Antimicrobial resistance (AR) is a worldwide concern. Up to a 160% increase in antibiotic usage in food animals is expected in Latin American countries. The poultry industry is an increasingly important segment of food production and contributor to AR. The objective of this study was to evaluate the prevalence, AR patterns and the characterization of relevant resistance genes in Extended Spectrum β-lactamases (ESBL) and AmpC-producing E. coli from large poultry farms in Ecuador. Sampling was performed from June 2013 to July 2014 in 6 slaughterhouses that slaughter broilers from 115 farms totaling 384 flocks. Each sample of collected caeca was streaked onto TBX agar supplemented with cefotaxime (3 mg/l). In total, 176 isolates were analyzed for AR patterns by the disk diffusion method and for blaCTX-M, blaTEM, blaCMY, blaSHV, blaKPC, and mcr-1 by PCR and sequencing. ESBL and AmpC E. coli were found in 362 flocks (94.3%) from 112 farms (97.4%). We found that 98.3% of the cefotaxime-resistant isolates were multi-resistant to antibiotics. Low resistance was observed for ertapenem and nitrofurantoin. The most prevalent ESBL genes were the ones belonging to the blaCTX-M group (90.9%), specifically the blaCTX-M-65, blaCTX-M-55 and blaCTX-M-3 alleles. Most of the AmpC strains presented the blaCMY-2 gene. Three isolates showed the mcr-1 gene. Poultry production systems represent a hotspot for AR in Ecuador, possibly mediated by the extensive use of antibiotics. Monitoring this sector in national and regional plans of AR surveillance should therefore be considered.
1. O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. The Review on antimicrobial resistance. 2016. Available from: https://amr-review.org
2. Laxminarayan R, Sridhar D, Blaser M, Wang M, Woolhouse M. Achieving global targets for antimicrobial resistance. Science. 2016; 353(6302):874–5. https://doi.org/10.1126/science.aaf9286 PMID: 27540009
3. Nations United. Sustainable Development Goals. 2016. Available from: http://www.un.org/ sustainabledevelopment
4. WHO, (World Health Organization). Antimicrobial resistance: global report on surveillance. 2014. Switzerland: Bulletin of the World Health Organization.
5. CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Surveillance Report for 2014 (Final Reprot), 1–83. Available from: https://doi.org/10.1002/ejoc. 201200111
6. ECDC. Data from the ECDC Surveillance Atlas—Antimicrobial resistance. 2017. Available from: https:// ecdc.europa.eu/en/antimicrobial-resistance/surveillance-and-disease-data/data-ecdc
7. Ventola C. L. The antibiotic resistance crisis: part 1: causes and threats. P & T. 2015; 40(4):277–83.
8. Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control. 2017; 6:47. https://doi.org/10.1186/ s13756-017-0208-x PMID: 28515903
9. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015; 109(7):309–318. https://doi.org/10.1179/2047773215Y.0000000030 PMID: 26343252
10. FAO. The FAO action plan on antimicrobial resistance 2016–2020. Rome: Food and Agriculture Organization of the United Nations. 2016. Available from: http://www.fao.org/3/a-i5996e.pdf
11. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A. 2015; 16:1–6.
