The poultry industry is constantly demanding novel strategies to improve the productivity and health status of hens, prioritizing those based on the holistic use of natural resources. This study aimed to assess the effects of an Allium-based phytobiotic on productivity, egg quality, and fecal microbiota of laying hens. One hundred and ninety-two 14-week-old Lohmann Lite LSL hens were allocated into an experimental farm, fed with a commercial concentrate with and without the Allium-based phytobiotic, and challenged against Salmonella. Productivity, egg quality, and fecal microbiota were monitored for 20 weeks. Results showed that the phytobiotic caused an increase on the number of eggs laid (p < 0.05) and in the feed conversion rate (p < 0.05); meanwhile, egg quality, expressed as egg weight, albumin height, haugh units, egg shell strength, and egg shell thickness remained unchanged (p > 0.05), although yolk color was decreased. Fecal microbiota structure was also modified, indicating a modulation of the gut microbiota by increasing the presence of Firmicutes and Bacteroidetes but reducing Proteobacteria and Actinobacteria phyla. Predicted changes in the functional profiles of fecal microbiota suggest alterations in metabolic activities that could be responsible for the improvement and maintenance of productivity and egg quality when the phytobiotic was supplemented; thus, Allium-based phytobiotic has a major impact on the performance of laying hens associated with a possible gut microbiota modulation.
Keywords: garlic; high-throughput sequencing; PICRUSt; poultry; Salmonella Pullorum
1. Yamashiro, Y. Gut Microbiota in Health and Disease. Ann. Nutr. Metab. 2018, 71, 242–246. [CrossRef] [PubMed]
2. Kraimi, N.; Dawkins, M.; Gebhardt-Henrich, S.G.; Velge, P.; Rychlik, I.; Volf, J.; Creach, P.; Smith, A.; Colles, F.; Leterrier, C. Influence of the Microbiota-Gut-Brain Axis on Behavior and Welfare in Farm Animals: A Review. Physiol. Behav. 2019, 210, 112658. [CrossRef] [PubMed]
3. Guitton, E.; Faurie, A.; Lavillatte, S.; Chaumeil, T.; Gaboriaud, P.; Bussière, F.; Laurent, F.; Lacroix-Lamandé, S.; Guabiraba, R.; Schouler, C. Production of Germ-Free Fast-Growing Broilers from a Commercial Line for Microbiota Studies. J. Vis. Exp. 2020, 18, e61148. [CrossRef]
4. Den Besten, G.; Van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013, 54, 2325–2340. [CrossRef] [PubMed]
5. Azad, M.A.K.; Gao, J.; Ma, J.; Li, T.; Tan, B.; Huang, X.; Yin, J. Opportunities of Prebiotics for the Intestinal Health of Monogastric Animals. Anim. Nutr. 2020, 6, 379–388. [CrossRef] [PubMed]
6. Yoo, J.Y.; Groer, M.; Dutra, S.V.O.; Sarkar, A.; McSkimming, D.I. Gut Microbiota and Immune System Interactions. Microorganisms 2020, 8, 1587. [CrossRef]
7. Khan, S.; Moore, R.J.; Stanley, D.; Chousalkar, K.K. The Gut Microbiota of Laying Hens and Its Manipulation with Prebiotics and Probiotics to Enhance Gut Health and Food Safety. Appl. Environ. Microbiol. 2020, 86, e00600-20. [CrossRef] [PubMed]
8. Wang, Y.; Xu, L.; Sun, X.; Wan, X.; Sun, G.; Jiang, R.; Li, W.; Tian, Y.; Liu, X.; Kang, X. Characteristics of the Fecal Microbiota of High-and Low-Yield Hens and Effects of Fecal Microbiota Transplantation on Egg Production Performance. Res. Vet. Sci. 2020, 129, 164–173. [CrossRef] [PubMed]
9. Skoufos, I.; Bonos, E.; Anastasiou, I.; Tsinas, A.; Tzora, A. Effects of Phytobiotics in Healthy or Disease Challenged Animals. Feed Addit. 2020, 18, 311–337.
