Author details:
Horizontal gene transfer (HGT) in food matrices has been investigated under conditions that favor gene exchange. However, the major challenge lies in determining the specific conditions pertaining to the adapted microbial pairs associated with the food matrix. HGT is primarily responsible for enhancing the microbial repertoire for the evolution and spread of antimicrobial resistance and is a major target for controlling pathogens of public health concern in food ecosystems. In this study, we investigated Salmonella Heidelberg (SH) and Escherichia coli (EC) regarding gene exchange under conditions mimicking the industrial environment, with the coproducts whey (SL) and chicken juice (CJ). The S. Heidelberg strain was characterized by antibiotic susceptibility standards and PCR to detect the blaTEM gene. A concentration of 0.39 mg/mL was determined to evaluate the anti-conjugation activity of nanostructured lipid nanocarriers (NLCs) of essential oils to mitigate β-lactam resistance gene transfer. The results showed that the addition of these coproducts promoted an increase of more than 3.5 (whey) and 2.5 (chicken juice) orders of magnitude in the conjugation process (p < 0.01), and NLCs of sage essential oil significantly reduced the conjugation frequency (CF) by 74.90, 90.6, and 124.4 times when compared to the transfers in the absence of coproducts and the presence of SL and CJ, respectively. For NLCs from olibanum essential oil, the decrease was 4.46-fold for conjugations without inhibitors and 3.12- and 11.3-fold in the presence of SL and CJ. NLCs associated with sage and olibanum essential oils effectively control the transfer of antibiotic resistance genes and are a promising alternative for use at industrial levels.
Keywords: bacterial conjugation; blaTEM; chicken juice; nanostructured lipid carriers; whey
1. Thompson, T. The Staggering Death Toll of Drug-Resistant Bacteria. Nature 2022, 6. [CrossRef]
2. Anvisa Boletim Segurança do Paciente e Qualidade em Serviços de Saúde n. 28. Agência Nacional de Vigilância Sanitária 2022. Available online: https://www.gov.br/anvisa/pt-br/centraisdeconteudo/publicacoes/servicosdesaude/boletins-e-relatorios-dasnotificacoes-de-iras-e-outros-eventos-adversos-1/boletins-e-relatorios-das-notificacoes-de-iras-e-outros-eventos-adversos (accessed on 5 April 2023).
3. Santos, A.L.; Dos Santos, A.P.; Ito, C.R.M.; Queiroz, P.H.P.D.; de Almeida, J.A.; de Carvalho Júnior, M.A.B.; de Oliveira, C.Z.; Avelino, M.A.G.; Wastowski, I.J.; Gomes, G.P.L.A.; et al. Profile of Enterobacteria Resistant to Beta-Lactams. Antibiotics 2020, 9, 410. [CrossRef] [PubMed]
4. Oladeinde, A.; Cook, K.; Lakin, S.M.; Abdo, Z.; Looft, T.; Herrington, K.; Zock, G.; Lawrence, J.P.; Thomas, J.C.; Beaudry, M.S.; et al. Dynamics Between Horizontal Gene Transfer and Acquired Antibiotic Resistance in S. Heidelberg Following IN VITRO Incubation in Broiler Ceca. bioRxiv 2019, 85, 684787. [CrossRef]
5. Amador, P.; Fernandes, R.; Prudêncio, C.; Brito, L. Resistance to β-Lactams in Bacteria Isolated from Different Types of Portuguese Cheese. Int. J. Mol. Sci. 2009, 10, 1538–1551. [CrossRef]
6. Sunde, M.; Tharaldsen, H.; Slettemeås, J.S.; Norström, M.; Carattoli, A.; Bjorland, J. Escherichia Coli of Animal Origin in Norway Contains a blaTEM-20-Carrying Plasmid Closely Related to blaTEM-20 and blaTEM-52 Plasmids from Other European Countries. J. Antimicrob. Chemother. 2008, 63, 215–216. [CrossRef] [PubMed]
7. Bibbal, D.; Dupouy, V.; Ferré, J.P.; Toutain, P.L.; Fayet, O.; Prère, M.F.; Bousquet-Mélou, A. Impact of Three Ampicillin Dosage Regimens on Selection of Ampicillin Resistance in Enterobacteriaceae and Excretion of bla TEM Genes in Swine Feces. Appl. Environ. Microbiol. 2007, 73, 4785–4790. [CrossRef]
8. Singh, G.; Vajpayee, P.; Rani, N.; Amoah, I.D.; Stenström, T.A.; Shanker, R. Exploring the Potential Reservoirs of Non Specific TEM Beta Lactamase ( bla TEM ) Gene in the Indo-Gangetic Region: A risk Assessment Approach to Predict Health Hazards. J. Hazard. Mater. 2016, 314, 121–128. [CrossRef]
