In commercial poultry production, chickens are reared under intensive conditions, which may allow infections to spread quickly. Antibiotics are used at sub-therapeutic doses in livestock and poultry feed to prevent diseases and improve productivity. However, restrictions on the use of antibiotics at sub-therapeutic concentrations in livestock feed due to growing concerns of antimicrobial resistance (AMR), together with antibiotic residues in meat and eggs has prompted poultry researchers and feed producers to look for viable alternatives. Thus, there is increasing interest in developing natural alternatives to in-feed antibiotics to improve chicken productivity and health. Probiotics, specifically from the genus Bacillus have proven to be effective due to their sporeforming capabilities. Furthermore, their ability to withstand heat during feed processing and be stored for a long time without losing viability as well as their potential to function in the acidic medium of the chicken gut, provide them with several advantages over conventional probiotics. Several studies regarding the antimicrobial and antioxidant activities of Bacillus probiotics and their positive impact in chicken nutrition have been documented. Therefore, the present review shields light on the positive effect of Bacillus probiotics as alternatives to in-feed antibiotics on growth performance, serum chemistry, antioxidant status, intestinal histomorphology and lesion scores of diseasechallenged broiler chickens and the mechanisms by which they exert their actions. It is concluded that Bacillus probiotics supplementation improve growth, health and productive indices of disease-challenged broiler chickens and can be a good alternative to in-feed antibiotics. However, more studies are required on the effect of Bacillus probiotics supplementation in broiler chickens to maximize productivity and achieve the ultimate goal of stopping the usage of antibiotics at sub-therapeutic doses in broiler chicken feed to enhance performance.
Keywords: broiler chickens, Bacillus, antibiotic alternatives, growth, health makers.
1. ILRI. Options for the livestock sector in developing and emerging economies to 2030 and beyond. Meat: the future series. Geneva, Switzerland: World Economic Forum (2019).
2. Zhou Y, Staatz J. Projected demand and supply for various foods in West Africa: implications for investments and food policy. Food Policy. (2016) 61:198–212. doi: 10.1016/j.foodpol.2016.04.002
3. Desiere S, Hung Y, Verbeke W, D’Haese M. Assessing current and future meat and fish consumption in Sub-Sahara Africa: learnings from FAO food balance sheets and LSMS household survey data. Glob Food Sec. (2018) 16:116–26. doi: 10.1016/j.gfs.2017.12.004
4. Engberg RM, Hedemann MS, Leser TD, Jensen BB. Effect of zinc bacitracin and salinomycin on intestinal microflora and performance of broilers. Poult Sci. (2000) 79:1311–9. doi: 10.1093/ps/79.9.1311
5. FAO/WHO. Salmonella and Campylobacter in Chicken Meat: Meeting Report. Microbiological Risk Assessment Series 19. (2009). p. 1–42.
6. Van Immerseel FV, Rood JI, Moore RJ, Titball RW. Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends in Microbiol. (2009) 17:32–6. doi: 10.1016/j.tim.2008.09.005
7. Ahiwe EU, Dos Santos TT, Graham H, Iji PA. Can probiotic or prebiotic yeast (Saccharomyces cerevisiae) serve as alternatives to in-feed antibiotics for healthy or disease-challenged broiler chickens?: a review. J Appl Poult Res. (2021) 30:100164. doi: 10.1016/j.japr.2021.100164
8. Hao H, Cheng G, Iqbal Z, Ai X, Hussain HI, Huang L, et al. Benefits and risks of antimicrobial use in food-producing animals. Front Microbiol. (2014) 5:288. doi: 10.3389/fmicb.2014.00288
9. Cheng G, Hao H, Xie S, Wang X, Dai M, Huang L, et al. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front Microbiol. (2014) 5:69–83. doi: 10.3389/fmicb.2014.00217
