The use of antibiotics in poultry farming has been associated with bacterial resistance in humans, leading to a ban on their inclusion in chicken diets. Therefore, the objective was to evaluate the effects of probiotics and β-mannanase on the growth performance and intestinal health of broiler chickens challenged by Eimeria maxima and Clostridium perfringens. For this, 2100 one-day-old male Ross 308 chicks were used. The treatments were as follows: T1—Negative control (NC) unchallenged birds; T2—Positive control (PC) challenged with E. maxima + C. perfringens; T3—PC + Antibiotic (Enramycin 8%-125 g/ton); T4—PC + β-mannanase (HemicellHT; 300 g/ton); T5—PC + probiotic (ProtexinTM; 150 g/ton); T6—PC + β-mannanase + probiotic. Significant differences (p < 0.05) were observed from 1 to 42 days in the variables body weight, body weight gain and feed intake, and the NC treatment presented higher values compared to the PC and PC + probiotic groups. The villus/crypt ratio in the duodenum increased in the PC + β-man + prob treatment, differing from the NC, PC and PC + probiotic (p < 0.05) treatments. The use of β-mannanase, probiotics or both together is effective to mitigate the effects of production challenges, through the maintenance of the intestine by modulating action on the cecum microbiome and intestinal morphometry.
Keywords: coccidiosis; intestinal permeability; necrotic enteritis; natural alternative
1. Fatoba, A.J.; Adeleke, M.A. Diagnosis and control of chicken coccidiosis: A recent update. J. Parasit. Dis. Off. Organ Indian Soc. Parasitol. 2018, 42, 483–493. [CrossRef] [PubMed]
2. Pham, H.H.S.; Matsubayashi, M.; Tsuji, N.; Hatabu, T. Relationship between Eimeria tenella associated-early clinical signs and molecular changes in the intestinal barrier function. Vet. Immunol. Immunopathol. 2021, 240, 110321. [CrossRef] [PubMed]
3. Sharman, P.A.; Smith, N.C.; Wallach, M.G.; Katrib, M. Chasing the golden egg: Vaccination against poultry coccidiosis. Parasite Immunol. 2010, 32, 590–598. [CrossRef] [PubMed]
4. Wade, B.; Keyburn, A.L. The True Cost of Necrotic Enteritis. World Poult. 2015, 31, 6–7.
5. Fu, Y.; Alenezi, T.; Sun, X. Clostridium perfringens-Induced Necrotic Diseases: An Overview. Immuno 2022, 2, 387–407. [CrossRef]
6. DeGruttola, A.K.; Low, D.; Mizoguchi, A.; Mizoguchi, E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm. Bowel. Dis. 2016, 22, 1137–1150. [CrossRef] [PubMed]
7. Williams, R.B. Intercurrent coccidiosis and necrotic enteritis of chickens: Rational, integrated disease management by maintenance of gut integrity. Avian Pathol. 2005, 34, 159–180. [CrossRef]
8. Collier, C.T.; Hofacre, C.L.; Payne, A.M.; Anderson, D.B.; Kaiser, P.; Mackie, R.I.; Gaskins, H.R. Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth. Vet. Immunol. Immunopathol. 2008, 122, 104–115. [CrossRef]
9. Zhou, Z.; Nie, K.; Huang, Q.; Li, K.; Sun, Y.; Zhou, R.; Wang, Z.; Hu, S. Changes of cecal microflora in chickens following Eimeria tenella challenge and regulating effect of coated sodium butyrate. Exp. Parasitol. 2017, 177, 73–81. [CrossRef]
10. Bortoluzzi, C.; Scapini, L.B.; Ribeiro, M.V.; Pivetta, M.R.; Buzim, R.; Fernandes, J.I.M. Effects of β-mannanase supplementation on the intestinal microbiota composition of broiler chickens challenged with a coccidiosis vaccine. Livest. Sci. 2019, 228, 187–194. [CrossRef]
11. Companyó, R.; Granados, M.; Guiteras, J.; Prat, M.D. Antibiotics in food: Legislation and validation of analytical methods. Bioanal. Chem. 2009, 395, 877–891. [CrossRef] [PubMed]
12. Menten, J.F.M. Probióticos, prebióticos e aditivos fitogênicos na nutrição de aves. In Anais Simpósio Sobre Ingredientes na Alimentação Animal; Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo: Uberlândia, Brazil, 2002; pp. 251–276.