9. Tekiner, I.H.; Özpınar, H. Occurrence and Characteristics of Extended Spectrum Beta-Lactamases-Producing Enterobacteriaceae from Foods of Animal Origin. Braz. J. Microbiol. 2016, 47, 444–451. [CrossRef]
10. Virolle, C.; Goldlust, K.; Djermoun, S.; Bigot, S.; Lesterlin, C. Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes 2020, 11, 1239. [CrossRef] [PubMed]
11. Olesen, I.; Hasman, H.; Aarestrup, F.M.; Wyrsch, E.R.; Chowdhury, P.R.; Chapman, T.A.; Charles, I.G.; Hammond, J.M.; Djordjevic, S.P.; Matias, C.A.R.; et al. Prevalence of β-Lactamases Among Ampicillin-Resistant Escherichia coli and Salmonella Isolated from Food Animals in Denmark. Microb. Drug Resist. 2004, 10, 334–340. [CrossRef]
12. Walsh, C.; Duffy, G.; Nally, P.; O’mahony, R.; McDowell, D.; Fanning, S. Transfer of Ampicillin Resistance from Salmonella Typhimurium DT104 to Escherichia Coli K12 in Food. Lett. Appl. Microbiol. 2007, 46, 210–215. [CrossRef] [PubMed]
13. Samtiya, M.; Matthews, K.R.; Dhewa, T.; Puniya, A.K. Antimicrobial Resistance in the Food Chain: Trends, Mechanisms, Pathways, and Possible Regulation Strategies. Foods 2022, 11, 2966. [CrossRef]
14. Ansharieta, R.; Ramandinianto, S.C.; Effendi, M.H.; Plumeriastuti, H. Molecular Identification Of Blactx-M And Blatem Genes Encoding Extended-Spectrum ß-Lactamase (ESBL) Producing Escherichia Coli Isolated From Raw Cow’s Milk in East Java, Indonesia. Biodiversitas J. Biol. Divers. 2021, 22, 1600–1605. [CrossRef]
15. Effendi, M.H.; Bintari, I.G.; Aksono, E.B.; Hermawan, I.P. Detection of blaTEM Gene of Klebsiella Pneumoniae Isolated from Swab of Food-Producing Animals in East Java. Trop. Anim. Sci. J. 2018, 41, 174–178. [CrossRef]
16. Dewangan, P.; Shakya, S.; Patyal, A.; Gade, N.E. Bhoomika Prevalence and Molecular Characterization of Extended-Spectrum b-Lactamases (blaTEM) Producing Escherichia Coli Isolated from Humans and Foods of Animal Origin in Chhattisgarh, India. Indian J. Anim. Res. 2016, 51, 310–315. [CrossRef]
17. Liang, B.; Xie, Y.; He, S.; Mai, J.; Huang, Y.; Yang, L.; Zhong, H.; Deng, Q.; Yao, S.; Long, Y.; et al. Prevalence, Serotypes, and Drug Resistance of Nontyphoidal Salmonella Among Paediatric Patients in a Tertiary Hospital in Guangzhou, China, 2014–2016. J. Infect. Public Heal. 2019, 12, 252–257. [CrossRef]
18. World Organization for Animal Health. Brazil Tracking AMR Country Self-Assessment Survey (TrACSS) 2022 Country Report AMR National Action Plan Governance 2022 TrACSS Country Report; World Organization for Animal Health: Paris, France, 2022; pp. 1–10.
19. Monteiro, G.P.; Melo, R.T.D.; Guidotti-Takeuchi, M.; Dumont, C.F.; Ribeiro, R.A.C.; Guerra, W.; Ramos, L.M.S.; Paixão, D.A.; Santos, F.A.L.D.; Rodrigues, D.D.P.; et al. A Ternary Copper (II) Complex with 4-Fluorophenoxyacetic Acid Hydrazide in Combination with Antibiotics Exhibits Positive Synergistic Effect against Salmonella Typhimurium. Antibiotics 2022, 11, 388. [CrossRef]
20. Peres, P.A.B.M.; de Melo, R.T.; Armendaris, P.M.; Barreto, F.; Perin, T.F.; Grazziotin, A.L.; Monteiro, G.P.; Mendonça, E.P.; Lourenzatto, E.C.A.; Bicalho, A.S.M.; et al. Multi-virulence and phenotypic spread of Campylobacter jejuni carried by 2chicken meat in Brazil (preprint). bioRxiv 2022. [CrossRef]
21. Anjum, M.F.; Schmitt, H.; Börjesson, S.; Berendonk, T.U.; Donner, E.; Stehling, E.G.; Boerlin, P.; Topp, E.; Jardine, C.; Li, X.; et al. The Potential of Using E. coli as an Indicator for the Surveillance of Antimicrobial Resistance (AMR) in the Environment. Curr. Opin. Microbiol. 2021, 64, 152–158. [CrossRef]
22. EU Commission. Commission Implementing Decision 2013/652/EU Commission Implementing Decision 2013/652/EU of 12 November 2013 on the Monitoring and Reporting of Antimicrobial Resistance in Zoonotic and Commensal Bacteria. Off. J. Eur. Union 2013, 303, 26–39.
