Author details:
Adler-Moore, J., and Proffitt, R. T. (2002). AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J. Antimicrobial Chemother. 49, 21–30. doi: 10.1093/jac/49.suppl_1.21
Araujo, D. R., Ribeiro, L. N., de, M., and de Paula, E. (2019). Lipid-based carriers for the delivery of local anesthetics. Expert Opin. Drug Delivery 16, 701–714. doi: 10.1080/17425247.2019.1629415 Batchelder, J. I., Hare, P. J., and Mok, W. W. K. (2023). Resistance-resistant antibacterial treatment strategies. Front. Antibiotics 2. doi: 10.3389/frabi.2023.1093156
Braga, I. A., Campos, P. A., Gontijo-Filho, P. P., and Ribas, R. M. (2018). Multi hospital point prevalence study of healthcare-associated infections in 28 adult intensive care units in Brazil. J. Hosp. Infection 99, 318–324. doi: 10.1016/j.jhin.2018.03.003
Calixto, G. M. F., Muniz, B. V., Castro, S. R., de Araujo, J. S. M., de Souza Amorim, K., Ribeiro, L. N. M., et al. (2021). Mucoadhesive, thermoreversible hydrogel, containing tetracaine-loaded nanostructured lipid carriers for topical, intranasal needle-free anesthesia. Pharmaceutics 13, 1760. doi: 10.3390/pharmaceutics13111760
Carbone, C., Martins-Gomes, C., Caddeo, C., Silva, A. M., Musumeci, T., Pignatello, R., et al. (2018). Mediterranean essential oils as precious matrix components and active ingredients of lipid nanoparticles. Int. J. Pharm. 548, 217–226. doi: 10.1016/ j.ijpharm.2018.06.064
Castro, S. R., Paula, E., Mendonca,T.C.,Ribeiro,L.N.,de,M.,Lancelotti,M.,etal.(2019). Carreadores Lipıdicos Nanoestruturados Antimicrobianos. 1–31. BR1020190267305, filing date: 15/12/2019, patented by Instituto Nacional da Propriedade Industrial (INPI), Brazil. (Brazil: Instituto Nacional da Propriedade Industrial).
Castro, S. R., Ribeiro, L. N. M., Breitkreitz, M. C., Guilherme, V. A., Rodrigues da Silva, G. H., Mitsutake, H., et al. (2021). A pre-formulation study of tetracaine loaded in optimized nanostructured lipid carriers. Sci. Rep. 11, 21463. doi: 10.1038/s41598-021 99743-6
Chukwuma, I. F., Uchendu, N. O., Asomadu, R. O., Ezeorba, W. F. C., and Ezeorba, T. P. C. (2023). African and Holy Basil- a review of ethnobotany, phytochemistry, and toxicity of their essential oil: Current trends and prospects for antimicrobial/anti parasitic pharmacology. Arabian J. Chem. 16, 104870. doi: 10.1016/ j.arabjc.2023.104870
Cimino, C., Maurel, O. M., Musumeci, T., Bonaccorso, A., Drago, F., Souto, E. M. B., et al. (2021). Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems. Pharmaceutics 13, 1–35. doi: 10.3390/ pharmaceutics13030327
Coseriu, R. L., Vintila, C., Pribac, M., Mare, A. D., Ciurea, C. N., Toganel, R. O., et al. (2023). Antibacterial Effect of 16 Essential Oils and Modulation of mex Efflux Pumps Gene Expression on Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates: Is Cinnamon a Good Fighter? Antibiotics 12, 163. doi: 10.3390/antibiotics12010163
Dajic Stevanovic, Z., Sieniawska, E., Glowniak, K., Obradovic, N., and Pajic-Lijakovic, I. (2020). Natural macromolecules as carriers for essential oils: from extraction to biomedical application. Front. Bioeng. Biotechnol. 8. doi: 10.3389/fbioe.2020.00563
Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., et al. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10, 57. doi: 10.3390/ pharmaceutics10020057
Dupuis, V., Cerbu, C., Witkowski, L., Potarniche, A.-V., Timar, M. C., Zychska, M., et al. (2022). Nanodelivery of essential oils as efficient tools against antimicrobial resistance: a review of the type and physical-chemical properties of the delivery systems and applications. Drug Delivery 29, 1007–1024. doi: 10.1080/10717544.2022.2056663
El Asbahani, A., Miladi, K., Badri, W., Sala, M., Addi, E. H. A., Casabianca, H., et al. (2015). Essential oils: From extraction to encapsulation. Int. J. Pharm. 483, 220–243. doi: 10.1016/j.ijpharm.2014.12.069
