Heat stress is a threat that can lead to significant financial losses in the production of poultry in the world’s tropical and arid regions. The degree of heat stress (mild, moderate, severe) experienced by poultry depends mainly on thermal radiation, humidity, the animal’s thermoregulatory ability, metabolic rate, age, intensity, and duration of the heat stress. Contemporary commercial broiler chickens have a rapid metabolism, which makes them produce higher heat and be prone to heat stress. The negative effect of heat stress on poultry birds’ physiology, health, production, welfare, and behaviors are reviewed in detail in this work. The appropriate mitigation strategies for heat stress in poultry are equally explored in this review. Interestingly, each of these strategies finds its applicability at different stages of a poultry’s lifecycle. For instance, gene mapping prior to breeding and genetic selection during breeding are promising tools for developing heatresistant breeds. Thermal conditioning during embryonic development or early life enhances the ability of birds to tolerate heat during their adult life. Nutritional management such as dietary manipulations, night-time feeding, and wet feeding often, applied with timely and effective correction of environmental conditions have been proven to ameliorate the effect of heat stress in chicks and adult birds. As long as the climatic crises persist, heat stress may continue to require considerable attention; thus, it is imperative to explore the current happenings and pay attention to the future trajectory of heat stress effects on poultry production.
KEYWORDS heat stress, poultry, nutrition, management, environment, welfare.
1. Marcos HR. Effects of heat stress on the gut health of poultry. J Anim Sci. (2020) 98:1–9. doi: 10.1093/jas/skaa090
2. Kpomasse CC, Kouame YAE, N’nanle O, Houndonougbo FM, Tona K, Oke OE. The productivity and resilience of the indigenous chickens in the tropical environments: improvement and future perspectives. J Appl Anim Res. (2023) 51:456–69. doi: 10.1080/09712119.2023.2228374
3. Kpomasse CC, Oke OE, Houndonougbo FM, Tona K. Broilers production challenges in the tropics: a review. Vet Med Sci. (2021) 7:831–42. doi: 10.1002/vms3.435
4. Lara LJ, Rostagno MH. Impact of heat stress on poultry production. Animals. (2013) 3:356–69. doi: 10.3390/ani3020356
5. Renaudeau D, Collin A, Yahav S, De Basilio V, Gourdine JL, Collier RJ. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal. (2012) 6:707–28. doi: 10.1017/S1751731111002448
6. Farag MR, Alagawany M. Physiological alterations of poultry to the high environmental temperature. J Therm Biol. (2018) 76:101–6. doi: 10.1016/j. jtherbio.2018.07.012
7. Lin H, Jiao HC, Buyse J, Decuypere E. Strategies for preventing heat stress in poultry. Worlds Poult Sci J. (2006) 62:71–86. doi: 10.1079/WPS200585
8. Mishra B, Jha R. Oxidative stress in the poultry gut: potential challenges and interventions. Front. Vet. Sci. (2019) 6:60. doi: 10.3389/fvets.2019.00060
9. Richards MP, Rosebrough RW, Coon CN, McMurtry JP. Feed intake regulation for the female broiler breeder: in theory and in practice. J Appl Poult Res. (2010) 19:182–93. doi: 10.3382/japr.2010-00167
10. Morera P, Basiricò L, Hosoda K, Bernabucci U. Chronic heat stress up-regulates leptin and adiponectin secretion and expression and improves leptin, adiponectin and insulin sensitivity in mice. J Mol Endocrinol. (2012) 48:129–38. doi: 10.1530/ JME-11-0054
11. Geraert PA, Padilha JC, Guillaumin S. Metabolic and endocrine changes induced by chronic heat exposure in broiler chickens: biological and endocrinological variables. Br J Nutr. (1996) 75:205–16. doi: 10.1079/bjn19960125
12. Hai L, Rong D, Zhang ZY. The effect of thermal environment on the digestion of broilers. J. Anim. Physiol. Anim. Nut. (2000) 83:57–64. doi: 10.1046/j.1439-0396.2000.00223.x
13. van Wijck K, Lenaerts K, Grootjans J, Wijnands KA, Poeze M, van Loon LJ, et al. Physiology and pathophysiology of splanchnic hypoperfusion and intestinal injury during exercise: strategies for evaluation and prevention. Am J Physiol Gastrointest Liver Physiol. (2012) 303:G155–68. doi: 10.1152/ajpgi.00066.2012
14. Adeva-Andany MM, González-Lucán M, Donapetry-García C, FernándezFernández C, Ameneiros-Rodríguez E. Glycogen metabolism in humans. BBA Clin. (2016) 5:85–100. doi: 10.1016/j.bbacli.2016.02.001
15. Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. (2006) 8:383–95. doi: 10.31887/DCNS.2006.8.4/ssmith
16. Felver-Gant JN, Mack LA, Dennis RL, Eicher SD, Cheng HW. Genetic variations alter physiological responses following heat stress in 2 strains of laying hens. Poult Sci. (2012) 91:1542–51. doi: 10.3382/ps.2011-01988
17. Honda BTB, Calefi AS, Costola-de-Souza C, Quinteiro-Filho WM, da Silva Fonseca JG, de Paula VF, et al. Effects of heat stress on peripheral T and B lymphocyte profiles and IgG and IgM serum levels in broiler chickens vaccinated for Newcastle disease virus. Poult Sci. (2015) 94:2375–81. doi: 10.3382/ps/pev192
18. Deng W, Dong XF, Tong JM, Zhang Q. The probiotic Bacillus licheniformis ameliorates heat stressinduced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poult Sci. (2012) 91:575–82. doi: 10.3382/ ps.2010-01293
19. Quinteiro-Filho WM, Calefi AS, Cruz DSG, Aloia TPA, Zager A, Astolfi-Ferreira CS, et al. Heat stress decreases expression of the cytokines, avian β-defensins 4 and 6 and toll-like receptor 2 in broiler chickens infected with Salmonella enteritidis. Vet Immunolog Immunopathol. (2017) 186:19–28. doi: 10.1016/j.vetimm.2017.02.006