13. Adhikari, P.; Kiess, A.; Adhikari, R.; Jha, R. An approach to alternative strategies to control avian coccidiosis and necrotic enteritis. J. Appl. Poult. Res. 2020, 29, 515–534. [CrossRef]
14. Furlan, R.L.; Macari, M.; Luquetti, B.C. Como avaliar os efeitos do uso de prebióticos, probióticos e flora de exclusão competitiva. In Simpósio Técnico de Incubação, Matrizes de Corte e Nutrição. Balneário Camboriú, Brazil. Available online: https://www.researchgate.net/profile/Marcos-Macari/publication/228600527_Como_avaliar_os_efeitos_do_uso_de_ prebioticos_probioticos_e_flora_de_exclusao_competitiva/links/566eb9ff08aea0892c52a559/Como-avaliar-os-efeitos-do-usode-prebioticos-probioticos-e-flora-de-exclusao-competitiva.pdf (accessed on 18 May 2023).
15. Pelicia, K.; Mendes, A.A.M.; Saldanha, E.S.P.B.; Pizzolante, C.C.; Takahashi, S.E.; Garcia, R.G.; Paz, I.C.L.A.; Quintero, R.R. Utilização de promotores biológicos para frangos de corte tipo colonial. Ver. Bras. Ciên. Avíc. 2004, 6, 21.
16. Hemarajata, P.; Versalovic, J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therap. Adv. Gastroenterol. 2013, 6, 39–51. [CrossRef] [PubMed]
17. Yaqoob, M.U.; Yousaf, M.; Khan, M.I.; Wang, M. Effect of β-Mannanase Supplementation on Growth Performance, Ileal Digestibility, Carcass Traits, Intestinal Morphology, and Meat Quality in Broilers Fed Low-ME Diets. Animals 2022, 12, 1126. [CrossRef] [PubMed]
18. Choct, M. Enzymes for the feed industry: Past, present, and future. Worlds J. Poult. Sci. 2006, 62, 5–16. [CrossRef]
19. Slominsk, B.A. Recent advances in research on enzymes for poultry diets. Poult. Sci. 2011, 90, 2013–2023. [CrossRef]
20. Ferreira Júnior, H.C. Avaliação da β-Mannanase em Dietas para Frangos de Corte. Master’s Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2014.
21. Jackson, M.E.; Anderson, D.M.; Hsiao, H.Y.; Mathis, G.F.; Fodge, D.W. Beneficial Effect of β-Mannanase Feed Enzyme on Performance of Chicks Challenged with Eimeria sp. and Clostridium perfringens. Avian Dis. 2003, 47, 759–763. [CrossRef]
22. Latorre, J.D.; Hernandez-Velasco, X.; Bielke, L.R.; Vicente, J.L.; Wolfenden, R.; Menconi, A.; Hargis, B.M.; Tellez, G. Evaluation of a Bacillus direct-fed microbial candidate on digesta viscosity, bacterial translocation, microbiota composition and bone mineralisation in broiler chickens fed on a rye-based diet. Br. Poult. Sci. 2015, 56, 723–732. [CrossRef]
23. Caldas, J.V.; Vignale, K.; Boonsinchai, N.; Wang, J.; Putsakum, M.; England, J.A.; Coon, C.N. The effect of β-mannanase on nutrient utilization and blood parameters in chicks fed diets containing soybean meal and guar gum. Poult Sci. 2018, 97, 2807–2817. [CrossRef]
24. Latham, R.E.; Williams, M.P.; Walters, H.G.; Carter, B.; Lee, J.T. Efficacy of β-mannanase on broiler growth performance and energy utilization in the presence of increasing dietary galactomannan. Poult. Sci. 2017, 97, 549–556. [CrossRef] [PubMed]
25. Aviagen. Ross Broiler Pocket Guide: The Pocket Guide; Aviagen: Huntsville, AL, USA, 2018.
26. Rostagno, H.S.; Albino, L.F.H.; Hannas, M.I.; Donzele, J.L.; Sakomura, N.K.; Perazzo, F.G.; Saravia, A.; De Abreu, M.L.T.; Rodrigues, P.B.; De Oliveira, R.F.; et al. Tabelas Brasileiras para aves e Suínos: Composição de Alimentos e Exigências Nutricionais, 3rd ed.; Editor UFV: Viçosa, Brazil, 2017.
27. Sakomura, N.K.; Rostagno, H.S. Métodos de Pesquisa em Nutrição De Monogástricos, 2nd ed.; Editor FUNEP: Jaboticabal, Brazil, 2016; p. 262.
