Author details:
1. Bedford, M.R. The evolution and application of enzymes in the animal feed industry: The role of data interpretation. Brit. Poult. Sci. 2018, 59, 486–493. [CrossRef] [PubMed]
2. Bedford, M.R.; Classen, H.L. Reduction of intestinal viscosity through manipulation of dietary rye and pentosanase concentration is effected through changes in the carbohydrate-composition of the intestinal aqueous phase and results in improved growth-rate and food conversion efficiency of broiler chicks. J. Nutr. 1992, 122, 560–569.
3. Choct, M.; Hughes, R.J.; Wang, J.; Bedford, M.R.; Morgan, A.J.; Annison, G. Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. Br. Poult. Sci. 1996, 37, 609–621. [CrossRef]
4. Muszy ´nski, S.; Kasperek, K.; Swi ˛atkiewicz, S.; Arczewska-Włosek, A.; Wi ˛acek, D.; Donaldson, J.; Dobrowolski, P.; ´ Arciszewski, M.B.; Valverde Piedra, J.L.; Krakowiak, D.; et al. Assessing bone health status and eggshell quality of laying hens at the End of a production cycle in response to inclusion of a hybrid Rye to a wheat-corn diet. Vet. Sci. 2022, 9, 683. [CrossRef] [PubMed]
5. Masey O’Neill, H.V.; Singh, M.; Cowieson, A.J. Effects of exogenous xylanase on performance, nutrient digestibility, volatile fatty acid production and digestive tract thermal profiles of broilers fed on wheat- or maize-based diet. Br. Poult. Sci. 2014, 55, 351–359. [CrossRef] [PubMed]
6. Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.; Willing, B.P. Dietary fiber and intestinal health of monogastric animals. Front. Vet. Sci. 2019, 6, 48. [CrossRef]
7. Singh, A.K.; Mandal, R.K.; Bedford, M.R.; Jha, R. Xylanase improves growth performance, enhances cecal short-chain fatty acids production, and increases the relative abundance of fiber fermenting cecal microbiota in broilers. Anim. Feed. Sci. Technol. 2021, 277, 114956. [CrossRef]
8. Kiarie, E.; Romero, L.F.; Ravindran, V. Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase. Poult. Sci. 2014, 93, 1186–1196. [CrossRef]
9. Pirgozliev, V.; Rose, S.P.; Pellny, T.; Amerah, A.M.; Wickramasinghe, M.; Ulker, M.; Rakszegi, M.; Bedo, Z.; Shewry, P.R.; Lovegrove, A. Energy utilization and growth performance of chickens fed novel wheat inbred lines selected for different pentosan levels with and without xylanase supplementation. Poult. Sci. 2015, 94, 232–239. [CrossRef]
10. Pirgozliev, V.R.; Birch, C.L.; Rose, S.P.; Kettlewell, P.S.; Bedford, M.R. Chemical composition and the nutritive quality of different wheat cultivars for broiler chickens. Br. Poult. Sci. 2003, 44, 464–475. [CrossRef]
11. Amerah, A.M.; Ravindran, V.; Lentle, R.G. Influence of insoluble fibre and whole wheat inclusion on the performance, digestive tract development and ileal microbiota profile of broiler chickens. Br. Poult. Sci. 2009, 50, 366–375. [CrossRef] [PubMed]
12. Ball, M.E.E.; Owens, B.; McCracken, K.J. Chemical and Physical Predictors of the Nutritive Value of Wheat in Broiler Diets. Asian Australas. J. Anim. Sci. 2013, 26, 97–107. [CrossRef]
13. Engberg, R.M.; Hedemann, M.S.; Steenfeldt, S.; Jensen, B.B. Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poult. Sci. 2004, 83, 925–938. [CrossRef] [PubMed]
14. Wu, Y.B.; Ravindran, V.; Thomas, D.G.; Birtles, M.J.; Hendriks, W.H. Influence of phytase and xylanase, individually or in combination, on performance, apparent metabolisable energy, digestive tract measurements and gut morphology in broilers fed wheat-based diets containing adequate level of phosphorus. Br. Poult. Sci. 2004, 45, 76–84. [CrossRef]
15. Barekatain, M.R.; Choct, M.; Iji, P.A. Xylanase supplementation improves the nutritive value of diets containing high levels of sorghum distillers’ dried grains with solubles for broiler chickens. J. Sci. Food Agric. 2013, 93, 1552–1559. [CrossRef]
16. Pirgozliev, V.; Whiting, I.M.; Mansbridge, S.C.; Enchev, S.; Rose, S.P.; Kljak, K.; Johnson, A.E.; Drijfhout, F.; Orczewska-Dudek, S.; Atanasov, A.G. Effect of rearing temperature on physiological measures and antioxidant status of broiler chickens fed stevia (Stevia rebaudiana B.) leaf meal and exogenous xylanase. Curr. Res. Biotechnol. 2021, 3, 173–181. [CrossRef]
17. AOAC (Association of Analytical Communities). Official Method of Analysis, 934.01, Vacuum Oven, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006.