20. Scanes CG. Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poult Sci. (2016) 95:2208–15.
21. Bartlett JR, Smith MO. E_ects of di_erent levels of zinc on the performance and immunocompetence of broilers under heat stress. Poult Sci. (2003) 82:1580–8. doi: 10.1093/ps/82.10.1580
22. Aguanta BN, Fuller AL, Milfort MC, Williams SM, Rekaya R, Aggrey SE. Histologic effects of concurrent heat stress and coccidial infection on the lymphoid tissues of broiler chickens. Avian Dis. (2018) 62:345–50. doi: 10.1637/11907-052818- Reg.1
23. Quinteiro-Filho WM, Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Sakai M, Sá LR, et al. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult Sci. (2010) 89:1905–14. doi: 10.3382/ps.2010-00812
24. Badruzzaman ATM, Noor M, Mamun MAL, Husna A, Islam KM, Alam KJ, et al. Prevalence of diseases in commercial chickens at Sylhet division of Bangladesh. Intl Clin Pathol J. (2015) 1:23.
25. Pawar SS, Basavaraj S, Dhansing LV, Pandurang KN, Sahebrao KA, et al. Assessing and mitigating the impact of heat stress in poultry. Adv Anim Vet Sci. (2016) 4:332–41. doi: 10.14737/journal.aavs/2016/4.6.332.341
26. Surai PF, Kochish II, Fisinin VI, Kidd MT. Antioxidant Defence systems and oxidative stress in poultry biology: an update. Antioxidants. (2019) 8:235. doi: 10.3390/ antiox8070235
27. Maeda E, Kimura S, Yamada M, Tashiro M, Ohashi T. Enhanced gap junction intercellular communication inhibits catabolic and pro-inflammatory responses in tenocytes against heat stress. J Cell Commun Signal. (2017) 11:369–80. doi: 10.1007/ s12079-017-0397-3
28. Bequette BJ. Amino acid metabolism in animals: an overview In: JPE D’Mello, editor. Amino acids in animal nutrition. 2nd ed. United States: CABI Publishing (2003). 87–101.
29. Eltahan HM, Bahry MA, Yang H, Han G, Nguyen LTN, Ikeda H, et al. CentralNPY‐ Y5 sub‐receptor partially functions as a mediator ofNPY‐induced hypothermia and affords thermotolerance in heat‐exposed fasted chicks. Physiol Rep. (2017) 5:e13511. doi: 10.14814/phy2.13511
30. John M. Functional morphology of the avian respiratory system, the lung-air sac system: efficiency built on complexity. Ostrich. (2009) 79:117–32.
31. Borges SA, Fischer Silva AV, Majorka A, Hooge DM, Cummings KR. Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram). Poult Sci. (2004) 83:1551–8. doi: 10.1093/ps/83.9.1551
32. Park JS, Kang DR, Shim KS. Proteomic changes in broiler liver by body weight differences under chronic heat stress. Poult Sci. (2022) 101:101794. doi: 10.1016/j. psj.2022.101794
33. Wasti S, Sah N, Mishra B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals. (2020) 10:1266. doi: 10.3390/ani10081266
34. Hoyda TD, Samson WK, Ferguson AV. Central system roles for adiponectin in neuroendocrine and automic function In: VR Preedy and RJ Hunter, editors. Adipokines. Boca Raton, FL: Science Publishers, CRC Press (2012). 167–84.
35. Jacob ST. Regulation of ribosomal gene transcription. Biochem J. (1995) 306:617–26. doi: 10.1042/bj3060617, 33038057
36. Le Bellego L, van Milgen J, Noblet J. Effect of high temperature and low-protein diets on the performance of growing-finishing pigs. J Anim Sci. (2002) 80:691–701. doi: 10.2527/2002.803691x
37. Zaboli G, Huang X, Feng X, Ahn DU. How can heat stress affect chicken meat quality? A review. Poult Sci. (2019) 98:1551–6. doi: 10.3382/ps/pey399
38. Danforth EJ, Burger A. The role of thyroid hormones in the control of energy expenditure. Clin Endocrinol Metab. (1984) 13:581–95. doi: 10.1016/ S0300-595X(84)80039-0
39. Nawaz AH, Amoah K, Leng QY, Zheng JH, Zhang WL, Zhang L. Poultry response to heat stress: its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world. Front. Vet. Sci. (2021) 8:699081. doi: 10.3389/fvets.2021.699081
40. Gonzalez-Rivas PA, Chauhan SS, Ha M, Fegan N, Dunshea FR, Warner RD. Effects of heat stress on animal physiology, metabolism, and meat quality: a review. Meat Sci. (2020) 162:108025. doi: 10.1016/j.meatsci.2019.108025
41. Atta AMM. Influence of supplemental ascorbic acid on physiological and immunological parameters of broiler chicks under heat stress conditions. Egypt Poult Sci. (2002) 22:793–813.
42. Tollba AAH, Hassan MSH. Using some natural additives to improve physiological and productive performance of broiler under high temperature condition. Egypt Poult Sci. (2003) 23:327–40.
43. Mahmoud UT, Abdel-Rahman MAM, Hosny MAD. Effects of propolis, ascorbic acid and vitamin E on thyroid and corticosterone hormones in heat stressed broilers. Journal of advance in vet. Anim Res. (2014) 4:18–21.