28. Gordon, H.M.; Whitlock, H.V. A new technique for counting nematode egg in sheep faeces. J. Sci. Ind. Res. 1939, 12, 50–52.
29. Gava, M.S. Metodologia de Morfometria Intestinal em Frangos de Corte. Master’ Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2012.
30. Luna, L.G. Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology, 3rd ed.; Editor McGraw-Hill: New York, NY, USA, 1968.
31. Innis, M.A.; Gelfand, D.H.; Sninsky, J.J.; White, T.J. (Eds.) PCR Protocols: A Guide to Methods and Applications; Academic Press: Cambridge, MA, USA, 2012.
32. Degnan, P.H.; Ochman, H. Illumina-based analysis of microbial community diversity. ISME J. 2012, 6, 183–194. [CrossRef] [PubMed]
33. Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [CrossRef] [PubMed]
34. Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014, 42, 643–648. [CrossRef] [PubMed]
35. Kasab-Bachia, H.; Arruda, A.G.; Roberts, T.E.; Wilson, J.B. The use of large databases to inform the development of an intestinal scoring system for the poultry industry. Prev. Vet. Med. 2017, 146, 130–135. [CrossRef]
36. Vicuña, E.A.; Kuttappan, V.A.; Galarza-Seeber, R.; Latorre, J.D.; Faulkner, O.B.; Hargis, B.M.; Tellez, G.; Bielke, L.R. Effect of dexamethasone in feed on intestinal permeability, differential white blood cell counts, and immune organs in broiler chicks. Poult. Sci. 2015, 94, 2075–2080. [CrossRef]
37. McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [CrossRef]
38. Oksanen, J.; Kindt, R.; Legendre, P.; O’hara, B.; Stevens, M.H.H.; Oksanen, M.J.; Suggests, M. The vegan package. Commun. Ecol. Packag. 2007, 10, 719.
39. KruskaL, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [CrossRef]
40. Dunn, O.J. Multiple Comparisons Using Rank Sums. Technometrics 1964, 6, 241–252. [CrossRef]
41. Yuan, J.; Johnson, T.A.; Ajuwon, K.M.; Adeola, O. Eimeria infection-related intestinal dynamics and microbiome, growth performance, and nutrient utilization in broiler chickens fed diets supplemented with multienzyme. Can. J. Anim. Sci. 2022, 103, 81–91. [CrossRef]
42. Graña, A.L. Use of Probiotics in Broiler Chicken Feed. Magister Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2006.
43. De Freitas, L.F.V.B. Impact of Coccidiosis Challenge and Balanced Protein Levels on the Responses of Broiler Chickens. Ph.D. Thesis, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, Brazil, 2023.
44. Kipper, M.; Andretta, I.; Lehnen, C.R.; Lovatto, P.A.; Monteiro, S.G. Meta-analysis of the performance variation in broilers experimentally challenged by Eimeria spp. Vet. Parasitol. 2013, 196, 77–84. [CrossRef] [PubMed]
45. Bortoluzzi, C. Desempenho Produtivo e Microbiota Intestinal de Frangos de corte Suplementados com B-Ácidos do Lúpulo (Humulus lupulus) após Desafio com Eimeria acervulina e E. tenella. Master’s Thesis, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, Brazil, 2013.
46. Teng, P.Y.; Yadav, S.; de Souza Castro, F.L.; Tompkins, Y.H.; Fuller, A.L.; Kim, W.K. Graded Eimeria challenge linearly regulated growth performance, dynamic change of gastrointestinal permeability, apparent ileal digestibility, intestinal morphology, and tight junctions of broiler chickens. Poult. Sci. 2020, 99, 4203–4216. [CrossRef] [PubMed]
47. Zou, X.T.; Qiao, X.J.; Xu, Z.R. Effects of β-mannanase (Hemicell) on growth performance and immunity of broilers. Poult Sci. 2006, 85, 2175–2179. [CrossRef] [PubMed]
48. Yeo, J.; Kim, K.I. Effect of feeding diets containing an antibiotic, a probiotic or cassava extract on growth and intestinal urease activity in broiler chicks. Poult. Sci. 1997, 76, 381–385. [CrossRef]
49. Zhang, Z.F.; Zhou, T.X.; Ao, X.; Kim, I.H. Effects of β-glucan and Bacillus subtilis on growth performance, blood profiles, relative organ weight and meat quality in broiler chickens fed diets based on corn and soybean meal. Livest. Sci. 2012, 150, 419–424. [CrossRef]
50. Willis, W.L.; Reid, L. Investigating the effects of probiotic diets on broiler production and the presence of Campylobacter jejune. Poult. Sci. 2008, 87, 606–611. [CrossRef]
51. Lee, K.W.; Lee, S.H.; Lillehoj, H.S.; Li, G.X.; Jang, S.I.; Badu, U.S.; Park, M.S.; Kim, D.K.; Lillehoj, E.P.; Neurnann, A.P.; et al. Effects of direct-fed microbials on growth performance, gut morphometry, and immune characteristics in broiler chickens. Poult. Sci. 2010, 89, 203–216. [CrossRef]
52. Berto, R. Probióticos a base de Bacillus em Rações de Frangos de corte Desafiados com Clostridium perfringens e Eimeria vacinal. Master’s Thesis, Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, Brazil, 2023.