10. Kabir S. The role of probiotics in the poultry industry. Int J Mol Sci. (2009) 10:3531–46. doi: 10.3390/ijms10083531
11. Patterson J, Burkholder K. Application of prebiotics and probiotics in poultry production. Poult Sci. (2003) 82:627–31. doi: 10.1093/ps/82.4.627
12. Kim S, Yu D, Lee S, Park S, Ryu K, Lee D. Effects of feeding Aspergillus oryzae ferments on performance, intestinal microfloua, blood serum components and environmental factors in broiler. Korean J Poult Sci. (2003) 30:151–9
13. Reddy GV, Panda N, Anjaneyulu Y, Reddy A. Khadar Vali. R Effect of yeast culture on the performance of broilers Indian J Anim Nut. (2005) 22:1 70–2
14. Jung S, Houde R, Baurhoo B, Zhao X, Lee B. Effects of galactooligosaccharides and a Bifidobacteria lactis-based probiotic strain on the growth performance and fecal microflora of broiler chickens. Poult Sci. (2008) 87:1694–9. doi: 10.3382/ps.2007-00489
15. Franz CM, Huch M, Abriouel H, Holzapfel W, Gálvez A. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol. (2011) 151:125–40. doi: 10.1016/j.ijfoodmicro.2011.08.014
16. Mattila-Sandholm T, Myllärinen P, Crittenden R, Mogensen G, Fondén R, Saarela M. Technological challenges for future probiotic foods. Int Dairy J. (2002) 12:173–82. doi: 10.1016/S0958-6946(01)00099-1
17. Ramlucken U, Lalloo R, Roets Y, Moonsamy G, Jansen van Rensburg C, Thantsha MS. Advantages of Bacillus-based probiotics in poultry production. Livest Sci. (2020) 241:104215. doi: 10.1016/j.livsci.2020.104215
18. Clavel T, Carlin F, Lairon D, Nguyen-The C, Schmitt P. Survival of Bacillus cereus spores and vegetative cells in acid media simulating human stomach. J Appl Microbiol. (2004) 97:214–9. doi: 10.1111/j.1365-2672.2004.02292.x
19. Bernardeau M, Lehtinen M, Forssten S, Nurminen P. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J Food Sci Tech. (2017) 54:2570–84. doi: 10.1007/s13197-017-2688-3
20. Ramlucken U, Ramchuran SO, Moonsamy G, Jansen van Rensburg C, Thantsha MS, Lalloo R. Production and stability of a multi-strain Bacillus based probiotic product for commercial use in poultry. Biotechnol Rep. (2002) 29:e00575. doi: 10.1016/j.btre.2020.e00575
21. Mingmongkolchai S, Panbangred W. Bacillus probiotics: an alternative to antibiotics for livestock production. J Appld Microbiol. (2018) 124:1334– 46. doi: 10.1111/jam.13690
22. Aly SM, Ahmed YA, Ghareeb AA, Mohamed MF. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish and Shellfish Immunol. (2008) 25:128– 36. doi: 10.1016/j.fsi.2008.03.013
23. Xia Y, Zhang Y, Xu J, Guo S, Ding B. Effects of Lactobacillus fermentum and Bacillus coagulans on the growth performance and gut health of broilers challenged with Clostridium perfringens. China Anim Husbandry Vet Med. (2019) 46:2927–36
24. Brzoska F, Sliwinski B, Stecka K. Effect of Lactococcus lactis vs. ´ Lactobacillus Spp. bacteria on chicken body weight, mortality, feed conversion and carcass quality. Ann Anim Sci. (2012) 12:549–59. doi: 10.2478/v10220-012-0046-y
25. Olnood CG, Beski SS, Choct M, Iji PA. Novel probiotics: their effects on growth performance, gut development, microbial community and activity of broiler chickens. Anim Nutr. (2015) 1:184–91. doi: 10.1016/j.aninu.2015.07.003
26. Taheri H, Moravej H, Tabandeh F, Zaghari M, Shivazad M. Screening of lactic acid bacteria toward their selection as a source of chicken probiotic. Poult Sci. (2009) 88:1586–93. doi: 10.3382/ps.2009-00041
27. Shokryazdan P, Kalavathy R, Sieo C, Alitheen N, Liang J, Jahromi M, et al. Isolation and characterization of Lactobacillus strains as potential probiotics for chickens. Pertanika J Trop Agric Sci. (2014) 37:141– 57. doi: 10.1155/2014/927268
28. Cutting SM. Bacillus probiotics. Food Microbiol. (2011) 28:214– 20. doi: 10.1016/j.fm.2010.03.007
29. Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health. (2014) 11:4745– 67. doi: 10.3390/ijerph110504745
30. Abudabos AM, Alyemni AH, Dafalla YM, Khan RU. Effect of organic acid blend and Bacillus subtilis alone or in combination on growth traits, blood biochemical and antioxidant status in broilers exposed to Salmonella typhimurium challenge during the starter phase. J Appld Anim Res. (2017) 45:538–42. doi: 10.1080/09712119.2016.1219665
31. Bai K, Feng C, Jiang L, Zhang L, Zhang J, Zhang L, et al. Dietary effects of Bacillus subtilis fmbj on growth performance, small intestinal morphology, and its antioxidant capacity of broilers. Poult Sci. (2018) 97:2312–21. doi: 10.3382/ps/pey116
32. Dong Y, Li R, Liu Y, Ma L, Zha J, Qiao X, et al. Benefit of dietary supplementation with Bacillus subtilis BYS2 on growth performance, immune response, and disease resistance of broilers. Probio and Antimicrobial Prot. (2020) 12:1385–97. doi: 10.1007/s12602-020-09643-w
33. Ar’Quette G, Gay CG, Lillehoj HS. Bacillus spp. as direct fed microbial antibiotic alternatives to enhance growth, immunity, and gut health in poultry. Avian Path. (2018) 47:339–51. doi: 10.1080/03079457.2018.1464117
34. Khan RU, Naz S. Application of probiotics in poultry production. World Poult Sci J. (2013) 69:621–32. doi: 10.1017/S0043933913000627
35. Xu X, Huang Q, Mao Y, Cui Z, Li Y, Huang Y, et al. Immunomodulatory effects of Bacillus subtilis (natto) B4 spores on murine macrophages. Microbiol Immunol. (2012) 56:817–24. doi: 10.1111/j.1348-0421.2012.00508.x
36. Jeong JS, Kim IH. Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers. Poult Sci. (2014) 93:3097–103. doi: 10.3382/ps.2014-04086
37. Latorre JD, Hernandez-Velasco X, Wolfenden RE, Vicente JL, Wolfenden AD, Menconi A, et al. Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity, and biofilm synthesis as direct-fed microbial candidates for poultry. Front Vet Sci. (2016) 3:95. doi: 10.3389/fvets.2016.00095
38. Soerjadi A, Rufner R, Snoeyenbos G, Weinack OM. Adherence of Salmonellae and native gut microflora to the gastrointestinal mucosa of chicks. Avian Dis. (1982) 26:576–84. doi: 10.2307/1589904
39. Baindara P, Mandal SM, Chawla N, Singh PK, Pinnaka AK, Korpole S. Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SKDU4 isolated from a rhizosphere soil sample. AMB Express. (2013) 3:2. doi: 10.1186/2191-0855-3-2
40. Khochamit N, Siripornadulsil S, Sukon P, Siripornadulsil W. Antibacterial activity and genotypic–phenotypic characteristics of bacteriocin producing Bacillus subtilis KKU213: potential as a probiotic strain. Microbiol Res. (2015) 170:36–50. doi: 10.1016/j.micres.2014.09.004
41. Al-Khalaifah HS. Benefits of probiotics and/or prebiotics for antibioticreduced poultry. Poult Sci. (2018) 97:3807–15. doi: 10.3382/ps/pey160
42. Barbosa TM, Serra CR, La Ragione RM, Woodward MJ, Henriques AO. Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl Environ Microbiol. (2005) 71:968–78. doi: 10.1128/AEM.71.2.968-978 .2005
43. Cladera-Olivera F, Caron GR, Brandelli A. Bacteriocin-like substance production by Bacillus licheniformis strain P40. Lett Appl Microbiol. (2004) 38:251–6. doi: 10.1111/j.1472-765X.2004.01478.x
44. Mols M, Abee M. Primary and secondary oxidative stress in Bacillus. Environtal Microbiol. (2011) 13:1387– 94. doi: 10.1111/j.1462-2920.2011.02433.x
45. Kabploy K, Bunyapraphatsara N, Morales NP, Paraksa N. Effect of antibiotic growth promoters on anti-oxidative and anti-inflammatory activities in broiler chickens. Thai J Vet Med. (2016) 46:89–95.
46. Rajput IR Li YL, Xu X, Huang Y, Zhi WC Yu DY, et al. Supplementary effects of Saccharomyces boulardii and Bacillus subtilis B10 on digestive enzyme activities, antioxidation capacity and blood homeostasis in broiler. Int J Agric Biol. (2013) 15:231–7.