10. Yıldız, A.Ö.; ¸Sentürk, E.T.; Olgun, O. Use of Alfalfa Meal in Layer Diets a Review. World’s Poult. Sci. J. 2020, 76, 134–143. [CrossRef]
11. Avila-Sosa, R.; Navarro-Cruz, A.R.; Sosa-Morales, M.E.; López-Malo, A.; Palou, E. Bergamot (Citrus Bergamia) Oils; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2016; Volume 1, Chapter 27; pp. 247–252.
12. Abdel-Wareth, A.A.A.; Lohakare, J.D. Effect of Dietary Supplementation of Peppermint on Performance, Egg Quality, and Serum Metabolic Profile of Hy-Line Brown Hens during the Late Laying Period. Anim. Feed Sci. Technol. 2014, 197, 114–120. [CrossRef]
13. Sadarman; Febrina, D.; Yendraliza; Haq, M.S.; Nurfitriani, R.A.; Barkah, N.N.; Sholikin, M.M.; Yunilas; Qomariyah, N.; Jayanegara, A.; et al. Effect of Dietary Black Cumin Seed (Nigella Sativa) on Performance, Immune Status, and Serum Metabolites of Small Ruminants: A Meta-Analysis. Small Rumin. Res. 2021, 204, 106521. [CrossRef]
14. Vicente, J.L.; Lopez, C.; Avila, E.; Morales, E.; Hargis, B.M.; Tellez, G. Effect of Dietary Natural Capsaicin on Experimental Salmonella Enteritidis Infection and Yolk Pigmentation in Laying Hens. Int. J. Poult. Sci. 2007, 6, 393–396. [CrossRef]
15. Alizadeh, M.R.; Mahdavi, A.H.; Rahmani, H.R.; Jahanian, E. Effects of Different Levels of Clove Bud (Syzygium Aromaticum) on Yolk Biochemical Parameters and Fatty Acids Profile, Yolk Oxidative Stability, and Ovarian Follicle Numbers of Laying Hens Receiving Different n-6 to n-3 Ratios. Anim. Feed Sci. Technol. 2015, 206, 67–75. [CrossRef]
16. Zhang, L.Y.; Peng, Q.Y.; Liu, Y.R.; Ma, Q.G.; Zhang, J.Y.; Guo, Y.P.; Xue, Z.; Zhao, L.H. Effects of Oregano Essential Oil as an Antibiotic Growth Promoter Alternative on Growth Performance, Antioxidant Status, and Intestinal Health of Broilers. Poult. Sci. 2021, 100, 101163. [CrossRef]
17. Dosoky, W.M.; Zeweil, H.S.; Ahmed, M.H.; Zahran, S.M.; Shaalan, M.M.; Abdelsalam, N.R.; Abdel-Moneim, A.-M.E.; Taha, A.E.; El-Tarabily, K.A.; Abd El-Hack, M.E. Impacts of Onion and Cinnamon Supplementation as Natural Additives on the Performance, Egg Quality and Immunity in Laying Japanese Quail. Poult. Sci. 2021, 100, 101482. [CrossRef] [PubMed]
18. Sato, T.; Miyata, G. The Nutraceutical Benefit, Part IV: Garlic. Nutrition 2000, 16, 787–788. [CrossRef]
19. Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Abd El-Hack, M.E.; Barkat, R.A.; Gabr, A.A.; Foda, M.A.; Noreldin, A.E.; Khafaga, A.F.; El-Sabrout, K.; et al. Potential Role of Important Nutraceuticals in Poultry Performance and Health-A Comprehensive Review. Res. Vet. Sci. 2021, 137, 9–29. [CrossRef] [PubMed]
20. Lee, A.; Dal Pont, G.C.; Farnell, M.B.; Jarvis, S.; Battaglia, M.; Arsenault, R.J.; Kogut, M.H. Supplementing Chestnut Tannins in the Broiler Diet Mediates a Metabolic Phenotype of the Ceca. Poult. Sci. 2021, 100, 47–54. [CrossRef] [PubMed]
21. Guo, J.J.; Kuo, C.M.; Chuang, Y.C.; Hong, J.W.; Chou, R.L.; Chen, T.I. The Effects of Garlic-Supplemented Diets on Antibacterial Activity against Streptococcus Iniae and on Growth in Orange-Spotted Grouper, Epinephelus Coioides. Aquaculture 2012, 364, 33–38. [CrossRef]