53. Majidi-Mosleh, A.; Sadeghi, A.A.; Mousavi, S.N.; Chamani, M.; Zarei, A. Ileal MUC2 gene expression and microbial population, but not growth performance and immune 23 response, are influenced by in ovo injection of probiotics in broiler chickens. Br. Poult. Sci. 2017, 58, 40–45. [CrossRef]
54. Wu, Y.; Shao, Y.; Song, B.; Zhen, W.; Wang, Z.; Guo, Y.; Shahid, M.S.; Nie, W. Effects of Bacillus coagulans supplementation on the growth performance and gut health of broiler chickens with Clostridium perfringens-induced necrotic enteritis. J. Anim. Sci. Biotechnol. 2018, 9, 1–9. [CrossRef] [PubMed]
55. Fuller, R. Nature of the determinant responsible for the adhesion of lactobacilli to chicken crop epithelial cells. J. Gen. Microbiol. 1975, 87, 245–250. [CrossRef] [PubMed]
56. Otutumi, L.K.; Góis, M.B.; Garcia, E.R.M.; Loddi, M.M. Variations on the efficacy of probiotics in poultry. In Probiotic in Animals; InTech: Rijeka, Croatia, 2012; pp. 203–230. [CrossRef]
57. Clavijo, V.; Flórez, M.J.V. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult. Sci. 2018, 97, 1006–1021. [CrossRef] [PubMed]
58. Singh, A.K.; Kim, W.K. Effects of Dietary Fiber on Nutrients Utilization and Gut Health of Poultry: A Review of Challenges and Opportunities. Animals 2021, 11, 181. [CrossRef]
59. Song, J.; Xiao, K.; Ke, Y.; Jiao, L.F.; Hu, C.H.; Diao, Q.Y.; Shi, B.; Zhou, X.T. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poult. Sci. 2014, 93, 581–588. [CrossRef] [PubMed]
60. Kogut, M.H. The effect of microbiome modulation on the intestinal health of poultry. Anim. Feed Sci. Technol. 2019, 250, 32–40. [CrossRef]
61. Golder, H.M.; Geier, M.S.; Forder, R.E.A.; Hynd, P.I.; Hughes, R.J. Effects of necrotic enteritis challenge on gut microarchitecture and mucin profile. Br. Poult. Sci. 2011, 52, 500–506. [CrossRef] [PubMed]
62. Viola, E.S.; Vieira, S.L. Suplementação de acidificantes orgânicos e inorgânicos em dietas para frangos de corte: Desempenho zootécnico e morfologia intestinal. Ver. Bras. Zoot. 2007, 36, 1097–1104. [CrossRef]
63. Maiorka, A.; Boleli, I.C.; Macari, M. Fisiologia Aviária Aplicada a Frangos de Corte, 1st ed.; Funep/Unesp: Jaboticabal, Brazil, 2002; pp. 113–123.
64. Pelicano, E.R.L.; Souza, P.A.; Souza, H.B.A.; Figueiredo, D.F.; Boiago, M.M.; Carvalho, S.R.; Bordon, V.F. Intestinal mucosa development in broiler chickens fed natural growth promoters. Braz. J. Poult. Sci. 2005, 7, 221–229. [CrossRef]
65. Khan, S.H. Probiotic microorganisms-identification, metabolic and physiological impact on poultry. Worlds. Poult. Sci. J. 2013, 69, 601–612. [CrossRef]
66. Jeurissen, S.H.; Lewis, F.; van der Klis, J.D.; Mroz, Z.; Rebel, J.M.; Ter Huurne, A.A. Parameters and Techniques to Determine Intestinal Health of Poultry as Constituted by Immunity, Integrity, and Functionality. Curr. Issues Intest. Microbiol. 2002, 3, 1–14. [PubMed]
67. Soares, E.S.R. Efeito Continuado de Simbiótico em Dietas Para Poedeiras da Fase de Cria à Produção. Ph.D. Thesis, Universidade Federal Rural de Pernambuco, Recife, Brazil, 2023; p. 134.