47. Capcarova M, Weis J, Hrncar C, Kolesarova A, Pal G. Effect of Lactobacillus fermentum and Enterococus faecium strains on intestinal milieu, antioxidant status and body weight of broiler chickens. J Anim Physiol Anim Nutr. (2010) 94:215–24. doi: 10.1111/j.1439-0396.2010.01010.x
48. Adhikari B, Hernandez-Patlan D, Solis-Cruz B, Kwon YM, Arreguin MA, Latorre JD, et al. Evaluation of the antimicrobial and antiinflammatory properties of Bacillus-DFM (NorumTM) in broiler chickens infected with Salmonella enteritidis. Frontiers in Vet Sci. (2019) 6:282. doi: 10.3389/fvets.2019.00282
49. Carillon J, Rouanet JM, Cristol JP, Brion R. Superoxide dismutase administration, a potential therapy against oxidative stress related diseases: several routes of supplementation and proposal of an original mechanism of action. Pharm Res. (2013) 30:2718–28. doi: 10.1007/s11095-013-1113-5
50. Yilmaz M, Soran H, Beyatli Y. Antimicrobial activities of some Bacillus spp. strains isolated from the soil. Microbiol Res. (2006) 161:127– 31. doi: 10.1016/j.micres.2005.07.001
51. Kadaikunnan S, Rejiniemon T, Khaled JM, Alharbi NS, Mothana R. In vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens. Ann Clin Microbiol Antimicrob. (2015) 14:9. doi: 10.1186/s12941-015-0069-1
52. Tactacan G, Schmidt J, Miille M, Jimenez DA. Bacillus subtilis (QST 713) spore-based probiotic for necrotic enteritis control in broiler chickens. J Appl Poult Res. (2013) 22:825–31. doi: 10.3382/japr.2013-00730
53. Latorre JD, Hernandez-Velasco X, Kuttappan VA, Wolfenden RE, Vicente JL, Wolfenden AD, et al. Selection of Bacillus spp. for cellulase and xylanase production as direct-fed microbials to reduce digesta viscosity and Clostridium perfringens proliferation using an in vitro digestive model in different poultry diets. Front Vet Sci. (2015) 2:25. doi: 10.3389/fvets.2015.00025
54. Wu Y, Shao Y, Song B, Zhen W, Wang Z, Guo Y, et al. Effects of Bacillus coagulans supplementation on the growth performance and gut health of broiler chickens with Clostridium perfringens-induced necrotic enteritis. J Anim Sci Biotechnol. (2018) 9:9. doi: 10.1186/s40104-017-0220-2
55. Teo AYL, Tan HM. Inhibition of Clostridium perfringens by a novel strain of Bacillus subtilis isolated from the gastrointestinal tracts of healthy chickens. Appl Environ Microbiol. (2005) 71:4185–90. doi: 10.1128/AEM.71.8.4185-4190.2005
56. Jayaraman S, Thangavel G, Kurian H, Mani R, Mukkalil R, Chirakkal H. Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with clostridium perfringens-induced necrotic enteritis. Poult Sci. (2013) 92:370–4. doi: 10.3382/ps.2012-02528
57. Guyard-Nicodeme M, Keita A, Quesne S, Amelot M, Poezevara T, Le Berre B, et al. Efficacy of feed additives against Campylobacter in live broilers during the entire rearing period. Poult Sci. (2016) 95:298– 305. doi: 10.3382/ps/pev303
58. Deepak K, Mukund K, Mayura G, Archana P, Swati H, Amit Y, et al. Efficacy of Bacillus subtilis (GalliPro) supplementation in Clostridium perfringens challenged necrotic enteritis of broiler chicken. Indian J Anim Res. (2018) 52:619–22. doi: 10.18805/ijar.B-3253
59. Lin E, Cheng Y, Hsiao FS, Proskura WS, Dybus A, Yu Y. Optimization of solid-state fermentation conditions of Bacillus licheniformis and its effects on Clostridium perfringens-induced necrotic enteritis in broilers. Revi Brasileira Zootec. (2019) 48:e20170298. doi: 10.1590/rbz4820170298
60. Liu Y, Zhang S, Luo Z, Liu D. Supplemental Bacillus subtilis PB6 improves growth performance and gut health in broilers challenged with Clostridium perfringens. J Immunol Res. (2021) 2021:2549541. doi: 10.1155/2021/2549541