22. Lebdah, M.; Tantawy, L.; Elgamal, A.M.; Abdelaziz, A.M.; Yehia, N.; Alyamani, A.A.; ALmoshadak, A.S.; Mohamed, M.E. The Natural Antiviral and Immune Stimulant Effects of Allium Cepa Essential Oil Onion Extract against Virulent Newcastle Disease Virus. Saudi J. Biol. Sci. 2021, in press. [CrossRef]
23. Lestari, S.R.; Christina, Y.I.; Athóillah, M.F.; Rifái, M. Single-Bulb Garlic Oil Regulates Toll-like Receptors and Nrf2 Cross-Talk and IL-17 Production in Mice Fed with High-Fat Diet. Saudi J. Biol. Sci. 2021, 11, 6515–6522. [CrossRef] [PubMed]
24. Zhang, S.; Deng, P.; Xu, Y.; Lu, S.; Wang, J. Quantification and Analysis of Anthocyanin and Flavonoids Compositions, and Antioxidant Activities in Onions with Three Different Colors. J. Integr. Agric. 2016, 15, 2175–2181. [CrossRef]
25. Shalini, R.; Krishna, J.; Sankaranarayanan, M.; Antony, U. Enhancement of Fructan Extraction from Garlic and Fructooligosaccharide Purification Using an Activated Charcoal Column. LWT 2021, 148, 111703. [CrossRef]
26. Martins, N.; Petropoulos, S.; Ferreira, I.C.F.R. Chemical Composition and Bioactive Compounds of Garlic (Allium sativum L.) as Affected by Pre- and Post-Harvest Conditions: A Review. Food Chem. 2016, 211, 41–50. [CrossRef] [PubMed]
27. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Author Correction: Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 1091. [CrossRef] [PubMed]
28. Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10–12. [CrossRef]
29. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [CrossRef]
30. Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for Prediction of Metagenome Functions. Nat. Biotechnol. 2020, 38, 685–688. [CrossRef]
31. Caspi, R.; Billington, R.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Midford, P.E.; Ong, W.K.; Paley, S.; Subhraveti, P.; Karp, P.D. The MetaCyc Database of Metabolic Pathways and Enzymes-a 2019 Update. Nucleic Acids Res. 2020, 48, 445–453. [CrossRef]
32. Putnik, P.; Gabri´c, D.; Roohinejad, S.; Barba, F.J.; Granato, D.; Mallikarjunan, K.; Lorenzo, J.M.; Bursa´c Kovaˇcevi´c, D. An Overview of Organosulfur Compounds from Allium Spp.: From Processing and Preservation to Evaluation of Their Bioavailability, Antimicrobial, and Anti-Inflammatory Properties. Food Chem. 2019, 276, 680–691. [CrossRef]
33. Aljumaah, M.R.; Suliman, G.M.; Abdullatif, A.A.; Abudabos, A.M. Effects of Phytobiotic Feed Additives on Growth Traits, Blood Biochemistry, and Meat Characteristics of Broiler Chickens Exposed to Salmonella Typhimurium. Poult. Sci. 2020, 99, 5744–5751. [CrossRef] [PubMed]
34. Ogbuewu, I.P.; Okoro, V.M.; Mbajiorgu, C.A. Meta-Analysis of the Responses of Laying Hens to Garlic (Allium sativum) Supplementation. Anim. Feed Sci. Technol. 2021, 275, 114866. [CrossRef]
35. Damaziak, K.; Riedel, J.; Gozdowski, D.; Niemiec, J.; Siennicka, A.; Róg, D. Productive Performance and Egg Quality of Laying Hens Fed Diets Supplemented with Garlic and Onion Extracts. J. Appl. Poult. Res. 2017, 26, 337–349. [CrossRef]
36. Ayed, M.; Aïssa, A.; Noumi, M. A Comparative Study between the Effects of Feed Inclusion with Garlic (Allium sativum), Cloves and Turmeric (Curcuma longa) Rhizome Powder on Laying Hen Performance and Egg Quality. Iran. J. Appl. Anim. Sci. 2018, 8, 693–701.