12. OECD, & FAO. OECD-FAO agricultural outlook 2016–2025. Special Focus: Sub-Saharan Africa (1st ed.). Paris. 2016. Available from: www.oecd-ilibrary.org/docserver/download/5116021e.pdf?expires= 1467786198&id=id&accname=guest&checksum=244B1479481EB19E3772C0CE4CBCB49D
13. Vinueza C. Salmonella and Campylobacter in broilers at slaughter age: a possible source for carcasses contamination in Ecuador. Ghent University. 2016. Availabre from: https://doi.org/10.13140/RG.2.2. 20687.48803
14. Vinueza-Burgos C, Wautier M, Martiny D, Cisneros M, Van Damme I, De Zutter L. Prevalence, antimicrobial resistance and genetic diversity of Campylobacter coli and Campylobacter jejuni in Ecuadorian broilers at slaughter age. Poultry Science. 2017; 96(7):2366–2374. https://doi.org/10.3382/ps/pew487 PMID: 28339716
15. WHO. Critically important antimicrobials for human medicine - 5th revision. Geneva, Switzerland. 2016. Available from: http://apps.who.int/iris/bitstream/handle/10665/255027/9789241512220-eng.pdf; jsessionid=DCB20204D2318C5E99B8AF532D676441?sequence=1
16. WHO. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Geneva, Switzerland. 2017. Available from: https://doi.org/10.1016/S1473-3099(09) 70222-1
17. WHO. Integrated surveillance of antimicrobial resistance in foodborne bacteria. 2017. Available from: http://apps.who.int/iris/bitstream/10665/91778/1/9789241506311_eng.pdf
18. Kluytmans JAJW, Overdevest ITMA, Willemsen I, Kluytmans-van den Bergh MFQ, van der Zwaluw K, Heck M, et al. Extended-spectrum β-lactamase-producing Escherichia coli from retail chicken meat and humans: comparison of strains, plasmids, resistance genes, and virulence factors. Clin Infect Dis. 2013; 56(4):478–87. https://doi.org/10.1093/cid/cis929 PMID: 23243181
19. Moser KA, Zhang L, Spicknall I, Braykov NP, Levey K, Marrs C F, et al. The role of mobile genetic elements in the spread of antimicrobial resistant Escherichia coli from chickens to humans in small-scale production poultry operations in rural Ecuador. Am J Epidemiol. 2018; 187(3):558–567. https://doi.org/ 10.1093/aje/kwx286 PMID: 29506196
20. Overdevest I. Extended-Spectrum B-Lactamase genes of Escherichia coli in chicken meat and humans, the Netherlands. Emerg Infect Dis. 2011; 17(7):1216–1222. https://doi.org/10.3201/eid1707. 110209 PMID: 21762575
21. Monteros Guerrero A, Salvador Sarauz S. Panorama agroecono´mico del ecuador una visio´n del 2015. Coordinacio´n General del Sistema de Informacio´n Nacional Ministerio de Agricultura, Ganaderı´a, Acuacultura y Pesca 2015;1–14.
22. Ibrahim DR, Dodd CE, Stekel DJ, Ramsden SJ, Hobman JL. Multidrug resistant, extended spectrum βlactamase (ESBL)-producing Escherichia coli isolated from a dairy farm. FEMS Microbiol Ecol, 2016; 92(4):fiw013. https://doi.org/10.1093/femsec/fiw013 PMID: 26850161
23. Bej AK, DiCesare JL, Haff L, Atlas RM. Detection of Escherichia coli and Shigella spp. in water by using the polymerase chain reaction and gene probes for uid. Appl Environ Microbiol. 1991; 57:1013–7. PMID: 2059028
24. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Twenty-eight Informational Supplement. 2018. CLSI document M100S.