44. del Vesco AP, Gasparino E, Zancanela V, Grieser DO, Stanquevis CE, Pozza PC, et al. Effects of selenium supplementation on the oxidative state of acute heat stressexposed quails. J Anim Physiol Anim Nut. (2017) 101:170–9. doi: 10.1111/jpn.12437
45. May JD, Deaton JW, Reece FN, Branton SL. Effect of acclimation and heat stress on thyroid hormone concentration. Poult Sci. (1986) 65:1211–3. doi: 10.3382/ps.0651211
46. Bowen SJ, Washburn KW. Thyroid and adrenal response to heat stress in chickens and quail differing in heat tolerance. Poult Sci. (1985) 64:149–54. doi: 10.3382/ ps.0640149
47. Zaglool AW, Roushdy EM, El-Tarabany MS. Impact of strain and duration of thermal stress on carcass yield, metabolic hormones, immunological indices and the expression of HSP90 and Myogenin genes in broilers. Res Vet Sci. (2019) 122:193–9. doi: 10.1016/j.rvsc.2018.11.027
48. El-Daly E, El-Wardany FI, El-Gawad AHA, Hemid AEA, El-Azeem NAA. Physiological, biochemical and metabolic responses of Japanese quail (Coturnix coturnix japonica) as affected by early heat stress and dietary treatment. Iranian J Applied Anim Sci. (2013) 3:207–16.
49. Naga Raja Kumari K, Narendra Nath D. Ameliorative measures to counter heat stress in poultry. Worlds Poult Sci J. (2018) 74:117–30. doi: 10.1017/S0043933917001003
50. Collin A, Cassy S, Buyse J, Decuypere E, Damon M. Potential involvement of mammalian and avian uncoupling proteins in the thermogenic effect of thyroid hormones. Domest Anim Endocrinol. (2005) 29:78–87. doi: 10.1016/j. domaniend.2005.02.007
51. Song DJ, King AJ. Effects of heat stress on broiler meat quality. Worlds Poult Sci J. (2015) 71:701–9. doi: 10.1017/S0043933915002421
52. Hu X, Guo Y. Corticosterone administration alters small intestinal morphology and function of broiler chickens. Asian Australas J Anim Sci. (2008) 21:1773–8. doi: 10.5713/ajas.2008.80167
53. Zaytsoff SJM, Brown CLJ, Montina T, Metz GAS, Abbott DW, Uwiera RRE, et al. Corticosterone-mediated physiological stress modulates hepatic lipid metabolism, metabolite profiles, and systemic responses in chickens. Sci Rep. (2019) 9:19225. doi: 10.1038/s41598-019-52267-6
54. Wang Y, Xia L, Guo T, Heng C, Jiang L, Wang D, et al. Research note: metabolic changes and physiological responses of broilers in the final stage of growth exposed to different environmental temperatures. Poult Sci. (2020) 99:2017–25. doi: 10.1016/j. psj.2019.11.048
55. Yegani M, Korver DR. Factors affecting intestinal health in poultry. Poult Sci. (2008) 87:2052–63. doi: 10.3382/ps.2008-00091
56. Brugaletta G, Teyssier J-R, Rochell SJ, Dridi S, Sirri F. A review of heat stress in chickens. Part I: insights into physiology and gut health. Front Physiol. (2022) 13:934381. doi: 10.3389/fphys.2022.934381
57. Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke J-D, Serino M, et al. Intestinal permeability–a new target for disease prevention and therapy. BMC Gastroenterol. (2014) 14:189. doi: 10.1186/s12876-014-0189-7
58. Quinteiro-Filho WM, Rodrigues MV, Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Sá LRM, et al. Acute heat stress impairs performance parameters and induces mild intestinal enteritis in broiler chickens: role of acute hypothalamic-pituitary-adrenal axis activation. J Anim Sci. (2012) 90:1986–94. doi: 10.2527/jas.2011-3949
59. Kers JG, Velkers FC, Fischer EAJ, Hermes GDA, Stegeman JA, Smidt H, et al. Host and environmental factors affecting the intestinal microbiota in chickens. Front Microbiol. (2018) 9:235. doi: 10.3389/fmicb.2018.00235
60. Liu HW, Li K, Zhao JS, Deng W. Effects of chestnut tannins on intestinal morphology, barrier function, pro-inflammatory cytokine expression, microflora and antioxidant capacity in heatstressed broilers. J Anim Physiol Anim Nutri. (2018) 102:717–26. doi: 10.1111/jpn.12839
61. Song J, Xiao K, Ke YL, Jiao LF, Hu CH, Diao QY, et al. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poult Sci. (2014) 93:581–8. doi: 10.3382/ps.2013-03455
62. Ducatelle R, Goossens E, De Meyer F, Eeckhaut V, Antonissen G, Haesebrouck F, et al. Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Vet Res. (2018) 49:43. doi: 10.1186/s13567-018-0538-6
63. Kogut MH. The effect of microbiome modulation on the intestinal health of poultry. Anim Feed Sci Technol. (2019) 250:32–40. doi: 10.1016/j.anifeedsci.2018.10.008
64. Abd El-Hack ME, El-Saadony MT, Salem HM, El-Tahan AM, Soliman MM, Youssef BA, et al. Alternatives to antibiotics for organic poultry production: types, modes of action and impacts on bird's health and production. Poult Sci. (2022) 101:101696. doi: 10.1016/j.psj.2022.101696
65. Sayed Y, Hassan M, Salem HM, Eid GE. Prophylactic influences of prebiotics on gut microbiome and immune response of heat-stressed broiler chickens. Sci Rep. (2023) 13:1–17. doi: 10.1038/s41598-023-40997-7
66. Oke OE, Oso OM, Logunleko M, Uyanga V, Akinyemi F, Okeniyi F, et al. Adaptation of the white Fulani cattle to the tropical environment. J Therm Biol. (2022) 110:103372. doi: 10.1016/j.jtherbio.2022.103372
67. Oke OE, Oni AI, Adebambo PO, Oso OM, Adeoye MM, Lawal TG, et al. Evaluation of light colour manipulation on physiological response and growth performance of broiler chickens. Trop Anim Health Prod. (2021) 53:1–9. doi: 10.1007/ s11250-020-02432-1
68. Oke OE, Oso O, Iyasere O, Oni A, Bakre O, Rahman S. Evaluation of light colour manipulation on behaviour and welfare of broiler chickens. J Appl Anim Welf Sci. (2023) 26:493–504. doi: 10.1080/10888705.2021.1986714
69. Saeed M, Abbas G, Alagawany M, Kamboh AA, Abd El-Hack ME, Khafaga AF, et al. Heat stress management in poultry farms: a comprehensive overview. J Therm Biol. (2019) 84:414–25. doi: 10.1016/j.jtherbio.2019.07.025
