72] A. Ahmad, P. Mukerjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar, Extracellular biosynthesis of silver nano particles using the fungus Fusarium oxysporum, Colloid. Surf. B 28 (2003) 313–318.
[73] S. Murugesan, M. Elumalai, R. Dhamotharan, Green synthesis of silver nanoparticles from marine alga Gracilaria edulis S.G (Gmelin) P.C. Silva, Biosci. Biotech. Res. Comm. 4(1) (2011)105–110.
[74] A.N. Shipway, E. Katz, I. Willer, Nano particle arrays on surfaces for electronic, optical and sensor applications, Chem. Phys. Chem. 1(1) (2000) 18–52.
[75] D. Raghunandan, S. Basavaraja, B. Mahesh, S. Balaji, S.Y. Manjunath, A. Venkataraman, Biosynthesis of stable poly shaped gold nano particles from microwave- exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract, Nano. Biotechnol. 5(1–4) (2009) 34–41.
[76] M. Noruzi, D. Zare, K. Khoshnevisan, D. Davoodi, Rapid green synthesis of gold nano particles using Rosa hybrid petal extract at room temperature, Spectrochim. Acta A 79(5) (2011) 1461–1465.