18. AOAC (Association of Analytical Communities). Official Method of Analysis, 990.03, Protein (Crude) in Animal Feed, Combustion Method, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006.
19. AOAC (Association of Analytical Communities). Official Method of Analysis, 945.16, Oil in Cereal Adjuncts, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005.
20. Englyst, H.N.; Quigley, M.E.; Hudson, G.J. Determination of dietary fibre as nonstarch polysaccharides with gas-liquid chromatographic, high-performance liquid chromatographic or spectrophotometric measurement of constituent sugars. Analyst 1994, 119, 1497–1509. [CrossRef]
21. Englyst, K.N.; Hudson, G.J.; Englyst, H.N. Starch Analysis in Food. In Encyclopaedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley and Sons: Chichester, UK, 2000; pp. 4246–4262.
22. Short, F.J.; Wiseman, J.; Boorman, K.N. Application of a method to determine ileal digestibility in broilers of amino acids in wheat. Anim. Feed Sci. Technol. 1999, 79, 195–209. [CrossRef]
23. Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169.
24. Karadas, F.; Pirgozliev, V.; Acamovic, T.; Bedford, M.R. The effects of dietary phytase activity on the concentration of Coenzyme Q10 in the liver of young turkeys and broilers. In British Poultry Abstracts; Taylor & Francis Group: Abingdon, UK, 2005; Volume 1, pp. 1–74.
25. Karadas, F.; Pirgozliev, V.; Pappas, A.C.; Acamovic, T.; Bedford, M.R. Effects of different dietary phytase activities on the concentration of antioxidants in the liver of growing broilers. J. Anim. Physiol. Anim. Nutr. 2010, 94, 519–526. [CrossRef]
26. Hill, F.W.; Anderson, D.L. Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 1958, 64, 587–603. [CrossRef]
27. Almirall, M.; Esteve-Garcia, E. Rate of passage of barley diets with chromium oxide: Influence of age and poultry strain and effect of beta-glucanase supplementation. Poult. Sci. 1994, 73, 1433–1440. [CrossRef] [PubMed]
28. Abdulla, J.M.; Rose, S.P.; Mackenzie, A.M.; Ivanova, S.G.; Staykova, G.P.; Pirgozliev, V.R. Nutritional value of raw and micronised field beans (Vicia faba L. var. minor) with and without enzyme supplementation containing tannase for growing chickens. Arch. Anim. Nutr. 2016, 70, 350–363.
29. Whiting, I.M.; Pirgozliev, V.; Rose, S.P.; Wilson, J.; Amerah, A.M.; Ivanova, S.G.; Staykova, G.P.; Oluwatosin, O.O.; Oso, A.O. Nutrient availability of different batches of wheat distillers dried grains with solubles with and without exogenous enzymes for broiler chickens. Poult. Sci. 2017, 96, 574–580. [CrossRef] [PubMed]
30. Yang, Z.; Pirgozliev, V.R.; Rose, S.P.; Woods, S.; Yang, H.M.; Wang, Z.Y.; Bedford, M.R. Effect of age on the relationship between metabolizable energy and digestible energy for broiler chickens. Poult. Sci. 2020, 99, 320–330. [CrossRef] [PubMed]
31. Singh, A.K.; Berrocoso, J.F.D.; Dersjant-Li, Y.; Awati, A.; Jha, R. Effect of a combination of xylanase, amylase and protease on growth performance of broilers fed low and high fiber diets. Anim. Feed Sci. Technol. 2017, 232, 16–20. [CrossRef]
32. Cowieson, A.J.; Bedford, M.R.; Ravindran, V. Interactions between xylanase and glucanase in maize-soy-based diets for broilers. Br. Poult. Sci. 2010, 51, 246–257. [CrossRef]
33. Masey O’Neill, H.V.; Mathis, G.; Lumpkins, B.S.; Bedford, M.R. The effect of reduced calorie diets, with and without fat, and the use of xylanase on performance characteristics of broilers between 0 and 42 days. Poult. Sci. 2012, 91, 1356–1360. [CrossRef]
34. Nguyen, H.T.; Bedford, M.R.; Morgan, N.K. Importance of considering non-starch polysaccharide content of poultry diets. World’s Poult. Sci. J. 2021, 77, 619–637. [CrossRef]
35. Bedford, M.R. Effect of non-starch polysaccharidases on avian gastrointestinal function. In Avian Gut Function in Health and Disease; Perry, G.C., Ed.; Carfax Publishing Company: Oxfordshire, UK, 2006; pp. 159–170.