70. Daghir NJ. Poultry production in hot climates. 2nd ed. Oxfordshire, UK: CABI (2008).
71. Goo D, Kim JH, Park GHD, Delos Reyes JB, Kil DYE. Effect of heat stress and stocking density on growth performance, breast meat quality, and intestinal barrier function in broiler chickens. Animals. (2019) 9:107. doi: 10.3390/ani9030107
72. De Basilio V, Requena F, León A, Vilariño M, Picard M. Early age thermal conditioning immediately reduces body temperature of broiler chicks in a tropical environment. Poult Sci. (2003) 82:1235–41. doi: 10.1093/ps/82.8.1235
73. Oke OE, Alo ET, Oke FO, Oyebamiji YA, Ijaiya MA, Odefemi MA, et al. Early age thermal manipulation on the performance and physiological response of broiler chickens under hot humid tropical climate. J Therm Biol. (2020) 88:102517. doi: 10.1016/j.jtherbio.2020.102517
74. Meteyake HT, Bilalissi A, Oke OE, Voemesse K, Tona K. Effect of thermal manipulation during incubation and heat challenge during the early juvenile stage on production parameters of broilers reared under a tropical climate. Eur Poult Sci. (2020) 84:1–16. doi: 10.1399/eps.2020.318
75. Liew PK, Zulkifli I, Hair-Bejo M, Omar AR, Israf DAE. Effects of early age feed restriction and heat conditioning on heat shock protein 70 expression, resistance to infectious bursal disease, and growth in male broiler chickens subjected to heat stress. Poult Sci. (2003) 82:1879–85. doi: 10.1093/ps/82.12.1879
76. Taouis M, De Basilio V, Mignon-Grasteau S, Crochet S, Bouchot C, Bigot K, et al. Early-age thermal conditioning reduces uncoupling protein messenger RNA expression in pectoral muscle of broiler chicks at seven days of age. Poult Sci. (2002) 81:1640–3. doi: 10.1093/ps/81.11.1640
77. Al-Zghoul MB, El-Bahr SM. Basal and dynamics mRNA expression of muscular HSP108, HSP90, HSF-1 and HSF-2 in thermally manipulated broilers during embryogenesis. BMC Vet Res. (2019) 15:83. doi: 10.1186/s12917-019-1827-7
78. Loyau T, Hennequet-Antier C, Coustham V, Berri C, Leduc M, Crochet S, et al. Thermal manipulation of the chicken embryo triggers differential gene expression in response to a later heat challenge. BMC Genomics. (2016) 17:329. doi: 10.1186/ s12864-016-2661-y
79. Monson MS, Van Goor AG, Ashwell CM, Persia ME, Rothschild MF, Schmidt CJ, et al. Immunomodulatory effects of heat stress and lipopolysaccharide on the bursal transcriptome in two distinct chicken lines. BMC Genomics. (2018) 19:643. doi: 10.1186/ s12864-018-5033-y
80. Azoulay Y, Druyan S, Yadgary L, Hadad Y, Cahaner A. The viability and performance under hot conditions of featherless broilers versus fully feathered broilers. Poult Sci. (2011) 90:19–29. doi: 10.3382/ps.2010-01044
81. Yalcin S, Testik A, Ozkan S, Settar P, Celen F, Cahaner A. Performance of naked neck and normal broilers in hot, warm, and temperate climates. Poult Sci. (1997) 76:930–7. doi: 10.1093/ps/76.7.930
82. Rajkumar U, Reddy MR, Rao SV, Radhika K, Shanmugam M. Evaluation of growth, carcass, immune response and stress parameters in naked neck chicken and their normal siblings under tropical winter and summer temperatures. Asian Australas J Anim Sci. (2011) 24:509–16. doi: 10.5713/ajas.2011.10312
83. Van Goor A, Bolek KJ, Ashwell CM, Persia ME, Rothschild MF, Schmidt CJ, et al. Identification of quantitative trait loci for body temperature, body weight, breast yield, and digestibility in an advanced intercross line of chickens under heat stress. Genet Sel Evol. (2015) 47:96. doi: 10.1186/s12711-015-0176-7
84. Kumar M, Ratwan P, Dahiya SP, Nehra AK. Climate change and heat stress: impact on production, reproduction and growth performance of poultry and its mitigation using genetic strategies. J Therm Biol. (2021) 97:102867. doi: 10.1016/j. jtherbio.2021.102867
85. Nawaz AH, Lin S, Wang F, Zheng J, Sun J, Zhang W, et al. Investigating the heat tolerance and production performance in local chicken breed having normal and dwarf size. Animal. (2023) 17:100707. doi: 10.1016/j.animal.2023.100707
86. Sejian V, Bhatta R, Gaughan JB, Dunshea FR, Lacetera N. Adaptation of animals to heat stress. Animals. (2018) 12:s431–44.