25. Song W, Jeong SH, Kim JS, Kim HS, Shin DH, Roh KH, et al. Use of boronic acid disk methods to detect the combined expression of plasmid-mediated AmpC β-lactamases and extended-spectrum β-lactamases in clinical isolates of Klebsiella spp., Salmonella spp., and Proteus mirabilis. Diagn Microbiol Infect Dis. 2007; 57(3):315–318. https://doi.org/10.1016/j.diagmicrobio.2006.08.023 PMID: 17174510
26. Hasman H, Mevius D, Veldman K, Olesen I, Aarestrup FM. Beta-Lactamases among extended-spectrum beta-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in the Netherlands. J Antimicrob Chemother. 2005; 56(1):115–121. https://doi.org/10.1093/jac/dki190 PMID: 15941775
27. Olesen I, Hasman H, Aarestrup FM. Prevalence of beta-lactamases among ampicillin-resistant Escherichia coli and Salmonella isolated from food animals in Denmark. Microb Drug Resist. 2004; 10(4):334– 340. https://doi.org/10.1089/mdr.2004.10.334 PMID: 15650379
28. Kruger T, Szabo D, Keddy KH, Deeley K, Marsh JW, Hujer AM, et al. Infections with nontyphoidal Salmonella species producing TEM-63 or a novel TEM enzyme, TEM-131, in South Africa. Antimicrob Agents Chemother. 2004; 48(11):4263–4270. https://doi.org/10.1128/AAC.48.11.4263-4270.2004 PMID: 15504851
29. Dierikx C, van Essen-Zandbergen A, Veldman K, Smith H, Mevius D. Increased detection of extended spectrum beta-lactamase producing Salmonella enterica and Escherichia coli isolates from poultry. Vet Microbiol. 2010; 145:273–278. https://doi.org/10.1016/j.vetmic.2010.03.019 PMID: 20395076
30. Woodford N, Tierno PM, Young K, Tysall L, Palepou M-FI, Ward, et al. Outbreak of Klebsiella pneumoniae Producing a New Carbapenem- Hydrolyzing Class A -Lactamase, KPC-3, in a New York Medical Center. Antimicrob Agents Chemother. 2004; 48(12):4793–4799. https://doi.org/10.1128/AAC.48.12. 4793-4799.2004 PMID: 15561858
31. Carattoli A, Garcı´a-Ferna´ndez A, Varesi P, Fortini D, Gerardi S, Penni A, et al. Molecular epidemiology of Escherichia coli producing extended-spectrum beta-lactamases isolated in Rome, Italy. J Clin Microbiol. 2008; 46(1):103–108. https://doi.org/10.1128/JCM.01542-07 PMID: 17959756
32. Jiang X, Zhang Z, Li M, Zhou D, Ruan F, Lu Y. Detection of extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006; 50(9):2990–2995. https://doi.org/10.1128/AAC.01511-05 PMID: 16940093
33. Hopkins KL, Batchelor MJ, Liebana E, Deheer-Graham AP, Threlfall EJ. Characterisation of CTX-M and AmpC genes in human isolates of Escherichia coli identified between 1995 and 2003 in England and Wales. Int J Antimicrob Agents. 2006; 28(3):180–192. https://doi.org/10.1016/j.ijantimicag.2006. 03.027 PMID: 16879949
34. Paauw A, Fluit AC, Verhoef J, Leverstein-van Hall MA. Enterobacter cloacae outbreak and emergence of quinolone resistance gene in Dutch hospital. Emerg Infect Dis. 2006; 12(5):807–812. https://doi.org/ 10.3201/eid1205.050910 PMID: 16704842
35. Dierikx CM, van Duijkeren E, Schoormans AHW, van Essen-Zandbergen A, Veldman K, Kant A, et al. Occurrence and characteristics of extended-spectrum-β-lactamase- and AmpC-producing clinical isolates derived from companion animals and horses. J Antimicrob Chemother. 2012; 67(6):1368–1374. https://doi.org/10.1093/jac/dks049 PMID: 22382469
36. Ortega-Paredes D, Barba P, Zurita J. Colistin-resistant Escherichia coli clinical isolate harbouring the mcr-1 gene in Ecuador. Epidemiol Infect. 2016; 144(14):2967–2970. https://doi.org/10.1017/ S0950268816001369 PMID: 27586373
37. Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, Malhotra-Kumar S. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium. Euro Surveill. 2016; 21(27).
38. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012; 67(11):2640–2644. https://doi. org/10.1093/jac/dks261 PMID: 22782487
39. Arau´jo S, Silva I, Tacão M, Patinha C, Alves A, Henriques I. Characterization of antibiotic resistant and pathogenic Escherichia coli in irrigation water and vegetables in household farms. Int J Food Microbiol. 2017; 257:192–200. https://doi.org/10.1016/j.ijfoodmicro.2017.06.020 PMID: 28668729
40. Botelho LA, Kraychete GB, Costa e Silva JL, Regis DV, Picão RC, Moreira BM, Bonelli RR. Widespread distribution of CTX-M and plasmid-mediated AmpC β-lactamases in Escherichia coli from Brazilian chicken meat. Mem Inst Oswaldo Cruz. 2015; 110(2):249–54. https://doi.org/10.1590/0074- 02760140389 PMID: 25946250
41. Castellanos LR, Donado-Godoy P, Leo´n M, Clavijo V, Arevalo A, Bernal JF, et al. High Heterogeneity of Escherichia coli Sequence Types Harbouring ESBL/AmpC Genes on IncI1 Plasmids in the Colombian Poultry Chain. PloS ONE. 2017; 12(1):e0170777. https://doi.org/10.1371/journal.pone.0170777 PMID: 28125687
42. Ferreira JC, Penha Filho RAC, Andrade LN, Berchieri Junior A, Darini ALC. Evaluation and characterization of plasmids carrying CTX-M genes in a non-clonal population of multidrug-resistant Enterobacteriaceae isolated from poultry in Brazil. Diagn Microbiol Infect Dis. 2016; 85(4):444–448. https://doi. org/10.1016/j.diagmicrobio.2016.05.011 PMID: 27312692
43. Brower CH, Mandal S, Hayer S, Sran M, Zehra A, Patel SJ, et al. The prevalence of extended-spectrum beta-lactamase-producing multidrug-resistant Escherichia coli in poultry chickens and variation according to farming practices in Punjab, India. Environ Health Perspect. 2017;125(7).
44. Saliu EM, Vahjen W, Zentek J. Types and prevalence of extended–spectrum beta–lactamase producing Enterobacteriaceae in poultry. Environ Health Perspect 2017;1–12. https://doi.org/10.1289/EHP168
45. Hedman HD, Eisenberg JNS, Vasco KA, Blair CN, Trueba G, Berrocal VJ, Zhang L. High Prevalence of Extended-Spectrum Beta-Lactamase CTX-M-Producing Escherichia coli in Small-Scale Poultry Farming in Rural Ecuador. Am J Trop Med Hyg. 2019; 100(2):374–376. https://doi.org/10.4269/ajtmh.18- 0173 PMID: 30457098
46. Chantziaras I, Boyen F, Callens B, Dewulf J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries. J Antimicrob Chemother. 2014; 69(3):827–834. https://doi.org/10.1093/jac/dkt443 PMID: 24216767
47. Huijber PMC, Graat EAM, van Hoek AHAM, Veenman C, de Jong MCM, van Duijkeren E. Transmission dynamics of extended-spectrum β-lactamase and AmpC β-lactamase-producing Escherichia coli in a broiler flock without antibiotic use. Prev Vet Med. 2016; 131:12–19. https://doi.org/10.1016/j. prevetmed.2016.07.001 PMID: 27544247
48. Smith JL, Drum DJV, Dai Y, Kim JM, Sanchez S, Maurer JJ, et al. Impact of antimicrobial usage on antimicrobial resistance in commensal Escherichia coli strains colonizing broiler chickens. Appl Environ Microbiol. 2007; 73(5):1404–1414. https://doi.org/10.1128/AEM.01193-06 PMID: 17194843
49. Giske CG. Contemporary resistance trends and mechanisms for the old antibiotics colistin, temocillin, fosfomycin, mecillinam and nitrofurantoin. Clin Microbiol Infect. 2015; 21(10):899–905. https://doi.org/ 10.1016/j.cmi.2015.05.022 PMID: 26027916
50. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, et al. International Clinical Practice Guidelines for the Treatment of Acute Uncomplicated Cystitis and Pyelonephritis in Women: A 2010 Update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011; 52(5):e103–20. https://doi.org/10.1093/cid/ciq257 PMID: 21292654
51. Yassin AK, Gong J, Kelly P, et al. Antimicrobial resistance in clinical Escherichia coli isolates from poultry and livestock, China. PLoS ONE. 2017; 12(9):e0185326. https://doi.org/10.1371/journal.pone. 0185326 PMID: 28934348
52. Donado-Godoy P, Byrne BA, Leo´n M, Castellanos R, Vanegas C, Coral A, et al. Prevalence, resistance patterns, and risk factors for antimicrobial resistance in bacteria from retail chicken meat in Colombia. J Food Prot. 2015; 78(4):751–9. https://doi.org/10.4315/0362-028X.JFP-14-349 PMID: 25836401
53. Ko¨ck R, Daniels-Haardt I, Becker K, Mellmann A, Friedrich AW, Mevius D, et al. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect. 2018 Apr 11. pii: S1198-743X(18)30339-2.