61. Arif M, Akteruzzaman M, Tuhin-Al-Ferdous, Islam SKS, Das BC, Siddique MP, et al. Dietary supplementation of Bacillus-based probiotics on the growth performance, gut morphology, intestinal microbiota and immune response in low biosecurity broiler chickens. Vet and Anim Sci. (2021) 14:100216. doi: 10.1016/j.vas.2021.100216
62. Roy BC, Chowdhury SD, Kabir SML. Effects of feeding Bacillus subtilis to heat stressed broiler chickens with or without an antibiotic growth promoter. Asian J Med Biol Res. (2015) 1:80–8. doi: 10.3329/ajmbr.v1i1.25502
63. Abudabos AM, Aljumaah MR, Alkhulaifi MM, Alabdullatif A, Suliman GM, Sulaiman AR, et al. Comparative effects of Bacillus subtilis and Bacillus licheniformis on live performance, blood metabolites and intestinal features in broiler inoculated with Salmonella infection during the finisher phase. Microb Pathog. (2020) 139:103870. doi: 10.1016/j.micpath.2019.103870
64. Al-owaimer AN, Suliman GM, Alyemni AH, Abudabos AM. Effect of different probiotics on breast quality characteristics of broilers under Salmonella challenge. Italian J Anim Sci. (2014) 13:450–4. doi: 10.4081/ijas.2014.3189
65. Gil de los santos JR, Storch OB, Gil-turnes C. Bacillus cereus var toyoii and Saccharomyces boulardii increased feed efficiency in broilers infected with Salmonella enteritidis. Brit Poult Sci. (2005) 46:494– 7. doi: 10.1080/00071660500181461
66. Knap I, Lund B, Kehlet AB, Hofacre C, Mathis G. Bacillus licheniformis prevents necrotic enteritis in broiler chickens. Avian Dis. (2010) 54:931– 5. doi: 10.1637/9106-101509-ResNote.1
67. Knap I, Kehlet AB, Bennedsen M, Mathis GF, Hofacre CL, Lumpkins BS, et al. Bacillus subtilis (DSM17299) significantly reduces Salmonella in broilers. Poult Sci. (2011) 90:1690–4. doi: 10.3382/ps.2010-01056
68. Lee K, Kyung D, Lillehoj HS, Jang SI, Lee S. Immune modulation by Bacillus subtilis-based direct-fed microbials in commercial broiler chickens. Anim Feed Sci and Tech. (2015) 200:76–85. doi: 10.1016/j.anifeedsci.2014.12.006
69. Lin Y, Xu S, Zeng D, Ni X, Zhou M, Zeng Y, et al. Disruption in the cecal microbiota of chickens challenged with Clostridium perfringens and other factors was alleviated by Bacillus licheniformis supplementation. PLoS ONE. (2017) 12:e0182426. doi: 10.1371/journal.pone.0182426
70. Nusairat B, McNaughton J, Tyus J, Wang J. Combination of xylanase and Bacillus direct-fed microbials, as an alternative to antibiotic growth promoters, improves live performance and gut health in sub-clinical challenged broilers. Int J Poult Sci. (2018) 17:362–6. doi: 10.3923/ijps.2018.362.366
71. Musa BB, Duan Y, Khawar H, Sun Q, Ren Z, Mohamed MAE, et al. Bacillus subtilis B21 and Bacillus licheniformis B26 improve intestinal health and performance of broiler chickens with Clostridium perfringensinduced necrotic enteritis. J Anim Physiol Anim Nutr. (2019) 103:1039– 49. doi: 10.1111/jpn.13082
72. Aljumaah MR, Alkhulaifi MM, Abudabos AM, Aljumaah RS, Alsaleh AN, Stanley D. Bacillus subtilis PB6 based probiotic supplementation plays a role in the recovery after the necrotic enteritis challenge. PLoS ONE. (2020) 15:e0232781. doi: 10.1371/journal.pone.0232781
73. Ahmat M, Cheng J, Abbas Z, Cheng Q, Fan Z, Ahmad B, et al. Effects of Bacillus amyloliquefaciens LFB112 on growth performance, carcass traits, immune, and serum biochemical response in broiler chickens. Antibiotics. (2021) 10:1427. doi: 10.3390/antibiotics10111427
74. Ogbuewu IP, Okoro VM, Mbajiorgu EF, Mbajiorgu CA. Yeast (Saccharomyces cerevisiae) and its effect on production indices of livestock and poultry–a review. Comp Clin Pathol. (2019) 51:669–77. doi: 10.1007/s00580-018-2862-7
75. Hayat TA, Sultan A, Khan RU, Khan S, Hassan ZU, Ullah R, et al. Impact of organic acid on some liver and kidney function tests in Japanese Quails, Coturnix coturnix japonica. Pak J Zool. (2014) 46:1179–82.