Elcocks, E. R., Spencer-Phillips, P. T. N., andAdukwu, E. C. (2020). Rapid bactericidal effect of cinnamon bark essential oil against Pseudomonas aeruginosa. J. Appl. Microbiol. 128, 1025–1037. doi: 10.1111/jam.14538
El-Kattan, N., and Allam, K. A. M. (2021). The antibacterial activity of nano encapsulated basil and cinnamon essential oils against certain multidrug-resistant bacteria recovered from infected wounds. Novel Res. Microbiol. J. 5, 1447–1462. doi: 10.21608/nrmj.2021.207867
Elshafie, H. S., and Camele, I. (2017). An overview of the biological effects of some mediterranean essential oils on human health. BioMed. Res. Int. 2017, 14. doi: 10.1155/ 2017/9268468
Freire, M. P., de Assis, D. B., Tavares, B., de, M., Brito, V. O. C., Marinho, I., et al. (2023). Impact of COVID-19 on healthcare-associated infections: Antimicrobial consumption does not follow antimicrobial resistance. Clinics 78, 100231. doi: 10.1016/j.clinsp.2023.100231
Ganic, T., Vuletic, S., Nikolic, B., Stevanovic, M., Kuzmanovic, M., Kekic, D., et al. (2022). Cinnamon essential oil and its emulsion as efficient antibiofilm agents to combat Acinetobacter baumannii. Front. Microbiol. 13. doi: 10.3389/ fmicb.2022.989667
Guidotti-Takeuchi, M., Ribeiro, L. N., de, M., dos Santos, F. A. L., Rossi, D. A., Della, F., et al. (2022). Essential oil-based nanoparticles as antimicrobial agents in the food industry. Microorganisms 10, 1504–1526. doi: 10.3390/microorganisms10081504
Kariyawasam, R. M., Julien, D. A., Jelinski, D. C., Larose, S. L., Rennert-May, E., Conly, J. M., et al. (2022). Antimicrobial resistance (AMR) in COVID-19 patients: a systematic review and meta-analysis (November 2019–June 2021). Antimicrob. Resist. Infect. Control 11, 45. doi: 10.1186/s13756-022-01085-z
Kaskatepe, B., Kiymaci, M. E., Suzuk, S., Erdem, S. A., Cesur, S., and Yildiz, S. (2016). Antibacterial effects of cinnamon oil against carbapenem resistant nosocomial Acinetobacter baumannii and Pseudomonas aeruginosa isolates. Ind. Crops Prod. 81, 191–194. doi: 10.1016/j.indcrop.2015.11.058
Katopodi, A., and Detsi, A. (2021). Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of natural products as promising systems for their bioactivity enhancement: The case of essential oils and flavonoids. Colloids Surf. A. Physicochem. Eng. Asp. 630, 127529. doi: 10.1016/j.colsurfa.2021.127529
Lammari, N., Louaer, O., Meniai, A. H., Fessi, H., and Elaissari, A. (2021). Plant oils: From chemical composition to encapsulated form use. Int. J. Pharm. 601, 120538. doi: 10.1016/j.ijpharm.2021.120538
Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., et al. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infection 18, 268–281. doi: 10.1111/j.1469-0691.2011.03570.x
Man, A., Santacroce, L., Iacob, R., Mare, A., and Man, L. (2019). Antimicrobial activity of six essential oils against a group of human pathogens: A comparative study. Pathogens 8, 15. doi: 10.3390/pathogens8010015
Micheli, G., Sangiorgi, F., Catania, F., Chiuchiarelli, M., Frondizi, F., Taddei, E., et al. (2023). The hidden cost of COVID-19: focus on antimicrobial resistance in bloodstream infections. Microorganisms 11, 1299. doi: 10.3390/microorganisms11051299
Moura, L. D., Ribeiro, L. N. M., de Carvalho, F. V., Rodrigues da Silva, G. H., Lima Fernandes, P. C., Brunetto, S. Q., et al. (2021). Docetaxel and lidocaine co-loaded (NLC-in-hydrogel) hybrid system designed for the treatment of melanoma. Pharmaceutics 13, 1552. doi: 10.3390/pharmaceutics13101552
Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655. doi: 10.1016/S0140-6736(21)02724-0
O’Neill, J. (2016) The Review on Antimicrobial Resistance. Tackling Drug-Resistant Infections Globally: final report and recommendations. Available at: https://amr-review. org/sites/default/files/160518_Final%20paper_with%20cover.pdf (Accessed September 21, 2023).