68. Chaveerach, P.; Keuzenkamp, D.A.; Lipman LJ, A.; Van Knapen, F. Effect of organic acids in drinking water for young broilers on Campylobacter infection, volatile fatty acid production, intestinal microflora, and histological cellular changes. Poult. Sci. 2004, 83, 330–334. [CrossRef] [PubMed]
69. Van Immerseel, F.; Fievez, V.; De Buck, J.; Pasmans, F.; Martel, A.; Haesebrouck, F.; Ducatelle, R. Microencapsulated short-chain fatty acids in feed modify colonization and invasion shortly after Salmonella enteritidis infection in young chickens. Poult. Sci. 2004, 83, 69–74. [CrossRef] [PubMed]
70. Izat, A.L.; Tidwell, N.M.; Thomas, R.A.; Reiber, M.A.; Adams, M.H.; Colberg, M.; Waldroup, P.W. Effects of a buffered propionic acid in diets on the performance of broiler chickens and on microflora of the intestine and carcass. Poult. Sci. 1990, 69, 818–826. [CrossRef] [PubMed]
71. Chen, H.L.; Zhao, X.Y.; Zhao, G.X.; Huang, H.B.; Li, H.R.; Shi, C.W.; Yang, W.T.; Jiang, Y.L.; Wang, J.Z.; Ye, L.P.; et al. Dissection of the cecal microbial community in chickens after Eimeria tenella infection. Parasites Vectors 2020, 13, 56. [PubMed]
72. Lin, Y.; Xu, S.; Zeng, D.; Ni, X.; Zhou, M.; Zeng, Y.; Wang, H.; Zhou, Y.; Zhu, H.; Pan, K.; et al. Disruption in the cecal microbiota of chickens challenged with Clostridium perfringens and other factors was alleviated by Bacillus licheniformis supplementation. PLoS ONE 2018, 12, e0182426. [CrossRef] [PubMed]
73. Hume, E.U.; Clemente-Hernández, S.; Oviedo-Rondón, E.O. Effects of feed additives and Eimeria mixed species infection on the intestinal microbial ecology of broiler chickens. Poult. Sci. 2006, 85, 2106–2111. [CrossRef]
74. Oviedo-Rondón, E.O.; Hume, M.E.; Hernández, M.E.C.; Clemente-Hernández, C.S. Intestinal Microbial Ecology of Broilers Vaccinated and Challenged With Mixed Eimeria Species, and Supplemented with Essential Oil Blends. Poult. Sci. 2006, 85, 854–860, ISSN 0032-5791. [CrossRef] [PubMed]
75. Stanley, D.; Hughes, R.J.; Moore, R.J. Microbiota of the chicken gastrointestinal tract: Influence on health, productivity, and disease. Appl. Microbiol. Biotechnol. 2014, 98, 4301–4310. [CrossRef]
76. Feye, K.M.; Baxter, M.F.A.; Tellez-isaias, G.; Kogut, M.H.; Ricke, S.C. Influential factors on the composition of the conventionally raised broiler gastrointestinal microbiomes. Poult. Sci. 2020, 99, 653–659. [CrossRef]
77. Lozupone, C.A.; Knight, R. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. USA 2007, 104, 11436–11440. [CrossRef] [PubMed]
78. Derami, M.S. Comparação Entre o Microbioma do Trato Respiratório de Aves Saudáveis e Aves Diagnosticadas com Colibacilose. Master’s Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2019.