23. Carranza, G.; Menguiano, T.; Valenzuela-Gómez, F.; García-Cazorla, Y.; Cabezón, E.; Arechaga, I. Monitoring Bacterial Conjugation by Optical Microscopy. Front. Microbiol. 2021, 12, 750200. [CrossRef] [PubMed]
24. Neil, K.; Allard, N.; Rodrigue, S. Molecular Mechanisms Influencing Bacterial Conjugation in the Intestinal Microbiota. Front. Microbiol. 2021, 12, 1–10. [CrossRef] [PubMed]
25. Cascales, E.; Christie, P.J. The Versatile Bacterial Type IV Secretion Systems. Nat. Rev. Microbiol. 2003, 1, 137–149. [CrossRef]
26. Alvarez-Martinez, C.E.; Christie, P.J. Biological Diversity of Prokaryotic Type IV Secretion Systems. Microbiol. Mol. Biol. Rev. 2009, 73, 775–808. [CrossRef]
27. Lopatkin, A.J.; Huang, S.; Smith, R.P.; Srimani, J.K.; Sysoeva, T.A.; Bewick, S.; Karig, D.K.; You, L. Antibiotics as a Selective Driver for Conjugation Dynamics. Nat. Microbiol. 2016, 1, 16044. [CrossRef] [PubMed]
28. Sheppard, R.J.; Beddis, A.E.; Barraclough, T.G. The Role of Hosts, Plasmids and Environment in Determining Plasmid Transfer Rates: A Meta-Analysis. Plasmid 2020, 108, 102489. [CrossRef] [PubMed]
29. Getino, M.; Sanabria-Ríos, D.J.; Fernández-López, R.; Campos-Gomez, J.; Sánchez-López, J.M.; Fernández, A.; Carballeira, N.; de la Cruz, F. Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer. mBio 2015, 6, 1–10. [CrossRef]
30. Graf, F.E.; Palm, M.; Warringer, J.; Farewell, A. Inhibiting Conjugation as a Tool in the Fight Against Antibiotic Resistance. Drug Dev. Res. 2019, 80, 19–23. [CrossRef]
31. Guidotti-Takeuchi, M.; Ribeiro, L.N.D.M.; dos Santos, F.A.L.; Rossi, D.A.; Della Lucia, F.; de Melo, R.T. Essential Oil-Based Nanoparticles as Antimicrobial Agents in the Food Industry. Microorganisms 2022, 10, 1504. [CrossRef]
32. Baldim, I.; Paziani, M.H.; Barião, P.H.G.; Kress, M.R.V.Z.; Oliveira, W.P. Nanostructured Lipid Carriers Loaded with Lippia sidoides Essential Oil as a Strategy to Combat the Multidrug-Resistant Candida auris. Pharmaceutics 2022, 14, 180. [CrossRef]
33. Nahr, F.K.; Ghanbarzadeh, B.; Hamishehkar, H.; Kafil, H.S. Food Grade Nanostructured Lipid Carrier for Cardamom Essential Oil: Preparation, Characterization and Antimicrobial Activity. J. Funct. Foods 2018, 40, 1–8. [CrossRef]
34. Shajari, M.; Rostamizadeh, K.; Shapouri, R.; Taghavi, L. Eco-Friendly Curcumin-Loaded Nanostructured Lipid Carrier as an Efficient Antibacterial for Hospital Wastewater Treatment. Environ. Technol. Innov. 2020, 18, 100703. [CrossRef]
35. Ribeiro, L.N.D.M.; de Paula, E.; Rossi, D.A.; Martins, F.A.; de Melo, R.T.; Monteiro, G.P.; Breitkreitz, M.C.; Goulart, L.R.; Fonseca, B.B. Nanocarriers from Natural Lipids With In Vitro Activity Against Campylobacter jejuni. Front. Cell. Infect. Microbiol. 2021, 10, 827. [CrossRef] [PubMed]
36. Botelho, B.G.; Reis, N.; Oliveira, L.S.; Sena, M.M. Development and Analytical Validation of a Screening Method for Simultaneous Detection of Five Adulterants in Raw Milk Using Mid-Infrared Spectroscopy and PLS-DA. Food Chem. 2015, 181, 31–37. [CrossRef]
37. Upadhyay, N.; Jaiswal, P.; Jha, S.N. Application of Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR– FTIR) in MIR Range Coupled with Chemometrics for Detection of Pig Body Fat in Pure Ghee (Heat Clarified Milk Fat). J. Mol. Struct. 2018, 1153, 275–281. [CrossRef]