76. Lee K, Lillehoj HS, Jang SI Li G, Lee S, Lillehoj EP, et al. Effect of Bacillusbased direct-fed microbials on Eimeria maxima infection in broiler chickens. Comparative Immunology, Microbiol and Infectious Dis. (2010) 33:e105– 10. doi: 10.1016/j.cimid.2010.06.001
77. Bodinga BM, Hayat KH, Liu X, Zhou J, Yang X, Ismaila A, et al. Effects of Bacillus subtilis DSM 32315 on Immunity, nutrient transporters and functional diversity of cecal microbiome of broiler chickens in necrotic enteritis challenge. J World Poult Res. (2020) 10:527–44. doi: 10.36380/jwpr.2020.61
78. Santoso U, Tanaka K, Ohtani S. Effect of dried Bacillus subtilis culture on growth, body composition and hepatic lipogenic enzyme activity in female broiler chicks. Brit J Nutr. (1995) 74:523–9. doi: 10.1079/BJN19950155
79. Khajeh Bami M, Afsharmanesh M, Ebrahimnejad H. Effect of dietary Bacillus coagulans and different forms of zinc on performance, intestinal microbiota, carcass and meat quality of broiler chickens. Probiotics Antimicrob Proteins. (2020) 12:461–72. doi: 10.1007/s12602-019-09558-1
80. Berkes J, Viswanathan V, Savkovic S, Hecht G. Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut. (2003) 52:439–51. doi: 10.1136/gut.52.3.439
81. Awad WA, Hess C, Hess M. Enteric pathogens and their toxin induced disruption of the intestinal barrier through alteration of tight junctions in chickens. Toxins. (2017) 9:E60. doi: 10.3390/toxins9020060
82. Hernandez-Patlan D, Solis-Cruz B, Adhikari B, Pontin KP, Latorre JD, Baxter MF, et al. Evaluation of the antimicrobial and intestinal integrity properties of boric acid in broiler chickens infected with Salmonella enteritidis: proof of concept. Res Vet Sci. (2019) 123:7–13. doi: 10.1016/j.rvsc.2018.12.004
83. Abudabos AM, Alyemni AH, Dafalla YM, Khan RU. Effect of organic acid blend and Bacillus subtilis alone or in combination on growth traits, blood biochemical and antioxidant status in broilers exposed to Salmonella typhimurium challenge during the starter phase. J Appl Anim Res. (2016) 45:538–42. Available online at: https://doi.org/10.1080/09712119. 2016.1219665
84. Abudabos AM, Alhouri HAA, Alhidary IA, Nassan MA, Swelum AA. Ameliorative effect of Bacillus subtilis, Saccharomyces boulardii, oregano, and calcium montmorillonite on growth, intestinal histology, and blood metabolites on Salmonella-infected broiler chicken. Environ Sci Pollut Res Int. (2019) 26:16274–8. doi: 10.1007/s11356-019-05105-1
85. Lei X, Piao X, Ru Y, Zhang H, Péron A, Zhang H. Effect of Bacillus amyloliquefaciens-based direct-fed microbial on performance, nutrient utilization, intestinal morphology and caecal microflora in broiler chickens. Asian Austral J Anim Sci. (2015) 28:239–46. doi: 10.5713/ajas.14.0330
86. Zhang B, Zhang H, Yu Y, Zhang R, Wu Y, Yue M, et al. Effects of Bacillus coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers. Poult Sci. (2021) 100:101168. doi: 10.1016/j.psj.2021.101168
87. Samany M, Yamauchi K. Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comp Biochem Physiol A Mol Integr Physiol. (2002) 133:95–104. doi: 10.1016/S1095-6433(02)00121-6
88. Allen PC. Nitric oxide production during Eimeria tenella infections in chickens. Poult Sci. (1994) 76:810–3. doi: 10.1093/ps/76.6.810
89. Lillehoj HS, Li GX. Nitric oxide production by macrophages stimulated with coccidian sporozoites, lipopolysaccharide, or interferon- γ and its dynamic changes in SC and TK strains of chickens infected with Eimeria tenella. Avian Dis. (2004) 48:244–53. doi: 10.1637/7054