37. Gilani, S.M.H.; Rashid, Z.; Galani, S.; Ilyas, S.; Sahar, S.; Zahoor-ul-Hassan; Al-Ghanim, K.; Zehra, S.; Azhar, A.; Al-Misned, F.; et al. Growth Performance, Intestinal Histomorphology, Gut Microflora and Ghrelin Gene Expression Analysis of Broiler by Supplementing Natural Growth Promoters: A Nutrigenomics Approach. Saudi J. Biol. Sci. 2021, 28, 3438–3447. [CrossRef]
38. Adaszy ´nska-Skwirzy ´nska, M.; Szczerbi ´nska, D. The Effect of Lavender (Lavandula angustifolia) Essential Oil as a Drinking Water Supplement on the Production Performance, Blood Biochemical Parameters, and Ileal Microflora in Broiler Chickens. Poult. Sci. 2019, 98, 358–365. [CrossRef] [PubMed]
39. Abouelezz, K.; Abou-Hadied, M.; Yuan, J.; Elokil, A.A.; Wang, G.; Wang, S.; Wang, J.; Bian, G. Nutritional Impacts of Dietary Oregano and Enviva Essential Oils on the Performance, Gut Microbiota and Blood Biochemicals of Growing Ducks. Animal 2019, 13, 2216–2222. [CrossRef] [PubMed]
40. Rodjan, P.; Wattanasit, S.; Faroongsarng, D.; Thongprajukaew, K.; Theapparat, Y. Garlic Oil Granules Coated with Enteric Polymer: Effects on Performance, Egg Quality, Yolk Antioxidants, Yolk Cholesterol, Blood Biochemistry and Hepatic Lipid Metabolism in Laying Hens. Anim. Feed Sci. Technol. 2021, 274, 114854. [CrossRef]
41. Oladipo Kolawole, F.S.; Folake, A.O. Egg Traits and Productive Performance of Isa-Brown Laying Hens Fed Garlic Supplemented Diets. Asian J. Appl. Sci. 2019, 7, 4. [CrossRef]
42. Nemati, Z.; Moradi, Z.; Alirezalu, K.; Besharati, M.; Raposo, A. Impact of Ginger Root Powder Dietary Supplement on Productive Performance, Egg Quality, Antioxidant Status and Blood Parameters in Laying Japanese Quails. Int. J. Environ. Res. Public Health 2021, 18, 2995. [CrossRef] [PubMed]
43. Swi ˛atkiewicz, S.; Arczewska-Włosek, A.; Krawczyk, J.; Szczurek, W.; Puchała, M.; J ´ ózefiak, D. Effect of Selected Feed Additives on Egg Performance and Eggshell Quality in Laying Hens Fed a Diet with Standard or Decreased Calcium Content. Ann. Anim. Sci. 2018, 18, 167–183. [CrossRef]
44. Mahmoud, K.Z.; Gharaibeh, S.M.; Zakaria, H.A.; Qatramiz, A.M. Garlic (Allium sativum) Supplementation: Influence on Egg Production, Quality, and Yolk Cholesterol Level in Layer Hens. Asian-Australas J. Anim. Sci. 2010, 23, 1503–1509. [CrossRef]
45. Ghasemi, R.; Zarei, M.; Torki, M. Adding Medicinal Herbs Including Garlic (Allium sativum) and Thyme (Thymus vulgaris) to Diet of Laying Hens and Evaluating Productive Performance and Egg Quality Characteristics. Am. J. Anim. Vet. Sci. 2010, 5, 151–154. [CrossRef]
46. Gong, H.Z.; Lang, W.Y.; Lan, H.N.; Fan, Y.Y.; Wang, T.P.; Chu, Q.R.; Wang, J.H.; Li, D.; Zheng, X.; Wu, M. Effects of Laying Breeder Hens Dietary β-Carotene, Curcumin, Allicin, and Sodium Butyrate Supplementation on the Jejunal Microbiota and Immune Response of Their Offspring Chicks. Poult. Sci. 2020, 99, 3807–3816. [CrossRef] [PubMed]