87. Favatier F, Bornman L, Hightower LE, Gunther E, Polla BS. Variation in hsp gene expression and Hsp polymorphism: do they contribute to differential disease susceptibility and stress tolerance? Cell Stress Chaperones. (1997) 2:141–55. doi: 10.1379/1466-1268(1997)002<0141:vihgea>2.3.co;2
88. Rivera RE, Christensen VL, Edens FW, Wineland MJ. Influence of selenium on heat shock protein 70 expression in heat stressed Turkey embryos (Meleagris gallopavo). Comp Biochem Physiol A Mol Integr Physiol. (2005) 142:427–32. doi: 10.1016/j. cbpa.2005.09.006
89. Xie J, Tang L, Lu L, Zhang L, Xi L, Liu HC. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus). PLoS One. (2014) 9:e102204. doi: 10.1371/journal.pone.0102204
90. Duangduen C, Duangjinda M, Katawatin S, Aengwanich W. Efects of heat stress on growth performance and physiological response in Thai indigenous chickens (Chee) and broilers. Kasetsart Vet. (2007) 17:122–33. doi: 10.5713/ajas.19.0208
91. Mahmoud KZ, Edens FW, Eisen EJ, Havenstein GB. Efect of ascorbic acid and acute heat exposure on heat shock protein 70 expression by young white Leghorn chickens. Comp Biochem Physiol C Toxicol Pharmacol. (2003) 136:329–35. doi: 10.1016/j. cca.2003.10.006
92. Goel A. Heat stress management in poultry. J Anim Physiol Anim Nutr. (2021) 105:1136–45. doi: 10.1111/jpn.13496
93. Fathi MM, Galal A, El-Safty S, Mahrous M. Naked neck and frizzle genes for improving chickens raised under high ambient temperature: I. growth performance and egg production. Worlds Poult Sci J. (2013) 69:813–32. doi: 10.1017/S0043933913000834
94. Fathi MM, Galal A, Radwan LM, Abou-Emera OK, Al-Homidan IH. Using major genes to mitigate the deleterious effects of heat stress in poultry: an updated review. Poult Sci. (2022) 101:102157. doi: 10.1016/j.psj.2022.102157
95. Fernandes E, Raymundo A, Martins LL, Lordelo M, de Almeida AM. The naked neck gene in the domestic chicken: a genetic strategy to mitigate the impact of heat stress in poultry production—a review. Animals. (2023) 13:1007. doi: 10.3390/ani13061007
96. Patra BN, Bais RKS, Prasad RB, Singh BP. Performance of naked neck versus normally feathered coloured broilers for growth, carcass traits and blood biochemical parameters in tropical climate. Asian Australas J Anim Sci. (2002) 15:1776–83. doi: 10.5713/ajas.2002.1776
97. Fisinin VI, Kavtarashvili AS. Heat stress in poultry. II methods and techniques for prevention and alleviation (review). Sel’skokhozyaistvennaya Biol. (2015) 50:431–43. doi: 10.15389/agrobiology.2015.4.431eng
98. Yakubu A, Ogah DM, Barde RE. Productivity and egg quality characteristics of free-range naked neck and Normal feathered Nigerian indigenous chickens. Int J Poult Sci. (2008) 7:579–85.
99. Rajkumar U, Reddy BL, Rajaravindra KS, Niranjan M, Bhattacharya TK, Chatterjee RN, et al. Effect of naked neck gene on immune competence, serum biochemical and carcass traits in chickens under a tropical climate. Asian Australas J Anim Sci. (2010) 23:867–72. doi: 10.5713/ajas.2010.90548
100. Galal A, Radwan LM, Rezik H, Ayoub H. Expression levels of HSP70 and CPT-1 in three local breeds of chickens reared under normal or heat stress conditions after the introduction of the naked neck gene. J Therm Biol. (2019) 80:113–8. doi: 10.1016/j.jtherbio.2018.12.018
101. Sharifi AR, Horst P, Simianer H. The effect of frizzle gene and dwarf gene on reproductive performance of broiler breeder dams under high and normal ambient temperatures. Poult Sci. (2010) 89:2356–69. doi: 10.3382/ps.2010-00921
102. Haaren-Kiso AV, Horst P, Zarate AV. Direct and indirect effect of the frizzle gene productive adaptability of laying hens. Anim Res Dev. (1995) 42:88–114.
103. Duah KK, Essuman EK, Boadu VG, Olympio OS, Akwetey W. Comparative study of indigenous chickens on the basis of their health and performance. Poult Sci. (2020) 99:2286–92. doi: 10.1016/j.psj.2019.11.049
104. Yunis R, Cahaner A. The effects of the naked neck (Na) and frizzle (F) genes on growth and meat yield of broilers and their interactions with ambient temperatures and perennial growth rate. Poult Sci. (1999) 78:1347–52. doi: 10.1093/ps/78.10.1347
105. Islam MA, Nishibori M. Indigenous naked neck chicken: a valuable genetic resource for Bangladesh. Worlds Poult Sci J. (2009) 65:125–38. doi: 10.1017/ S0043933909000105
106. Merat P. Associated effects and utilization of major genes reducing body size in the fowl. Prod Anim. (1990) 3:151–8. doi: 10.20870/productions-animales.1990.3.2.4369
107. Decuypere E, Huybrechts LM, Kuhn ER, Tixier-Boichard M, Merat P. Physiological alterations associated with the chicken sex-linked dwarfing gene. Crit Rev Poult Biol (USA). (1991) 3:191–221.
108. Deeb N, Cahaner A. Genotype-by-environment interaction with broiler genotypes differing in growth rate: 2. The effects of high ambient temperature on dwarf versus Normal broilers. Poult Sci. (2001) 80:541–8. doi: 10.1093/ps/80.5.541
109. Zhang X, Du H, Li J. Single nucleotide polymorphism of chicken heat shock protein 70 gene. WcgalpOrg. (2002) 2002:1–3.
110. Atkinson BG, Dean RL. Effects of stress on the gene expression of amphibian, avian, and mammalian blood cells In: BG Atkinson and DB Walden, editors. Changes in Eukaryotic Gene Expression in Response to Environmental Stress. Cambridge, MA: Academic Press (1985). 159–81.