79. Blaut, M.; Clavel, T. Metabolic diversity of the intestinal microbiota: Implications for health and disease. J. Nutr. 2007, 137, 751S–755S. [CrossRef] [PubMed]
80. Zhang, Z.F.; Kim, I.H. Effects of multistrain probiotics on growth performance, apparent ileal nutrient digestibility, blood traits, cecal microbial excretion and excreted odor content in broiler chickens. Poult. Sci. 2014, 93, 364–370. [CrossRef] [PubMed]
81. Pedroso, A.A.; Batal, A.B.; Lee, M.D. Effect of in ovo administration of an adult-derived microbiota on establishment of the intestinal microbiome in chickens. Am. J. Vet. Res. 2016, 77, 514–526. [CrossRef] [PubMed]
82. Pender, C.M.; Kim, S.; Potter, T.D.; Ritszi, M.M.; Young, M.; Dalloul, R.A. Efeitos da suplementação in ovo de probióticos sobre o desempenho e imuno competência de frangos de corte ao desafio de Eimeria. Benef. Microbes 2016, 7, 699–705. [CrossRef] [PubMed]
83. Scapini, L.B. Suplementação de β-Mannanase em Dietas Para Frangos de Corte Criados em Condições Experimentais e Comerciais. Dissertação de Mestrado, Universidade Estadual do Paraná, Palotina, Brazil. 2015. Available online: http://hdl.handle.net/1884 /41318 (accessed on 20 April 2023).
84. Martiny, J.B.H.; Eisen, J.A.; Penn, K.; Allison, S.D.; Horner-Devine, M.C. Os drivers da beta-diversidade bacteriana dependem da escala espacial. Proc. Natl. Acad. Sci. USA 2011, 108, 7850–7854. [CrossRef] [PubMed]
85. Cisek, A.A.; Binek, M. Chicken intestinal microbiota function with a special emphasis on the role of probiotic bacteria. Pol. J. Vet. Sci. 2014, 17, 2. [CrossRef] [PubMed]
86. Ducatelle, R.; Eeckhaut, V.; Haesebrouck, F.; Van Immerseel, F. A review on prebiotics and probiotics for the control of dysbiosis: Present status and future perspectives. Animal 2015, 9, 43–48. [CrossRef] [PubMed]
87. Singh, P.; Karimi, A.; Devendra, K.; Waldroup, P.W.; Cho, K.K.; Kwon, Y.M. Influence of penicillin on microbial diversity of the cecal microbiota in broiler chickens. Poult. Sci. 2013, 92, 272–276. [CrossRef]
88. Salaheen, S.; Kim, S.W.; Haley, B.J.; Van Kessel, J.A.S.; Biswas, D. Alternative Growth Promoters Modulate Broiler Gut Microbiome and Enhance Body Weight Gain. Front. Microbiol. 2017, 8, 208. [CrossRef]
89. Hong, Y.; Cheng, Y.; Li, Y.; Li, X.; Zhou, Z.; Shi, D.; Li, Z.; Xiao, Y. Preliminary Study on the Effect of Bacillus amyloliquefaciens TL on Cecal Bacterial Community Structure of Broiler Chickens. BioMed Res. Int. 2019, 2019, 5431354. [CrossRef] [PubMed]
90. Wielen, P.W.J.J.; Keuzenkamp, D.A.; Lipman, L.V.; Knapen, F.; Biesterveld, S. Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth. Microb. Ecol. 2002, 44, 286–293. [CrossRef] [PubMed]
91. Callaway, T.R.; Dowd, S.E.; Wolcott, R.D.; Sun, Y.; McReynolds, J.L.; Edrington, T.S.; BYRD, J.A.; Anderson, R.C.; Krueger, N.; Nisbet, D.J. Evaluation of the bacterial diversity in cecal contents of laying hens fed various molting diets by using bacterial tag-encoded FLX amplicon pyrosequencing. Poult. Sci. 2009, 88, 298–302. [CrossRef] [PubMed]
92. Borda-Molina, D.; Seifert, J.; Camarinha-Silva, A. Current Perspectives of the Chicken Gastrointestinal Tract, and Its Microbiome. Comput. Struct. Biotechnol. 2018, 16, 131–139. [CrossRef] [PubMed]
93. Giacobbo, F.C.N.; Eyng, C.; Nunes, R.V.; De-souza, C.; Teixeira, L.V.; Pilla, R.; Suchodolski, J.S.; Bortoluzzi, C. Different enzymatic associations in diets of 69 broiler chickens formulated with corn dried at various temperatures. Poult. Sci. 2021, 100, 101013. [CrossRef] [PubMed]