90. Jang SI, Jun MH, Lillehoj HS, Dalloul RA, Kong IK, Kim S, et al. Anticoccidial effect of green tea-based diets against Eimeria maxima. Vet Parasitol. (2007) 144:172–5. doi: 10.1016/j.vetpar.2006.09.005
91. Konieczka P, Sandvang D, Kinsner M, Szkopek D, Szyrynska N, Jankowski J. Bacillus-based probiotics affect gut barrier integrity in different ways in chickens subjected to optimal or challenge conditions. Vet Microbiol. (2022) 265:109323. doi: 10.1016/j.vetmic.2021.109323
92. Mora Z, Macías-Rodríguez ME, Arratia-Quijada J, GonzalezTorres YS, Nuño K, Villarruel-López A. Clostridium perfringens as foodborne pathogen in broiler production: pathophysiology and potential strategies for controlling Necrotic enteritis. Animals. (2020) 10:1718. doi: 10.3390/ani10091718
93. Belote BL, Tujimoto-Silva A, Hümmelgen PH, Sanches AWD, Wammes JCS, Hayashi RM, et al. Histological parameters to evaluate intestinal health on broilers challenged with Eimeria and Clostridium perfringens with or without enramycin as growth promoter. Poult Sci. (2018) 97:2287– 94. doi: 10.3382/ps/pey064
94. Ogbuewu IP, Emenalom OO, Okoli IC. Alternative feedstuffs and their effects on blood chemistry and haematology of rabbits and chickens: a review. Comp Clin Pathol. (2015) 26:277–86. doi: 10.1007/s00580-015-2210-0
95. Lee KW, Lillehoj HS, Jang SI, Lee SH, Bautista DA, Siragusa GR. Effect of Bacillus subtilis-based direct-fed microbials on immune status in broiler chickens raised on fresh or used litter. Asian Aust J Anim Sci. (2013) 26:1592–7. doi: 10.5713/ajas.2013.13178
96. Abdel-Moneim AE, Selim DA, Basuony HA, Sabic EM, Saleh AA, Ebeid TA. Effect of dietary supplementation of Bacillus subtilis spores on growth performance, oxidative status, and digestive enzyme activities in Japanese quail birds. Trop Anim Health Prod. (2020) 52:671– 80. doi: 10.1007/s11250-019-02055-1
97. Zhang X, Calvert RA, Sutton BJ, Dore KA. IgY: a key isotype in antibody evolution. Biol Rev Camb Philos Soc. (2017) 92:2144– 56. doi: 10.1111/brv.12325
98. Balan P, Sik-Han K, Moughan PJ. Impact of oral immunoglobulins on animal health: a review. Anim Sci J. (2019) 90:1099–110. doi: 10.1111/asj.13258
99. Luan SJ, Sun YB, Wang Y, Sa RN, Zhang HF. Bacillus amyloliquefaciens spray improves the growth performance, immune status, and respiratory mucosal barrier in broiler chickens. Poult Sci. (2019) 98:1403–9. doi: 10.3382/ps/pey478
100. Wang Y, Heng C, Zhou X, Cao G, Jiang L, Wang J, et al. Supplemental Bacillus subtilis DSM 29784 and enzymes, alone or in combination, as alternatives for antibiotics to improve growth performance, digestive enzyme activity, anti-oxidative status, immune response and the intestinal barrier of broiler chickens. Brit J Nutr. (2021) 125:494–507. doi: 10.1017/S0007114520002755
101. Rajput IR Li LY, Xin X, Wu BB, Juan ZL, Cui ZW, et al. Effect of Saccharomyces boulardii and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens. Poult Sci. (2013) 92:956–65. doi: 10.3382/ps.2012- 02845
102. Lalloo R, Maharajh D, Görgens J, Gardiner N. A downstream process for production of a viable and stable Bacillus cereus aquaculture biological agent. Appl Microbiol Biotechnol. (2010) 86:499–508. doi: 10.1007/s00253-009-2294-z
103. Bhat AR, Irorere VU, Bartlett T, Hill D, Kedia G, Morris MR, et al. Bacillus subtilis natto: a non-toxic source of polyg-glutamic acid that could be used as a cryoprotectant for probiotic bacteria. AMB Express. (2013) 3:36. doi: 10.1186/2191-0855-3-36
104. Markowiak P, Slizewska K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog. (2018) 10:21. doi: 10.1186/s13099-018-0250-0