38. Andrade, J.; Pereira, C.G.; Junior, J.C.D.A.; Viana, C.C.R.; Neves, L.N.D.O.; da Silva, P.H.F.; Bell, M.J.V.; Anjos, V.D.C.D. FTIR-ATR Determination of Protein Content to Evaluate Whey Protein Concentrate Adulteration. LWT 2019, 99, 166–172. [CrossRef]
39. Andrade, J.; Pereira, C.G.; Ranquine, T.; Azarias, C.A.; Bell, M.J.V.; Anjos, V.D.C.D. Long-Term Ripening Evaluation of Ewes’ Cheeses by Fourier-Transformed Infrared Spectroscopy under Real Industrial Conditions. Spectrosc. 2018, 2018, 1381864. [CrossRef]
40. El Darra, N.; Rajha, H.N.; Saleh, F.; Al-Oweini, R.; Maroun, R.G.; Louka, N. Food Fraud Detection in Commercial Pomegranate Molasses Syrups by UV–VIS Spectroscopy, ATR-FTIR Spectroscopy and HPLC Methods. Food Control. 2017, 78, 132–137. [CrossRef]
41. Wang, X.; Esquerre, C.; Downey, G.; Henihan, L.; O’callaghan, D.; O’donnell, C. Feasibility of Discriminating Dried Dairy Ingredients and Preheat Treatments Using Mid-Infrared and Raman Spectroscopy. Food Anal. Methods 2017, 11, 1380–1389. [CrossRef]
42. Martins, M.S.; Nascimento, M.H.; Barbosa, L.L.; Campos, L.C.; Singh, M.N.; Martin, F.L.; Romão, W.; Filgueiras, P.R.; Barauna, V.G. Detection and Quantification Using ATR-FTIR Spectroscopy of Whey Protein Concentrate Adulteration with Wheat Flour. LWT 2022, 172, 114161. [CrossRef]
43. Rosanne, A.C.R.; Micaela, G.-T.; de Melo, R.T.; Carolyne, F.D.; de Araújo Brum, B.; Thais, J.M.; Wendell, G.L.M.; Sousa Ramos, D.A.R. Transfer of the bla TEM Gene Between Salmonella and Escherichia Coli Under Conditions of Animal Products Processing: Influence of a Copper Complex. Microbiol. Spectr. 2023. Available online: https://repositorio.ufu.br/bitstream/123456789/3715 0/3/Transfer%c3%aanciaGeneblaTEM.pdf (accessed on 5 March 2023).
44. Davison, J. Genetic Exchange between Bacteria in the Environment. Plasmid 1999, 42, 73–91. [CrossRef]
45. Coque, T.M.; Cajal, R.; Graham, D.W.; Pruden, A.; So, A.D.; Topp, E.; Grooters, S.V. Bracing for Superbugs: Strengthening Environmental Action in the One Health Response to Antimicrobial Resistance; UNEP: Geneva, Switzerland, 2023.
46. Tóth, A.G.; Csabai, I.; Krikó, E.; T˝ozsér, D.; Maróti, G.; Patai, V.; Makrai, L.; Szita, G.; Solymosi, N. Antimicrobial Resistance Genes in Raw Milk for Human Consumption. Sci. Rep. 2020, 10, 7464. [CrossRef]
47. Li, W.; Bai, X.; Sheng, H.; Chen, J.; Wang, Z.; Wang, T.; Sun, R.; Feng, Z.; Wang, Y.; Peng, K.; et al. Conjugative Transfer of mcr-1-Bearing Plasmid from Salmonella to Escherichia Coli in vitro on Chicken Meat and in Mouse Gut. Food Res. Int. 2022, 157, 111263. [CrossRef] [PubMed]
48. Low, W.W.; Wong, J.L.C.; Beltran, L.C.; Seddon, C.; David, S.; Kwong, H.-S.; Bizeau, T.; Wang, F.; Peña, A.; Costa, T.R.D.; et al. Mating Pair Stabilization Mediates Bacterial Conjugation Species Specificity. Nat. Microbiol. 2022, 7, 1016–1027. [CrossRef] [PubMed]
49. Selover, B.; Waite-Cusic, J.G. Growth Potential and Biofilm Development of Nonstarter Bacteria on Surfaces Exposed to a Continuous Whey Stream. J. Dairy Sci. 2021, 104, 6508–6515. [CrossRef] [PubMed]
50. Headd, B.; Bradford, S.A. Physicochemical Factors That Favor Conjugation of an Antibiotic Resistant Plasmid in Non-growing Bacterial Cultures in the Absence and Presence of Antibiotics. Front. Microbiol. 2018, 9, 2122. [CrossRef]
51. Funnell, B.E.; Phillips, G.J. Plasmid Biology; American Society for Microbiology, Ed.; American Society for Microbiology: Washington, DC, USA, 2004; ISBN 9788527729833.