94. Betancourt, L.; Hume, M.; Rodríguez, F.; Nisbet, D.; Sohail, M.U.; Afanador-Tellez, G. Effects of Colombian oregano essential oil (Lippia origanoides Kunth) and Eimeria species on broiler production and cecal microbiota. Poult. Sci. 2019, 98, 4777–4786. [CrossRef] [PubMed]
95. Richards, P.; Fothergill, J.; Bernardeau, M.; Wigley, P. Development of the Caecal Microbiota in Three Broiler Breeds. Front. Vet. Sci. 2019, 6, 201. [CrossRef]
96. Antonissen, G.; Eeckhaut, V.; Van Driessche, K.; Onrust, L.; Haesebrouck, F.; Ducatelle, R.; Moore, R.J.; Van-Immerseel, F. Microbial shifts associated with necrotic enteritis. Avian Pathol. 2016, 45, 308–312. [CrossRef]
97. Genova, J.L.; Rupolo, P.E.; Azevedo LBd Henz, D.; Carvalho, S.T.; Kipper, M.; Gonçalves, G.d.A.C.; Vilela, H.L.O.; Pasquetti, T.J.; Oliveira NTEd Dietrich, A.R.M.; Carvalho, P.L.d.O. β-mannanase supplementation in diets reduced in 85 kcal metabolizable energy/kg containing xylanase-phytase improves gain to feed ratio, nutrient usage, and backfat thickness in finisher pigs. Front. Vet. Sci. 2023, 10, 1144692. [CrossRef]
98. Alvarenga, B.O. Relação Entre o Aspecto Morfológico de Fezes de Frangos de Corte e sua Composição Bacteriana. Mestrado Thesis, Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patologia, São Paulo, Brazil, 2020.
99. Adeola, O.; Cowieson, A.J. Board invited review: Opportunities and challenges in the use of exogenous enzymes to improve non-ruminant animal production. J. Anim. Sci. 2011, 89, 3189–3218. [CrossRef]
100. Joat, N.; Van, T.T.H.; Stanley, D.; Moore, R.J.; Chousalkar, K. Temporal dynamics of gut microbiota in caged laying hens: A field observation from hatching to end of lay. Appl. Microbiol. Biotechnol. 2021, 105, 4719–4730. [CrossRef] [PubMed]
101. McReynolds, J.; Waneck, C.; Byrd, J.; Genovese, K.; Duke, S.; Nisbet, D. Efficacy of multistrain direct-fed microbial and phytogenetic products in reducing necrotic enteritis in commercial broilers. Poult. Sci. 2009, 88, 2075–2080. [CrossRef] [PubMed]
102. Pires, P.G.D.S.; Torres, P.; Teixeira Soratto, T.A.; Filho, V.B.; Hauptli, L.; Wagner, G.; Haese, D.; Pozzatti, C.D.Á.; Moraes, P.D.O. Comparison of functional-oil blend and anticoccidial antibiotics effects on performance and microbiota of broiler chickens challenged by coccidiosis. PLoS ONE 2022, 17, e0270350. [CrossRef] [PubMed]
103. Vieira, A. Mistura de Óleos Funcionais Como Promotor de Crescimento e seu Efeito na Microbiota Intestinal de aves e Suínos. Bachelor’s Thesis, Universidade Estadual de Santa Catarina, Florianólis, Brazil, 2020; 122p.
104. Singh, K.M.; Shah, T.; Deshpande, S.; Jakhesara, S.J.; Koringa, P.G.; Rank, D.N.; Joshi, C.G. High through put 16S rRNA gene-based pyrosequencing analysis of the fecal microbiota of high FCR and low FCR broiler growers. Mol. Biol. Rep. 2012, 39, 10595–10602. [CrossRef] [PubMed]
105. Morgan, X.C.; Tickle, T.L.; Sokol, H.; Gevers, D.; Devaney, K.L.; Ward, D.V.; Reyes, J.A.; Shah, S.A.; LeLeiko, N.; Snapper, S.B.; et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012, 13, R79. [CrossRef] [PubMed]
106. Kaufmann, C. Níveis de Energia Metabolizável de Dietas Para Frangos de Corte Suplementadas com Enzimas Exógenas e Pósbiótico. Master’sThesis, Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, Brazil, 2023; 84p.