111. Galal A, Radwan LM. Identification of single nucleotide polymorphism in heat shock protein HSP70 and HSP90 after four selection generations in two lines of chickens. Ann Agric Sci. (2020) 65:124–8. doi: 10.1016/j.aoas.2020.07.002
112. Wang S, Edens FW. Heat conditioning induces heat shock proteins in broiler chickens and Turkey Poults. Poult Sci. (1998) 77:1636–45. doi: 10.1093/ps/77.11.1636
113. Kennedy GM, Kuria SN, Panyako PM, Lichoti JK, Ommeh SC. Polymorphism of the heat shock protein 70 gene in indigenous chickens from different agro-climatic zones in Kenya. Afr J Biotechnol. (2022) 21:73–82.
114. Rhoads RP, Baumgard LH, Suagee JK, Sanders SR. Nutritional interventions to alleviate the negative consequences of heat stress. Adv Nutr. (2013) 4:267–76. doi: 10.3945/an.112.003376
115. Abd El-Hack ME, Abdelnour SA, Taha AE, Khafaga AF, Arif M, Ayasan T, et al. Herbs as thermoregulatory agents in poultry: an overview. Sci Total Env. (2020) 703:134399. doi: 10.1016/j.scitotenv.2019.134399
116. Mujahid A. Nutritional strategies to maintain efficiency and production of chickens under high environmental temperature. J Poult Sci. (2011) 48:145–54. doi: 10.2141/jpsa.010115
117. Oke OE, Uyanga VA, Iyasere OS, Oke FO, Majekodunmi BC, Logunleko MO, et al. Environmental stress and livestock productivity in hot-humid tropics: alleviation and future perspectives. J Therm Biol. (2021) 100:103077. doi: 10.1016/j. jtherbio.2021.103077
118. Syafwan S, Kwakkel RP, Verstegen MWA. Heat stress and feeding strategies in meat-type chickens. Worlds Poult Sci J. (2011) 67:653–74. doi: 10.1017/ S0043933911000742
119. Farghly MFA, Mahrose KM, Galal AE, Ali RM, Ahmad EAM, Rehman ZU, et al. Implementation of different feed withdrawal times and water temperatures in managing turkeys during heat stress. Poult Sci. (2018) 97:3076–84. doi: 10.3382/ps/pey173
120. Waiz D, Gautam D, Nagda R, Bhat G. Effect of wet feeding on feed conversion efficiency in laying hens during summer season. Iran J Appl Anim Sci. (2016) 6:383–7.
121. Waiz D, Gautam D, Nisar N, Rathore N, Nagda R. Effect of wet feeding on egg quality parameters in laying hens. Vet Pract. (2016) 17:142–4.
122. Awojobi HA, Oluwole BO, Adekunmisi AA, Buraimo RA. Performance of finisher broilers fed wet mash with or without drinking water during wet season in the tropics. Int J Poult Sci. (2009) 8:592–4. doi: 10.3923/ijps.2009.592.594
123. Shinder D, Rusal M, Tanny J, Druyan S, Yahav S. Thermoregulatory responses of chicks (Gallus domesticus) to low ambient temperatures at an early age. Poult Sci. (2007) 86:2200–9. doi: 10.1093/ps/86.10.2200
124. Bernad L, Casado PD, Murillo NL, Picallo AB, Garriz CA, Maceira NO. Meat quality traits in the greater rhea (Rhea americana) as influenced by muscle, sex and age. Poult Sci. (2018) 97:1579–87. doi: 10.3382/ps/pey005
125. Farghly MFA, Abd El-Hack ME, Alagawany M, Saadeldin IM, Swelum AA. Ameliorating deleterious effects of heat stress on growing Muscovy ducklings using feed withdrawal and cold water. Poult Sci. (2019) 98:251–9. doi: 10.3382/ps/pey396
126. Sayed MA, Downing J. The effects of water replacement by oral rehydration fluids with or without betaine supplementation on performance, acid-base balance, and water retention of heat-stressed broiler chickens. Poult Sci. (2011) 90:157–67. doi: 10.3382/ ps.2009-00594
127. Attia Y, Al-Harthi M, Hassan S. Responses of broiler chicken to different oil levels within constant energy levels from 20 to 40 days of age under hot weather conditions. Italian J Anim Sci. (2021) 20:664–76. doi: 10.1080/1828051X.2021.1906169
128. Attia Y, Al-Harthi M, El-Shafey A, Rehab Y, Kim WK. Enhancing tolerance of broiler chickens to heat stress by supplementation with vitamin E, vitamin C and/or probiotics. Annals of Anim Sci. (2017) 17:12. doi: 10.1515/aoas-2017-0012
129. Ghazalah AA, Abd–Elsamee MO, Ali AM. Influence of dietary energy and poultry fat on the response of broiler chicks to heat. Int J Poult Sci. (2008) 7:355–9. doi: 10.3923/ijps.2008.355.359
130. Hassan S, Attia Y, Abd-El-Hamid A-E-H, Nagadi S, El-ashry A. Impact of increasing dietary oil concentrations with a constant energy level on the tolerance of broiler chickens to a high ambient temperature. Rev Mex Cienc Pecuarias. (2018) 9:220. doi: 10.22319/rmcp.v9i2.4377
131. Uyanga VA, Oke EO, Amevor FK, Zhao J, Wang X, Jiao H, et al. Functional roles of taurine, L-theanine, L-citrulline, and betaine during heat stress in poultry. J Anim Sci Biotechnol. (2022) 13:23. doi: 10.1186/s40104-022-00675-6
132. Lee JT, Rochell SJ, Kriseldi R, Kim WK, Mitchell RD. Functional properties of amino acids: improve health status and sustainability. Poult Sci. (2023) 102:102288. doi: 10.1016/j.psj.2022.102288
133. Zeitz JO, Fleischmann A, Ehbrecht T, Most E, Friedrichs S, Whelan R, et al. Effects of supplementation of DL-methionine on tissue and plasma antioxidant status during heat-induced oxidative stress in broilers. Poult Sci. (2020) 99:6837–47. doi: 10.1016/j.psj.2020.08.082
134. Ajayi OI, Smith OF, Oso AO, Oke OE. Evaluation of in ovo feeding of low or high mixtures of cysteine and lysine on performance, intestinal morphology and physiological responses of thermal-challenged broiler embryos. FrontPhysiol. (2022) 13:972041. doi: 10.3389/fphys.2022.972041
135. Sarsour AH, Persia ME. Effects of sulfur amino acid supplementation on broiler chickens exposed to acute and chronic cyclic heat stress. Poult Sci. (2022) 101:101952. doi: 10.1016/j.psj.2022.101952
136. Deng C, Zheng J, Zhou H, You J, Li G. Dietary glycine supplementation prevents heat stress-induced impairment of antioxidant status and intestinal barrier function in broilers. Poult Sci. (2022) 102:102408. doi: 10.1016/j.psj.2022.102408
137. Suganya T, Senthilkumar S, Deepa K, Amutha R. Nutritional management to alleviate heat stress in broilers. International journal of science. Environ Technol. (2015) 4:661–6.