Osme, S. F., Almeida, A. P. S., Lemes, M. F., Barbosa, W. O., Arantes, A., Mendes Rodrigues, C., et al. (2020). Costs of healthcare-associated infections to the Brazilian public Unified Health System in a tertiary-care teaching hospital: a matched case control study. J. Hosp. Infection 106, 303–310. doi: 10.1016/j.jhin.2020.07.015
Pan American Health Organization (2021) Epidemiological Alert Emergence and increase of new combinations of carbapenemases in Enterobacterales in Latin America and the Caribbean. Available at: https://www.paho.org/en/documents/epidemiological alert-emergence-and-increase-new-combinations-carbapenemases (Accessed September 21, 2023).
Ribeiro,L.N.M.,Breitkreitz,M.C.,Guilherme,V.A.,daSilva,G.H.R.,Couto,V.M., Castro, S. R., et al. (2017).Natural lipids-basedNLCcontaining lidocaine: frompre formulation to in vivo studies. Eur. J. Pharm. Sci. 106, 102–112. doi: 10.1016/j.ejps.2017.05.060
Ribeiro, L. N. M., de Paula, E., Rossi, D. A., Martins, F. A., de Melo, R. T., Monteiro, G. P., et al. (2021). Nanocarriers from natural lipids with in vitro activity against campylobacter jejuni. Front. Cell Infect. Microbiol. 10. doi: 10.3389/fcimb.2020.571040
Ribeiro, L. N. M., de Paula, E., Rossi, D. A., Monteiro, G. P., Junior, E. C. V., Silva, R. R., et al. (2020). Hybrid pectin-liposome formulation against multi-resistant bacterial strains. Pharmaceutics 12, 769. doi: 10.3390/pharmaceutics12080769
Ribeiro, L. N. M., Franz-Montan, M., Breitkreitz, M. C., Alcantara, A. C. S., Castro, S. R., Guilherme, V. A., et al. (2016). Nanostructured lipid carriers as robust systems for topical lidocaine-prilocaine release in dentistry. Eur. J. Pharm. Sci. 93, 192–202. doi: 10.1016/J.EJPS.2016.08.030
Sarwar, W., Ali, Q., and Ahmed, S. (2022). Microscopic visualization of the antibiofilm potential of essential oils against Staphylococcus aureus and Klebsiella pneumoniae. Microsc. Res. Tech. 85, 3921–3931. doi: 10.1002/jemt.24243
Scioli Montoto, S., Muraca, G., and Ruiz, M. E. (2020). Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front. Mol. Biosci. 7. doi: 10.3389/fmolb.2020.587997
Souto, E. B., Wissing, S. A., Barbosa, C. M., and Müller, R. H. (2004). Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations. Eur. J. Pharmaceut. Biopharmaceut. 58, 83–90. doi: 10.1016/ j.ejpb.2004.02.015
Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., et al. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318 327. doi: 10.1016/S1473-3099(17)30753-3
Thatipamula, R. P., Palem, C. R., Gannu, R., Mudragada, S., and Yamsani, S. (2011). Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles and nanostructured lipid carriers. Daru 19, 23–32.
Wang, Z., Koirala, B., Hernandez, Y., Zimmerman, M., Park, S., Perlin, D. S., et al. (2022). A naturally inspired antibiotic to target multidrug-resistant pathogens. Nature 601, 606–611. doi: 10.1038/s41586-021-04264-x
World Health Organization (2021) Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report (Geneva). Available at: https://www.who.int/ publications/i/item/9789240027336 (Accessed June 23, 2023).
Yao, J., Zou, P., Cui, Y., Quan, L., Gao, C., Li, Z., et al. (2023). Recent advances in strategies to combat bacterial drug resistance: antimicrobial materials and drug delivery systems. Pharmaceutics 15, 1188. doi: 10.3390/pharmaceutics15041188
Yeh, M.-K., Chang, H.-I., and Cheng, M.-Y. (2011). Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int. J. Nanomed. 49, 49–60. doi: 10.2147/IJN.S26766