52. De La Cruz, F.; Frost, L.S.; Meyer, R.J.; Zechner, E.L. Conjugative DNA Metabolism in Gram-Negative Bacteria. FEMS Microbiol. Rev. 2010, 34, 18–40. [CrossRef]
53. Lopatkin, A.J.; Meredith, H.R.; Srimani, J.K.; Pfeiffer, C.; Durrett, R.; You, L. Persistence and Reversal of Plasmid-Mediated Antibiotic Resistance. Nat. Commun. 2017, 8, 1689. [CrossRef]
54. Mishra, S.; Klümper, U.; Voolaid, V.; Berendonk, T.U.; Kneis, D. Simultaneous Estimation of Parameters Governing the Vertical and Horizontal Transfer of Antibiotic Resistance Genes. Sci. Total. Environ. 2021, 798, 149174. [CrossRef]
55. Alderliesten, J.B.; Duxbury, S.J.N.; Zwart, M.P.; de Visser, J.A.G.M.; Stegeman, A.; Fischer, E.A.J. Effect of Donor-Recipient Relatedness on the Plasmid Conjugation Frequency: A Meta-Analysis. BMC Microbiol. 2020, 20, 135. [CrossRef]
56. Shafieifini, M.; Sun, Y.; Staley, Z.R.; Riethoven, J.-J.; Li, X. Effects of Nutrient Level and Growth Rate on the Conjugation Process That Transfers Mobile Antibiotic Resistance Genes in Continuous Cultures. Appl. Environ. Microbiol. 2022, 88, 1–12. [CrossRef]
57. Moralez, J.; Szenkiel, K.; Hamilton, K.; Pruden, A.; Lopatkin, A.J. Quantitative Analysis of Horizontal Gene Transfer in Complex Systems. Curr. Opin. Microbiol. 2021, 62, 103–109. [CrossRef]
58. Reynolds, C.K.; Harmon, D.L.; Cecava, M.J. Absorption and Delivery of Nutrients for Milk Protein Synthesis by Portal-Drained Viscera. J. Dairy Sci. 1994, 77, 2787–2808. [CrossRef]
59. de Divitiis, M.; Ami, D.; Pessina, A.; Palmioli, A.; Sciandrone, B.; Airoldi, C.; Regonesi, M.E.; Brambilla, L.; Lotti, M.; Natalello, A.; et al. Cheese-Whey Permeate Improves the Fitness of Escherichia Coli Cells During Recombinant Protein Production. Biotechnol. Biofuels Bioprod. 2023, 16, 30. [CrossRef]
60. Ammar, E.M.; Wang, X.; Rao, C.V. Regulation of Metabolism in Escherichia Coli During Growth on Mixtures of the Non-Glucose Sugars: Arabinose, Lactose, and Xylose. Sci. Rep. 2018, 8, 609. [CrossRef] [PubMed]
61. Cando ˘gan, K.; Altuntas, E.G.; ˙I ˘gci, N. Authentication and Quality Assessment of Meat Products by Fourier-Transform Infrared (FTIR) Spectroscopy. Food Eng. Rev. 2021, 13, 66–91. [CrossRef]
62. Van Heeswijk, W.C.; Westerhoff, H.V.; Boogerd, F.C. Nitrogen Assimilation in Escherichia coli: Putting Molecular Data into a Systems Perspective. Microbiol. Mol. Biol. Rev. 2013, 77, 628–695. [CrossRef]
63. Huang, L.; Zhang, Y.; Du, X.; An, R.; Liang, X. Escherichia coli Can Eat DNA as an Excellent Nitrogen Source to Grow Quickly. Front. Microbiol. 2022, 13, 894849. [CrossRef] [PubMed]
64. Ji, Y.; Yang, X.; Ji, Z.; Zhu, L.; Ma, N.; Chen, D.; Jia, X.; Tang, J.; Cao, Y. DFT-Calculated IR Spectrum Amide I, II, and III Band Contributions of N-Methylacetamide Fine Components. ACS Omega 2020, 5, 8572–8578. [CrossRef] [PubMed]
65. Oniciuc, E.A.A.; Walsh, C.J.; Coughlan, L.M.; Awad, A.; Simon, C.A.; Ruiz, L.; Crispie, F.; Cotter, P.D.; Alvarez-Ordóñez, A. Dairy Products and Dairy-Processing Environments as a Reservoir of Antibiotic Resistance and Quorum-Quenching Determinants as Revealed through Functional Metagenomics. Msystems 2020, 5, e00723-19. [CrossRef]
66. Monte, D.F.; Lincopan, N.; Fedorka-Cray, P.J.; Landgraf, M. Current Insights on High Priority Antibiotic-Resistant Salmonella Enterica in Food and Foodstuffs: A Review. Curr. Opin. Food Sci. 2019, 26, 35–46. [CrossRef]
