Campylobacter is a virulent Gram-negative bacterial genus mainly found in the intestines of poultry. The indiscriminate use of traditional antibiotics has led to drug resistance in these pathogens, necessitating the development of more efficient and less toxic therapies. Despite their complex biologically active structures, the clinical applications of essential oils (EOs) remain limited. Therefore, this study aimed to increase the bioavailability, stability, and biocompatibility and decrease the photodegradation and toxicity of EO using nanotechnology. The diffusion disk test revealed the potent anti-Campylobacter activity of cinnamon, lemongrass, clove, geranium, and oregano EOs (>50 mm). These were subsequently used to prepare nanostructured lipid carriers (NLCs). Formulations containing these EOs inhibited Campylobacter spp. growth at low concentrations (0.2 mg/mL). The particle size, polydispersity index, and zeta potential of these systems were monitored, confirming its physicochemical stability for 210 days at 25 ◦C. FTIR-ATR and DSC analyses confirmed excellent miscibility among the excipients, and FE-SEM elucidated a spherical shape with well-delimited contours of nanoparticles. The best NLCs were tested regarding nanotoxicity in a chicken embryo model. These results indicate that the NLC-based geranium EO is the most promising and safe system for the control and treatment of multidrugresistant strains of Campylobacter spp.
Keywords: essential oil; vegetable butter; nanocolloids; nanotoxicity; efficacy; stability
1. Al Hakeem, W.G.; Fathima, S.; Shanmugasundaram, R.; Selvaraj, R.K. Campylobacter jejuni in Poultry: Pathogenesis and Control Strategies. Microorganisms 2022, 10, 2134. [CrossRef] [PubMed]
2. Montgomery, M.P. Multidrug-Resistant Campylobacter jejuni Outbreak Linked to Puppy Exposure—United States, 2016–2018. MMWR-Morbidity Mortal. Wkly. Rep. 2018, 67, 1032–1035. [CrossRef] [PubMed]
3. Centers for Disease Control and Prevention—CDC. Campylobacter, Guillain-Barré Syndrome. 2022. Available online: https: //cdc.gov/campylobacter/guillain-barre.html (accessed on 27 June 2023).
4. Kaakoush, N.O.; Baar, C.; MacKichan, J.; Schmidt, P.; Fox, E.M.; Schuster, S.C.; Mendz, G.L. Insights into the molecular basis of the microaerophily of three Campylobacterales: A comparative study. Antonie Leeuwenhoek 2009, 96, 545–557. [CrossRef] [PubMed]
5. Centers for Disease Control and Prevention—CDC, Campylobacter. 2021. Available online: https://www.cdc.gov/ campylobacter/faq.html (accessed on 27 June 2023).
6. European Food Safety Authority/European Center for Disease Prevention and Control—EFSA, Salmonella and Campylobacter Continue to Show High Levels of Antibiotic Resistance. 2019. Available online: https://www.efsa.europa.eu/en/news/ salmonella-and-campylobacter-continue-show-high-levels-antibiotic-resistance (accessed on 14 May 2023).
7. Alfredson, D.A.; Korolik, V. Antibiotic resistance and resistance mechanisms in Campylobacter jejuni and Campylobacter coli. FEMS Microbiol. Lett. 2007, 277, 123–132. [CrossRef] [PubMed]
8. Carbone, C.; Martins-Gomes, C.; Caddeo, C.; Silva, A.; Musumeci, T.; Pignatello, R.; Puglisi, G.; Souto, E. Mediterranean essential oils as precious matrix components and active ingredients of lipid nanoparticles. Int. J. Pharm. 2018, 548, 217–226. [CrossRef] [PubMed]
9. Ribeiro, L.N.d.M.; de Paula, E.; Rossi, D.A.; Martins, F.A.; de Melo, R.T.; Monteiro, G.P.; Breitkreitz, M.C.; Goulart, L.R.; Fonseca, B.B. Nanocarriers From Natural Lipids with In Vitro Activity Against Campylobacter jejuni. Front. Cell. Infect. Microbiol. 2021, 10, 571040. [CrossRef] [PubMed]
10. Zeljkovi´c, S.; Schadich, E.; Džubák, P.; Hajdúch, M.; Tarkowski, P. Antiviral Activity of Selected Lamiaceae Essential Oils and Their Monoterpenes Against SARS-Cov-2. Front. Pharmacol. 2022, 13, 893634. [CrossRef] [PubMed]
11. Assadpour, E.; Karaça, A.C.; Fasamanesh, M.; Mahdavi, S.A.; Shariat-Alavi, M.; Feng, J.; Kharazmi, M.S.; Rehman, A.; Jafari, S.M. Application of essential oils as natural biopesticides; recent advances. Crit. Rev. Food Sci. Nutr. 2023, 64, 6477–6497. [CrossRef] [PubMed]
12. Hou, T.; Sana, S.S.; Li, H.; Xing, Y.; Nanda, A.; Netala, V.R.; Zhang, Z. Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: A review. Food Biosci. 2022, 47, 101716. [CrossRef]
13. Pinto, L.; Tapia-Rodríguez, M.R.; Baruzzi, F.; Ayala-Zavala, J.F. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023, 12, 2315. [CrossRef]
14. Mohammadi-Cheraghabadi, M.; Hazrati, S. Terperoids, Steroids, and Phenolic Compounds of Medicinal Plants. In Phytochemicals in Medicinal Plants: Biodiversity, Bioactivity and Drug Discovery; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2023; pp. 105–130.