47. Cui, Y.; Han, C.; Li, S.; Geng, Y.; Wei, Y.; Shi, W.; Bao, Y. High-Throughput Sequencing–Based Analysis of the Intestinal Microbiota of Broiler Chickens Fed with Compound Small Peptides of Chinese Medicine. Poult. Sci. 2021, 100, 100897. [CrossRef] [PubMed]
48. Tong, X.; Rehman, M.U.; Huang, S.; Jiang, X.; Zhang, H.; Li, J. Comparative Analysis of Gut Microbial Community in Healthy and Tibial Dyschondroplasia Affected Chickens by High Throughput Sequencing. Microb. Pathog. 2018, 118, 133–139. [CrossRef]
49. van der Eijk, J.A.J.; de Vries, H.; Kjaer, J.B.; Naguib, M.; Kemp, B.; Smidt, H.; Rodenburg, T.B.; Lammers, A. Differences in Gut Microbiota Composition of Laying Hen Lines Divergently Selected on Feather Pecking. Poult. Sci. 2019, 98, 7009–7021. [CrossRef]
50. Quinteros, J.A.; Scott, P.C.; Wilson, T.B.; Anwar, A.M.; Scott, T.; Muralidharan, C.; Van, T.T.H.; Moore, R.J. Isoquinoline Alkaloids Induce Partial Protection of Laying Hens from the Impact of Campylobacter Hepaticus (Spotty Liver Disease) Challenge. Poult. Sci. 2021, 100, 101423. [CrossRef]
51. Aljumaah, M.R.; Alkhulaifi, M.M.; Aljumaah, R.S.; Abudabos, A.M.; Abdullatif, A.A.; Suliman, G.M.; Al-Ghadi, M.Q.; Stanley, D. Influence of Sanguinarine-Based Phytobiotic Supplementation on Post Necrotic Enteritis Challenge Recovery. Heliyon 2020, 6, 05361. [CrossRef]
52. Chaves Hernández, A.J. Poultry and Avian Diseases. In Encyclopedia of Agriculture and Food Systems; Van Alfen, N.K., Ed.; Elsevier: Cambridge, MA, USA, 2014; pp. 504–520.
53. Kouam, M.K.; Biekop, H.M.F.; Katte, B.; Teguia, A. Risk Factors of Salmonella Infection in Laying Hens in Menoua Division, Western Region of Cameroon (Central Africa). Comp. Immunol. Microbiol. Infect. Dis. 2019, 67, 101370. [CrossRef] [PubMed]
54. Salem, W.M.; Shibat El-hamed, D.M.W.; Sayed, W.F.; Elamary, R.B. Alterations in Virulence and Antibiotic Resistant Genes of Multidrug-Resistant Salmonella Serovars Isolated from Poultry: The Bactericidal Efficacy of Allium Sativum. Microb. Pathog. 2017, 108, 91–100. [CrossRef]
55. Pirgozliev, V.; Bravo, D.; Mirza, M.W.; Rose, S.P. Growth Performance and Endogenous Losses of Broilers Fed Wheat-Based Diets with and without Essential Oils and Xylanase Supplementation. Poult. Sci. 2015, 94, 1227–1232. [CrossRef] [PubMed]
56. Agbai, K.N.; Omage, J.J.; Sekoni, A.A.; Afolayan, M. Effect of Different Levels of Biotronic® Top Forte (Commercial Blended Organic Acids) as a Replacement for Antibiotic Growth Promoter on the Growth Performance and Villi Morphology of Pullet Chicks (0–8 weeks). Niger. J. Anim. Sci. Technol. (NJAST) 2020, 3, 13–21.