67. Liu, J.; Zhu, Y.; Jay-Russell, M.; Lemay, D.G.; Mills, D.A. Reservoirs of Antimicrobial RESISTANCE genes in Retail Raw Milk. Microbiome 2020, 8, 99. [CrossRef]
68. Patkowski, J.B.; Dahlberg, T.; Amin, H.; Gahlot, D.K.; Vijayrajratnam, S.; Vogel, J.P.; Francis, M.S.; Baker, J.L.; Andersson, M.; Costa, T.R.D. The F-pilus Biomechanical Adaptability Accelerates Conjugative Dissemination of Antimicrobial Resistance and Biofilm Formation. Nat. Commun. 2023, 14, 1879. [CrossRef] [PubMed]
69. Likotrafiti, E.; Oniciuc, E.; Prieto, M.; Santos, J.; López, S.; Alvarez-Ordóñez, A. Risk Assessment of Antimicrobial Resistance Along the Food Chain Through Culture-Independent Methodologies. EFSA J. 2018, 16, e160811. [CrossRef]
70. Oniciuc, E.-A.; Likotrafiti, E.; Alvarez-Molina, A.; Prieto, M.; López, M.; Alvarez-Ordóñez, A. Food processing as a risk factor for antimicrobial resistance spread along the food chain. Curr. Opin. Food Sci. 2019, 30, 21–26. [CrossRef]
71. Lambrecht, E.; Van Coillie, E.; Van Meervenne, E.; Boon, N.; Heyndrickx, M.; Van de Wiele, T. Commensal E. coli Rapidly Transfer Antibiotic Resistance Genes to Human Intestinal Microbiota in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). Int. J. Food Microbiol. 2019, 311, 108357. [CrossRef]
72. Christie, P.J. The Mosaic Type IV Secretion Systems. EcoSal Plus 2016, 7. [CrossRef] [PubMed]
73. Darphorn, T.S.; Sintanneland, B.B.K.-V.; Grootemaat, A.E.; van der Wel, N.N.; Brul, S.; ter Kuile, B.H. Transfer Dynamics of Multi-Resistance Plasmids in Escherichia Coli Isolated From Meat. PLoS ONE 2022, 17, e0270205. [CrossRef] [PubMed]
74. García-Cazorla, Y.; Getino, M.; Sanabria-Ríos, D.J.; Carballeira, N.M.; de la Cruz, F.; Arechaga, I.; Cabezón, E. Conjugation Inhibitors Compete with Palmitic Acid for Binding to the Conjugative Traffic ATPase TrwD, Providing a Mechanism to Inhibit Bacterial Conjugation. J. Biol. Chem. 2018, 293, 16923–16930. [CrossRef]
75. Waksman, G. From Conjugation to T4S Systems in Gram-negative bacteria: A Mechanistic Biology Perspective. EMBO Rep. 2019, 20, e47012. [CrossRef] [PubMed]
76. Bragagnolo, N.; Rodriguez, C.; Samari-Kermani, N.; Fours, A.; Korouzhdehi, M.; Lysenko, R.; Audette, G.F. Protein Dynamics in F-like Bacterial Conjugation. Biomedicines 2020, 8, 362. [CrossRef] [PubMed]
77. Swain, S.S.; Paidesetty, S.K.; Padhy, R.N.; Hussain, T. Nano-Technology Platforms to Increase the Antibacterial Drug Suitability of Essential Oils: A Drug Prospective Assessment. Opennano 2023, 9, 100115. [CrossRef]
78. Mot, M.-D.; Gavrilas, , S.; Lupitu, A.I.; Moisa, C.; Chambre, D.; Tit, D.M.; Bogdan, M.A.; Bodescu, A.-M.; Copolovici, L.; Copolovici, D.M.; et al. Salvia officinalis L. Essential Oil: Characterization, Antioxidant Properties, and the Effects of Aromatherapy in Adult Patients. Antioxidants 2022, 11, 808. [CrossRef]
79. Bekhit, S.A. Evaluation of the Antibacterial Effect of Salvia Officinalis Essential Oil and its Synergistic Effect with Meropenem. Lett. Appl. NanoBioScience 2022, 12, 44. [CrossRef]
80. Al-Dahmash, N.D.; Al-Ansari, M.M.; Al-Otibi, F.O.; Singh, A.R. Frankincense, an Aromatic Medicinal Exudate of Boswellia Carterii used to Mediate Silver Nanoparticle Synthesis: Evaluation of Bacterial Molecular Inhibition and its Pathway. J. Drug Deliv. Sci. Technol. 2021, 61, 102337. [CrossRef]