15. Thanissery, R.; Kathariou, S.; Smith, D.P. Rosemary oil, clove oil, and a mix of thyme-orange essential oils inhibit Salmonella and Campylobacter in vitro. J. Appl. Poult. Res. 2014, 23, 221–227. [CrossRef]
16. Chaudhari, A.K.; Singh, V.K.; Das, S.; Dubey, N.K. Nanoencapsulation of essential oils and their bioactive constituents: A novel strategy to control mycotoxin contamination in food system. Food Chem. Toxicol. 2021, 149, 112019. [CrossRef] [PubMed]
17. Guidotti-Takeuchi, M.; Ribeiro, L.N.M.; dos Santos, F.A.L.; Rossi, D.A.; Della Lucia, F.; de Melo, R.T. Essential Oil-Based Nanoparticles as Antimicrobial Agents in the Food Industry. Microorganisms 2022, 10, 1504. [CrossRef] [PubMed]
18. de Alteriis, E.; Maione, A.; Falanga, A.; Bellavita, R.; Galdiero, S.; Albarano, L.; Salvatore, M.M.; Galdiero, E.; Guida, M. Activity of Free and Liposome-Encapsulated Essential Oil from Lavandula angustifolia against Persister-Derived Biofilm of Candida auris. Antibiotics 2021, 11, 26. [CrossRef] [PubMed]
19. Ellboudy, N.M.; Elwakil, B.H.; Shaaban, M.M.; Olama, Z.A. Cinnamon Oil-Loaded Nanoliposomes with Potent Antibacterial and Antibiofilm Activities. Molecules 2023, 28, 4492. [CrossRef] [PubMed]
20. Lacatusu, I.; Badea, N.; Murariu, A.; Oprea, O.; Bojin, D.; Meghea, A. Antioxidant Activity of Solid Lipid Nanoparticles Loaded with Umbelliferone. Soft Mater. 2013, 11, 75–84. [CrossRef]
21. da Silva, E.F.; Bastos, L.M.; Fonseca, B.B.; Ribas, R.M.; Sommerfeld, S.; Pires, H.M.; dos Santos, F.A.L.; Ribeiro, L.N.M. Lipid nanoparticles based on natural matrices with activity against multidrug resistant bacterial species. Front. Cell. Infect. Microbiol. 2024, 13, 1328519. [CrossRef] [PubMed]
22. Pimentel, L.S.; Sommerfeld, S.; Braga, P.F.d.S.; Coleto, A.F.; Fonseca, B.B.; Bastos, L.M.; Goulart, L.R.; Ribeiro, L.N.M. Antitumor activity of essential oils-based nanostructured lipid carriers on prostate cancer cells. Int. J. Pharm. 2024, 657, 124149. [CrossRef]
23. Ribeiro, L.N.M.; de Paula, E.; Rossi, D.A.; Monteiro, G.P.; Júnior, E.C.V.; Silva, R.R.; Franco, R.R.; Espíndola, F.S.; Goulart, L.R.; Fonseca, B.B. Hybrid Pectin-Liposome Formulation against Multi-Resistant Bacterial Strains. Pharmaceutics 2020, 12, 769. [CrossRef]
24. Ribeiro, L.N.M.; Franz-Montan, M.; Breitkreitz, M.C.; Alcântara, A.C.; Castro, S.R.; Guilherme, V.A.; Barbosa, R.M.; de Paula, E. Nanostructured lipid carriers as robust systems for topical lidocaine-prilocaine release in dentistry. Eur. J. Pharm. Sci. 2016, 93, 192–202. [CrossRef]
25. Ribeiro, L.N.; Breitkreitz, M.C.; Guilherme, V.A.; da Silva, G.H.; Couto, V.M.; Castro, S.R.; de Paula, B.O.; Machado, D.; de Paula, E. Natural lipids-based NLC containing lidocaine: From pre-formulation to in vivo studies. Eur. J. Pharm. Sci. 2017, 106, 102–112. [CrossRef] [PubMed]
26. Liu, J.; Xiao, J.; Li, F.; Shi, Y.; Li, D.; Huang, Q. Chitosan-sodium alginate nanoparticle as a delivery system for ε-polylysine: Preparation, characterization and antimicrobial activity. Food Control 2018, 91, 302–310. [CrossRef]
27. Duarte, A.; Oleastro, M.; Domingues, F.C. Antioxidant properties of coriander essential oil and linalool and their potential to control Campylobacter spp. Food Control 2016, 61, 115–122. [CrossRef]
28. Ribeiro, L.N.M.; Couto, V.M.; Fraceto, L.F.; de Paula, E. Use of nanoparticle concentration as a tool to understand the structural properties of colloids. Sci. Rep. 2018, 8, 982. [CrossRef] [PubMed]