36. Raizner, A.E. Coenzyme Q10. Methodist Debakey Cardiovasc. J. 2019, 15, 185–191. [CrossRef]
37. Surai, P.F.; Kochish, I.I. Nutritional modulation of the antioxidant capacities in poultry: The case of selenium. Poult. Sci. 2019, 98, 4231–4239. [CrossRef] [PubMed]
38. Azhar, M.R.; Rose, S.P.; Mackenzie, A.M.; Mansbridge, S.C.; Bedford, M.R.; Lovegrove, A.; Pirgozliev, V.R. Wheat sample affects growth performance and the apparent metabolisable energy value for broiler chickens. Br. Poult. Sci. 2019, 60, 457–466. [CrossRef] [PubMed]
39. Pirgozliev, V.; Karadas, K.; Karakeçili, M.; Rose, S.P.; Whiting, I.M.; Shewry, P.R.; Lovegrove, A.; Pellny, T.; Amerah, A. Effects of wheat pentosane content on hepatic antioxidants in growing broilers. In Sustainable Poultry Production in Europe; Burton, E., Gatcliffe, J., O’Neill, H.M., Scholey, D., Eds.; CABI: Wallingford, UK, 2016. [CrossRef]
40. Woods, S.L.; Sobolewska, S.; Rose, S.P.; Whiting, I.M.; Blanchard, A.; Ionescu, C.; Bravo, D.; Pirgozliev, V. Effect of feeding different sources of selenium on growth performance and antioxidant status of broilers. Br. Poult. Sci. 2020, 61, 274–280. [CrossRef] [PubMed]
41. Woods, S.L.; Rose, S.P.; Whiting, I.M.; Yovchev, D.G.; Ionescu, C.; Blanchard, A.; Pirgozliev, V. The effect of selenium source on the oxidative status and performance of broilers reared at standard and high ambient temperatures. Br. Poult. Sci. 2021, 62, 235–243. [CrossRef] [PubMed]
42. Apajalahti, J.; Kettunnen, A.; Graham, H. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World’s Poult. Sci. J. 2004, 60, 223–232. [CrossRef]
43. Kiarie, E.; Nyachoti, C.M.; Slominski, B.A.; Blank, G. Growth performance, gastrointestinal microbial activity, and nutrient digestibility in early-weaned pigs fed diets containing flaxseed and carbohydrase enzyme. J. Anim. Sci. 2007, 85, 2982–2993. [CrossRef]
44. Kiarie, E.; Romero, L.F.; Nyachoti, C.M. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr. Res. Rev. 2013, 26, 71–88. [CrossRef]
45. Rodriguez, M.L.; Rebole, A.; Velasco, S.; Ortiz, L.T.; Trevino, J.; Alzueta, C. Wheat- and barley-based diets with or without additives influence broiler chicken performance, nutrient digestibility and intestinal microflora. J. Sci. Food Agric. 2012, 92, 184. [CrossRef]
46. Guilloteau, P.; Martin, L.; Eeckhaut, V.; Ducatelle, R.; Zabielski, R.; Van, I.F. From the gut to the peripheral tissues: The multiple effects of butyrate. Nutr. Res. Rev. 2010, 23, 366–384. [CrossRef]
47. Voelkl, B.; Altman, N.S.; Forsman, A.; Forstmeier, W.; Gurevitch, J.; Jaric, I.; Karp, N.A.; Kas, M.J.; Schielzeth, H.; Van de Casteele, T.; et al. Reproducibility of animal research in light of biological variation. Nat. Rev. Neurosci. 2020, 21, 384–393. [CrossRef]