81. Apiwatsiri, P.; Pupa, P.; Yindee, J.; Niyomtham, W.; Sirichokchatchawan, W.; Lugsomya, K.; Shah, A.A.; Prapasarakul, N. Anticonjugation and Antibiofilm Evaluation of Probiotic Strains Lactobacillus plantarum 22F, 25F, and Pediococcus acidilactici 72N Against Escherichia coli Harboring mcr-1 Gene. Front. Veter-Sci. 2021, 8, 614439. [CrossRef]
82. Oyedemi, B.O.; Shinde, V.; Shinde, K.; Kakalou, D.; Stapleton, P.D.; Gibbons, S. Novel R-plasmid Conjugal Transfer Inhibitory and Antibacterial Activities of Phenolic Compounds from Mallotus Philippensis (Lam.) Mull. Arg. J. Glob. Antimicrob. Resist. 2016, 5, 15–21. [CrossRef]
83. Cabezón, E.; de la Cruz, F.; Arechaga, I. Conjugation Inhibitors and Their Potential Use to Prevent Dissemination of Antibiotic Resistance Genes in Bacteria. Front. Microbiol. 2017, 8, 2329. [CrossRef]
84. Tang, H.; Liu, Z.; Hu, B.; Zhu, L. Effects of Iron Mineral Adhesion on Bacterial Conjugation: Interfering the Transmission of Antibiotic Resistance Genes Through an Interfacial process. J. Hazard. Mater. 2022, 435, 128889. [CrossRef] [PubMed]
85. Linklater, D.P.; Baulin, V.A.; Le Guével, X.; Fleury, J.; Hanssen, E.; Nguyen, T.H.P.; Juodkazis, S.; Bryant, G.; Crawford, R.J.; Stoodley, P.; et al. Antibacterial Action of Nanoparticles by Lethal Stretching of Bacterial Cell Membranes. Adv. Mater. 2020, 32, e2005679. [CrossRef]
86. Bahari, L.A.S.; Hamishehkar, H. The Impact of Variables on Particle Size of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers; A Comparative Literature Review. Adv. Pharm. Bull. 2016, 6, 143–151. [CrossRef] [PubMed]
87. Atmakuri, K.; Cascales, E.; Christie, P.J. Energetic Components VirD4, VirB11 and VirB4 Mediate Early DNA Transfer Reactions Required for Bacterial Type IV Secretion. Mol. Microbiol. 2004, 54, 1199–1211. [CrossRef] [PubMed]
88. Getino, M.; Fernandez-Lopez, R.; Palencia-Gándara, C.; Campos-Gomez, J.; Sánchez-López, J.M.; Martínez, M.; Fernández, A.; de la Cruz, F. Tanzawaic Acids, a Chemically Novel Set of Bacterial Conjugation Inhibitors. PLoS ONE 2016, 11, e0148098. [CrossRef] [PubMed]
89. Brown, H.L.; Reuter, M.; Salt, L.J.; Cross, K.L.; Betts, R.P.; van Vliet, A.H.M. Chicken Juice Enhances Surface Attachment and Biofilm Formation of Campylobacter jejuni. Appl. Environ. Microbiol. 2014, 80, 7053–7060. [CrossRef]
90. Melo, R.T.; Mendonça, E.P.; Monteiro, G.P.; Siqueira, M.C.; Pereira, C.B.; Peres, P.A.B.M.; Fernandez, H.; Rossi, D.A. Intrinsic and Extrinsic Aspects on Campylobacter jejuni Biofilms. Front. Microbiol. 2017, 8, 1332. [CrossRef]
91. Bashiri, S.; Ghanbarzadeh, B.; Ayaseh, A.; Dehghannya, J.; Ehsani, A.; Ozyurt, H. Essential Oil-Loaded Nanostructured Lipid Carriers: The effects of Liquid Lipid Type on the Physicochemical Properties in Beverage Models. Food Biosci. 2020, 35, 100526. [CrossRef]
92. Sharma, S.; Mulrey, L.; Byrne, M.; Jaiswal, A.K.; Jaiswal, S. Encapsulation of Essential Oils in Nanocarriers for Active Food Packaging. Foods 2022, 11, 2337. [CrossRef]
93. Huh, A.J.; Kwon, Y.J. “Nanoantibiotics”: A New Paradigm for Treating Infectious Diseases Using Nanomaterials in the Antibiotics Resistant Era. J. Control. Release 2011, 156, 128–145. [CrossRef]