107. Stanley, D.; Geier, M.S.; Chen, H.; Hughes, R.J.; Moore, R.J. Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiol. 2015, 15, 51. [CrossRef] [PubMed]
108. Wei, S.; Morrison, M.; Yu, Z. Bacterial census of poultry intestinal microbiome. Poult. Sci. 2013, 92, 671–683. [CrossRef] [PubMed]
109. Pan, D.; Yu, Z. Gut microbiome of birds and its interaction with host and diet. Micróbios Intest. 2014, 5, 108–119. [CrossRef]
110. Ahn, S.; Jin, T.E.; Chang, D.H.; Rhee, M.S.; Kim, H.J.; Lee, S.J.; Park, D.S.; Kim, B.C. Agathobaculum butyriciproducens gen. nov. sp. nov., a strict anaerobic, butyrate-producing gut bacterium isolated from human faeces and reclassification of Eubacterium desmolans as Agathobaculum desmolans comb. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 3656–3661. [CrossRef]
111. Kirsty, B.; Daniella, D.; Erin, M.; Gibson, D.L. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 2012, 4, 1095–1119. [CrossRef]
112. Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L.G.; Gratadoux, J.J.; Blugeon, S.; Bridonneau, C.; Furet, J.P.; Corthier, G.; et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [CrossRef] [PubMed]
113. Fiagá, D.A.M. Microbiota Intestinal em Frangos de Corte. Ph.D.Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 2018.
114. Oakley, B.B.; Buhr, R.J.; Ritz, C.W.; Kiepper, B.H.; Berrang, M.E.; Seal, B.S.; Cox, N.A. Successive changes in chicken cecal microbiome during 42 days of growth are independent of organic acid additives. Vet. BMC Res. 2014, 10, 282. [CrossRef] [PubMed]
115. Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 2015, 48, 186–194. [CrossRef] [PubMed]
116. Du, X.; Xiang, Y.; Lou, F.; Tu, P.; Zhang, X.; Hu, X.; Lyu, W.; Xiao, Y. Microbial Community and Short-Chain Fatty Acid Mapping in the Intestinal Tract of Quail. Animals 2020, 10, 1006. [CrossRef]
117. Moeser, A.J.; Klok, C.V.; Ryan, K.A.; Wooten, J.G.; Little, D.; Cook, V.L.; Blikslager, A.T. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. Am. J. Physiol. Cell Physiol. Gastrointestal Liver Physiol. 2007, 292, G173–G181. [CrossRef] [PubMed]
118. Brisbin, J.T.; Gong, J.; Sharif, S. Interactions between commensal bacteria and the gut-associated immune system of the chicken. Anim. Health Res. Rev. 2008, 9, 101–110. [CrossRef] [PubMed]
119. Celi, P.; Verlhac, V.; Pérez, C.E.; Schmeisser, J.; Kluenter, A.M. Biomarcadores da funcionalidade gastrointestinal na nutrição e saúde animal. Rev. Acad. Ciên. Anim. 2019, 250, 9–31. [CrossRef]
120. Camilleri, M. Leaky gut: Mechanisms, measurement, and clinical implications in humans. Gut 2019, 68, 1516–1526. [CrossRef] [PubMed]
121. Hornbuckle, W.E.; Simpson, K.W.; Tennant, B.C. Gastrointestinal Function. In Clinical Biochemistry of Domestic Animals; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2008; pp. 413–457. [CrossRef]
122. Madlala, T.; Okpeku, M.; Adeleke, M.A. Understanding the interactions between Eimeria infection and gut microbiota, towards the control of chicken coccidiosis: A review. Parasite 2021, 28, 48. [CrossRef]
123. Teng, P.Y.; Choi, J.; Tompkins, Y.; Lillehoj, H.; Kim, W. Impacts of increasing challenge with Eimeria maxima on the growth performance and gene expression of biomarkers associated with intestinal integrity and nutrient transporters. Vet. Res. 2021, 52, 81. [CrossRef]
124. Gharib-Naseri, K.; de Paula Dorigam, J.C.; Doranalli, K.; Kheravii, S.; Swick, R.A.; Choct, M.; Wu, S.B. Modulations of genes related to gut integrity, apoptosis, and immunity underlie the beneficial effects of Bacillus amyloliquefaciens CECT 5940 in broilers fed diets with different protein levels in a necrotic enteritis challenge model. J. Anim. Sci. Biotechnol. 2020, 11, 104. [CrossRef] [PubMed]
125. Maria, L.P. Avaliação do Efeito da Suplementação de um Probiótico Associado a Diferentes Níveis Dietéticos de Proteína Balanceada em Frangos de Corte Desafiados por Eimeria maxima. Bachelor’s Thesis, Universidade Estadual Paulista “Júlio de Mesquita Filho” Unesp, Jaboticabal, Brazil, 2021.