138. Cappelaere L, Le Cour Grandmaison J, Martin N, Lambert W. Amino acid supplementation to reduce environmental impacts of broiler and pig production: a review. Front Vet Sci. (2021) 8:689259. doi: 10.3389/fvets.2021.689259
139. Khan R, Nikousefat Z, Selvaggi M, Laudadio V, Tufarelli V. Effect of ascorbic acid in heat-stressed poultry. Worlds Poult Sci J. (2012) 68:477–90. doi: 10.1017/ S004393391200058X
140. Akinyemi F, Adewole D. Environmental stress in chickens and the potential effectiveness of dietary vitamin supplementation. Front Anim Sci. (2021) 2:775311. doi: 10.3389/fanim.2021.775311
141. Shojadoost B, Yitbarek A, Alizadeh M, Kulkarni RR, Astill J, Boodhoo N, et al. Centennial review: effects of vitamins a, D, E, and C on the chicken immune system. Poult Sci. (2021) 100:100930. doi: 10.1016/j.psj.2020.12.027
142. Lin H, Wang LF, Song JL, Xie YM, Yang QM. Effect of dietary supplemental levels of vitamin a on the egg production and immune responses of heat-stressed laying hens. Poult Sci. (2002) 81:458–65. doi: 10.1093/ps/81.4.458
143. Khan R, Nikousefat Z, Tufarelli V, Javdani M, Rana N, Laudadio V. Effect of vitamin E in heat-stressed poultry. Worlds Poult Sci J. (2011) 67:511. doi: 10.1017/ S0043933911000511
144. Niu ZY, Liu FZ, Yan QL, Li WC. Effects of different levels of vitamin E on growth performance and immune responses of broilers under heat stress. Poult Sci. (2009) 88:2101–7. doi: 10.3382/ps.2009-00220
145. Ajakaiye JJ, Pérez-Bello A, Mollineda-Trujillo A. Impact of heat stress on egg quality in layer hens supplemented with I-ascorbic acid and dl-tocopherol acetate. Vet Arhiv. (2011) 81:119–32.
146. Attia Y, Abd-El-Hamid A, Elkomy A, Shawky O. Responses of productive, physiological and immunological traits of growing Fayoumi males subjected to heat stress to vitamin C and/or E and organic zinc supplementation. J Agric Env Sci (Dam). (2018) 12:48–78.
147. Pečjak M, Leskovec J, Levart A, Salobir J, Rezar V. Effects of dietary vitamin E, vitamin C, selenium and their combination on carcass characteristics, oxidative stability and breast meat quality of broiler chickens exposed to cyclic heat stress. Animals. (2022) 12:1789. doi: 10.3390/ani12141789
148. Calik A, Emami NK, White MB, Walsh MC, Romero LF, Dalloul RA. Influence of dietary vitamin E and selenium supplementation on broilers subjected to heat stress, part I: growth performance, body composition and intestinal nutrient transporters. Poult Sci. (2022) 101:101857. doi: 10.1016/j.psj.2022.101857
149. Calik A, Emami NK, Schyns G, White MB, Walsh MC, Romero LF, et al. Influence of dietary vitamin E and selenium supplementation on broilers subjected to heat stress, part II: oxidative stress, immune response, gut integrity, and intestinal microbiota. Poult Sci. (2022) 101:101858. doi: 10.1016/j.psj.2022.101858
150. Mir S, Pal R, Mani V, Malik T, Ojha L, Yadav S. Role of dietary minerals in heatstressed poultry: a review. J entomol Zool. (2018) 6:820–6.
151. Ahmad T, Khalid T, Mushtaq T, Mirza M, Nadeem A, Babar M, et al. Effect of potassium chloride supplementation in drinking water on broiler performance under heat stress conditions. Poult Sci. (2008) 87:1276–80. doi: 10.3382/ps.2007-00299
152. Li T, He W, Liao X, Lin X, Zhang L, Lu L, et al. Zinc alleviates the heat stress of primary cultured hepatocytes of broiler embryos via enhancing the antioxidant ability and attenuating the heat shock responses. Animal Nut. (2021) 7:621–30. doi: 10.1016/j. aninu.2021.01.003
153. Bozakova N. Influence of dietary zinc supplementation on Turkey welfare during the hot summer period. I behavioural aspects ecology and future. Bulgarian J Ecol Sci. (2010) 9:20–6.
154. Bozakova N, Atanassov A, Sotirov L, Stoyanchev K, Yotova I, Uzunova K, et al. Influence of Zn-food-supplementation on some productive indices of Turkey parents during a hot summer period. Bulgarian J Vet Med. (2011) 1:9–17.