94. Fernandez-Lopez, R.; Machón, C.; Longshaw, C.M.; Martin, S.; Molin, S.; Zechner, E.L.; Espinosa, M.; Lanka, E.; de la Cruz, F. Unsaturated Fatty Acids are Inhibitors of Bacterial Conjugation. Microbiology 2005, 151, 3517–3526. [CrossRef]
95. Gussoni, M.; Greco, F.; Pegna, M.; Bianchi, G.; Zetta, L. Solid State and Microscopy NMR Study of the Chemical Constituents of Afzelia Cuanzensis Seeds. Magn. Reson. Imaging 1994, 12, 477–486. [CrossRef]
96. Van Vuuren, S.; Kamatou, G.; Viljoen, A. Volatile Composition and Antimicrobial Activity of Twenty Commercial Frankincense Essential Oil Samples. S. Afr. J. Bot. 2010, 76, 686–691. [CrossRef]
97. Gerbeth, K.; Meins, J.; Kirste, S.; Momm, F.; Schubert-Zsilavecz, M.; Abdel-Tawab, M. Determination of Major Boswellic Acids in Plasma by High-Pressure Liquid Chromatography/Mass Spectrometry. J. Pharm. Biomed. Anal. 2011, 56, 998–1005. [CrossRef]
98. Afonso, A.F.; Pereira, O.R.; Fernandes, Â.; Calhelha, R.C.; Silva, A.M.S.; Ferreira, I.C.F.R.; Cardoso, S.M. Phytochemical Composition and Bioactive Effects of Salvia africana, Salvia officinalis ‘Icterina’ and Salvia mexicana Aqueous Extracts. Molecules 2019, 24, 4327. [CrossRef]
99. Lekbach, Y.; Li, Z.; Xu, D.; El Abed, S.; Dong, Y.; Liu, D.; Gu, T.; Koraichi, S.I.; Yang, K.; Wang, F. Salvia Officinalis Extract Mitigates the Microbiologically Influenced Corrosion of 304L Stainless Steel by Pseudomonas Aeruginosa Biofilm. Bioelectrochemistry 2019, 128, 193–203. [CrossRef]
100. Kˇrížkovská, B.; Hoang, L.; Brdová, D.; Klementová, K.; Szemerédi, N.; Louˇcková, A.; Kronusová, O.; Spengler, G.; Kaštánek, P.; Hajšlová, J.; et al. Modulation of the Bacterial Virulence and Resistance by Well-Known European Medicinal Herbs. J. Ethnopharmacol. 2023, 312, 116484. [CrossRef] [PubMed]
101. Barbosa, R.D.M.; Ribeiro, L.N.M.; Casadei, B.R.; Da Silva, C.M.G.; Queiróz, V.A.; Duran, N.; De Araújo, D.R.; Severino, P.; De Paula, E. Solid Lipid Nanoparticles for Dibucaine Sustained Release. Pharmaceutics 2018, 10, 231. [CrossRef] [PubMed]
102. Melo, R.T.; Galvão, N.N.; Guidotti-Takeuchi, M.; Peres, P.A.B.M.; Fonseca, B.B.; Profeta, R.; Azevedo, V.A.C.; Monteiro, G.P.; Brenig, B.; Rossi, D.A. Molecular Characterization and Survive Abilities of Salmonella Heidelberg Strains of Poultry Origin in Brazil. Front. Microbiol. 2021, 12, 1461. [CrossRef] [PubMed]
103. Matsumura, Y.; Peirano, G.; Pitout, J.D.D. Complete Genome Sequence of Escherichia coli J53, an Azide-Resistant Laboratory Strain Used for Conjugation Experiments. Genome Announc. 2018, 6, e00433-18. [CrossRef]
104. Rodriguez-Grande, J.; Fernandez-Lopez, R. Measuring Plasmid Conjugation Using Antibiotic Selection. Methods Mol. Biol. 2020, 2075, 93–98. [CrossRef]
105. Ahmed, A.M.; Motoi, Y.; Sato, M.; Maruyama, A.; Watanabe, H.; Fukumoto, Y.; Shimamoto, T. Zoo Animals as Reservoirs of Gram-Negative Bacteria Harboring Integrons and Antimicrobial Resistance Genes. Appl. Environ. Microbiol. 2007, 73, 6686–6690. [CrossRef] [PubMed]
106. Suhartono, S.; Savin, M. Conjugative Transmission of Antibiotic-Resistance from Stream Water Escherichia coli as Related to Number of Sulfamethoxazole but Not Class 1 and 2 Integrase Genes. Mob. Genet. Elem. 2016, 6, e1256851. [CrossRef] [PubMed]
107. Silva, N. Manual de Métodos de Análise Microbiológica de Alimentos e Água, 5th ed.; Blucher: São Paulo, Brazil, 2017; ISBN 978-85-212-1225-6.