57. Hameed, H. Feed Additives in Poultry. Assiut Vet. Med. J. 2021, 67, 87–100.
58. Abudabos, A.M.; Hussein, E.O.S.; Ali, M.H.; Al-Ghadi, M.Q. The Effect of Some Natural Alternative to Antibiotics on Growth and Changes in Intestinal Histology in Broiler Exposed to Salmonellachallenge. Poult. Sci. 2019, 98, 1441–1446. [CrossRef] [PubMed]
59. Salah, A.S.; Ahmed-Farid, O.A.; El-Tarabany, M.S. Effects of Guanidinoacetic Acid Supplements on Laying Performance, Egg Quality, Liver Nitric Oxide and Energy Metabolism in Laying Hens at the Late Stage of Production. J. Agric. Sci. 2020, 158, 241–246. [CrossRef]
60. Han, Y.-K.; Thacker, P.A. Influence of Energy Level and Glycine Supplementation on Performance, Nutrient Digestibility and Egg Quality in Laying Hens. Asian-Australas J. Anim. Sci. 2011, 24, 1447–1455. [CrossRef]
61. Stampfli, A.R.; Blankenfeldt, W.; Seebeck, F.P. Structural Basis of Ergothioneine Biosynthesis. Curr. Opin. Struct. Biol. 2020, 65, 1–8. [CrossRef] [PubMed]
62. Abdalkarim Salih, S.; Daghigh-Kia, H.; Mehdipour, M.; Najafi, A. Does Ergothioneine and Thawing Temperatures Improve Rooster Semen Post-Thawed Quality? Poult. Sci. 2021, 100, 101405. [CrossRef] [PubMed]
63. Svihus, B. Starch Digestion Capacity of Poultry. Poult. Sci. 2014, 93, 2394–2399. [CrossRef] [PubMed]
64. Salazar-Acosta, E. Almidón Resistente En La Nutrición de Animales Monogástricos I: Concepto, Clasificación y Fuentes. Nutr. Anim. Trop. 2018, 12, 59–79. [CrossRef]
65. Kimball, S.R.; Jefferson, L.S. Regulation of Protein Synthesis by Branched-Chain Amino Acids. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 39–43. [CrossRef] [PubMed]
66. Fouad, A.M.; El-Senousey, H.K.; Ruan, D.; Wang, S.; Xia, W.; Zheng, C. Tryptophan in Poultry Nutrition: Impacts and Mechanisms of Action. J. Anim. Physiol. Anim. Nutr. 2021, 105, 1146–1153. [CrossRef]
67. Wen, J.; Helmbrecht, A.; Elliot, M.A.; Thomson, J.; Persia, M.E. Evaluation of the Tryptophan Requirement of Small-Framed First Cycle Laying Hens. Poult. Sci. 2019, 98, 1263–1271. [CrossRef] [PubMed]
68. Tian, W.; Zheng, H.; Yang, L.; Li, H.; Tian, Y.; Wang, Y.; Lyu, S.; Brockmann, G.A.; Kang, X.; Liu, X. Dynamic Expression Profile, Regulatory Mechanism and Correlation with Egg-Laying Performance of ACSF Gene Family in Chicken (Gallus gallus). Sci. Rep. 2018, 8, 8457. [CrossRef]