29. Salminen, H.; Stübler, A.-S.; Weiss, J. Preparation, characterization, and physical stability of cocoa butter and tristearin nanoparticles containing beta-carotene. Eur. Food Res. Technol. 2020, 246, 599–608. [CrossRef]
30. Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [CrossRef] [PubMed]
31. Magi, G.; Marini, E.; Facinelli, B. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci. Front. Microbiol. 2015, 6, 165. [CrossRef] [PubMed]
32. Mukarram, M.; Choudhary, S.; Khan, M.A.; Poltronieri, P.; Khan, M.M.A.; Ali, J.; Kurjak, D.; Shahid, M. Lemongrass Essential Oil Components with Antimicrobial and Anticancer Activities. Antioxidants 2021, 11, 20. [CrossRef] [PubMed]
33. Fisher, K.; Phillips, C. Potential antimicrobial uses of essential oils in food: Is citrus the answer? Trends Food Sci. Technol. 2008, 19, 156–164. [CrossRef]
34. Mercan, D.-A.; Niculescu, A.-G.; Grumezescu, A.M. Nanoparticles for Antimicrobial Agents Delivery—An Up-to-Date Review. Int. J. Mol. Sci. 2022, 23, 13862. [CrossRef]
35. Béjaoui, A.; Chaabane, H.; Jemli, M.; Boulila, A.; Boussaid, M. Essential Oil Composition and Antibacterial Activity of Origanum vulgare subsp. glandulosum Desf. at Different Phenological Stages. J. Med. Food 2013, 16, 1115–1120. [CrossRef] [PubMed]
36. Mangalagiri, N.P.; Panditi, S.K.; Jeevigunta, N.L.L. Antimicrobial activity of essential plant oils and their major components. Heliyon 2021, 7, e06835. [CrossRef] [PubMed]
37. Behbahani, B.A.; Falah, F.; Arab, F.L.; Vasiee, M.; Yazdi, F.T. Chemical Composition and Antioxidant, Antimicrobial, and Antiproliferative Activities of Cinnamomum zeylanicum Bark Essential Oil. Evid.-Based Complement. Altern. Med. 2020, 2020, 5190603. [CrossRef]
38. He, T.-F.; Wang, L.-H.; Niu, D.-B.; Wen, Q.-H.; Zeng, X.-A. Cinnamaldehyde inhibit Escherichia coli associated with membrane disruption and oxidative damage. Arch. Microbiol. 2018, 201, 451–458. [CrossRef] [PubMed]
39. Haro-González, J.N.; Castillo-Herrera, G.A.; Martínez-Velázquez, M.; Espinosa-Andrews, H. Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules 2021, 26, 6387. [CrossRef] [PubMed]
40. Yoon, B.K.; Jackman, J.A.; Valle-González, E.R.; Cho, N.-J. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int. J. Mol. Sci. 2018, 19, 1114. [CrossRef] [PubMed]
41. Hovorková, P.; Lalouˇcková, K.; Skˇrivanová, E. Determination of In Vitro Antibacterial Activity of Plant Oils Containing MediumChain Fatty Acids against Gram-Positive Pathogenic and Gut Commensal Bacteria. Czech J. Anim. Sci. 2018, 63, 119–125. [CrossRef]
42. Ghanem, N. Study on the antimicrobial activity of honey products and some Saudi Folkloric substances. Res. J. Biotechnol. 2011, 6, 38–43.
43. de Carvalho, F.V.; Ribeiro, L.N.M.; de Moura, L.D.; da Silva, G.H.R.; Mitsutake, H.; Mendonça, T.C.; Geronimo, G.; Breitkreitz, M.C.; de Paula, E. Docetaxel Loaded in Copaiba Oil-Nanostructured Lipid Carriers as a Promising DDS for Breast Cancer Treatment. Molecules 2022, 27, 8838. [CrossRef]
44. Salvi, V.R.; Pawar, P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol. 2019, 51, 255–267. [CrossRef]
45. Souto, E.B.; Fangueiro, J.F.; Fernandes, A.R.; Cano, A.; Sanchez-Lopez, E.; Garcia, M.L.; Severino, P.; Paganelli, M.O.; Chaud, M.V.; Silva, A.M. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon 2022, 8, e08938. [CrossRef] [PubMed]
46. Silva, E.F.; Ribeiro, L.N.M.; Fonseca, B.B.; Bastos, L.M.; Pires, H.M.; Ribas, R.M.; Sommerfeld, S. Formulações de carreadores lipídicos nanoestruturados baseados em lipídios naturais, processo de obtenção das formulações e uso. BR10202301456, 20 July 2023.