155. Habibian M, Sadeghi G, Ghazi S, Moeini MM. Selenium as a feed supplement for heat-stressed poultry: a review. Biol Trace Elem Res. (2015) 165:183–93. doi: 10.1007/ s12011-015-0275-x
156. Qin S, Huang L, Lu L, Zhang L, Guo Y, Xi L, et al. Manganese alleviates heat stress of primary cultured chick embryonic myocardial cells via enhancing manganese superoxide dismutase expression and attenuating heat shock response. J Therm Biol. (2023) 112:103440. doi: 10.1016/j.jtherbio.2022.103440
157. Toghyani M, Toghyani M, Shivazad M, Gheisari A, Bahadoran R. Chromium supplementation can alleviate the negative effects of heat stress on growth performance, carcass traits, and meat lipid oxidation of broiler chicks without any adverse impacts on blood constituents. Biol Trac Elem Res. (2012) 146:171–80. doi: 10.1007/ s12011-011-9234-3
158. Khan R, Naz S, Dhama K. Chromium: pharmacological applications in heatstressed poultry. Int J Pharmacol. (2014) 10:217. doi: 10.3923/ijp.2014.213.217
159. El-Kholy M, Alagawany M, El-Hack M, El-Sayed S. Dietary supplementation of chromium can alleviate negative impacts of heat stress on performance, carcass yield, and some blood hematology and chemistry indices of growing Japanese quail. Biol Trace Elem Res. (2017) 179:148–57. doi: 10.1007/s12011-017-0936-z
160. Behboodi HR, Sedaghat A, Baradaran A, Nazarpak HH. The effects of the mixture of betaine, vitamin C, St John's wort (Hypericum perforatum L.), lavender, and Melissa officinalis on performance and some physiological parameters in broiler chickens exposed to heat stress. Poult Sci. (2021) 100:101344. doi: 10.1016/j.psj.2021. 101344
161. Oke OE. Evaluation of physiological response and performance by supplementation of Curcuma longa in broiler feed under hot humid tropical climate. Trop Anim Health Prod. (2018) 50:1071–7. doi: 10.1007/s11250-018-1532-8
162. Oke OE, Emeshili UK, Iyasere OS, Abioja MO, Daramola JO, Ladokun AO, et al. Physiological responses and performance of broiler chickens offered olive leaf extract under hot humid tropical climate. J Appl Poult Res. (2017) 26:376–82. doi: 10.3382/japr/ pfx005
163. Oke OE, Sorungbe FO, Abioja MO, Oyetunji O, Onabajo AO. Effect of different levels of honey on physiological, growth and carcass traits of broiler chickens during dry season. Acta Argic Slov. (2016) 108:45–53. doi: 10.14720/aas.2016.108.1.5
164. Akosile OA, Kehinde FO, Oni AI, Oke OE. Potential implication of in ovo feeding of Phytogenics in poultry production. Transl Anim Sci. (2023) 7:94. doi: 10.1093/tas/ txad094
165. Akosile O, Majekodunmi B, Sogunle O, Baloyi J, Fushai F, Bhebhe E, et al. Research note: responses of broiler chickens to in Ovo feeding with clove and cinnamon extract under hot-humid environments. Poult Sci. (2023) 102:102391. doi: 10.1016/j. psj.2022.102391
166. Kpomasse CC, Oso OM, Lawal KO, Oke OE. Juvenile growth, Thermotolerance and gut Histomorphology of broiler chickens fed Curcuma longa under hot-humid environments. Heliyon. (2023) 9:e13060. doi: 10.1016/j.heliyon.2023.e13060
167. Oke OE, Oyelola OB, Iyasere OS, Njoku CP, Oso AO, Oso OM, et al. In ovo injection of black cumin (Nigella sativa) extract on hatching and post hatch performance of thermally challenged broiler chickens during incubation. Poult Sci. (2021) 100:100831. doi: 10.1016/j.psj.2020.10.072
168. Tokofai BM, Orounladji BM, Idoh K, Oke OE, Agbonon A. Effect of Vernonia amygdalina on intestinal mucosa’s digestive enzymes, absorption capacity, and immunity in broiler chickens. J Appl Anim Nutri. (2023) 2023:6. doi: 10.3920/JAAN2022.0006
169. Uyanga V, Musa T, Oke OE, Zhao J, Wang X, Jiao H, et al. Global trends and research frontiers on heat stress in poultry from 2000 to 2021: a bibliometric analysis. Front Physiol. (2023) 14:1123582. doi: 10.3389/fphys.2023.1123582
170. Madkour M, Salman FM, El-Wardany I, Abdel-Fattah SA, Alagawany M, Hashem NM, et al. Mitigating the detrimental effects of heat stress in poultry through thermal conditioning and nutritional manipulation. J Therm Biol. (2022) 103:103169. doi: 10.1016/j.jtherbio.2021.103169
171. Ding KN, Lu MH, Guo YN, Liang SS, Mou RW, He YM, et al. Resveratrol relieves chronic heat stress-induced liver oxidative damage in broilers by activating the Nrf2- Keap1 signaling pathway. Ecotoxicol Env Safety. (2023) 249:114411. doi: 10.1016/j. ecoenv.2022.114411
172. Lucini Mas A, Bonansea RI, Fernandez ME, Kembro JM, Labaque MC, Wunderlin DA, et al. Dietary supplementation with chia polyphenols alleviates oxidative stress and improves egg nutritional quality in Japanese quails under heat stress. J Therm Biol. (2023) 111:103421. doi: 10.1016/j.jtherbio.2022.103421
173. Nawab A, Ibtisham F, Li G, Kieser B, Wu J, Liu W, et al. Heat stress in poultry production; mitigation strategies to overcome the future challenges facing the global poultry industry, J. Therm Biol. (2018) 78:131–9. doi: 10.1016/j.jtherbio.2018. 08.010