54. Zurita J, Alcocer I, Ortega-Paredes D, Barba P, Yauri F, Iñiguez D, Mora M. Carbapenem-hydrolysing β-lactamase KPC-2 in Klebsiella pneumoniae isolated in Ecuadorian hospitals. J Glob Antimicrob Resist. 2013:229–230. https://doi.org/10.1016/j.jgar.2013.06.001 PMID: 27873619
55. Alyamani EJ, Khiyami AM, Booq RY, Majrashi MA, Bahwerth FS, Rechkina E. The occurrence of ESBL-producing Escherichia coli carrying aminoglycoside resistance genes in urinary tract infections in Saudi Arabia. Annals of Clinical. Ann Clin Microbiol Antimicrob. 2017; 16:1. https://doi.org/10.1186/ s12941-016-0177-6 PMID: 28061852
56. Bradford P. Extended spectrum betalactamase in the 21 century: characterization, epidemiology, and detection of this important resistant threat. Clin Microbiol Rev. 2001; 14(4):933–951. https://doi.org/10. 1128/CMR.14.4.933-951.2001 PMID: 11585791
57. Endimiani A, Doi Y, Bethel CR, Taracila M, Adams-Haduch JM, O’Keefe A, et al. Enhancing Resistance to Cephalosporins in Class C β-Lactamases: Impact of Gly214Glu in CMY-2. Biochemistry. 2010; 49 (5):1014–1023. https://doi.org/10.1021/bi9015549 PMID: 19938877
58. Al-Tawfiq JA, Laxminarayan R, Mendelson M. How should we respond to the emergence of plasmidmediated colistin resistance in humans and animals? Int J Infect Dis. 2017; 54:77–84. https://doi.org/ 10.1016/j.ijid.2016.11.415 PMID: 27915108
59. Dominguez JE, Figueroa Espinosa RA, Redondo LM, Cejas D, Gutkind GO, Chacana PA, et al. Resistencia a colistina mediada por pla´smido en Escherichia coli recuperadas de aves de corral sanas. Rev Argent Microbiol. 2017; 49(3):297–298. https://doi.org/10.1016/j.ram.2017.02.001 PMID: 28457652
60. Monte DF, Mem A, Fernandes MR, Cerdeira L, Esposito F, Galvão JA, et al. Chicken Meat as a Reservoir of Colistin-Resistant Escherichia coli Strains Carrying mcr-1 Genes in South America. Antimicrob Agents Chemother. 2017; 61(5). pii: e02718-16.
61. Fernandes MR, Moura Q, Sartori L, Silva KC, Cunha MP, Esposito F, et al. Silent dissemination of colistin-resistant Escherichia coli in South America could contribute to the global spread of the mcr-1 gene. Euro Surveill. 2016; 21(17).
62. Quiroga C, Nastro M, Di Conza J. Current scenario of plasmid-mediated colistin resistance in Latin America. Rev Argent Microbiol. 2018 Jun 23. pii: S0325-7541(18)30052-X
63. Rebelo AR, Bortolaia V, Kjeldgaard JS, Pedersen SK, Leekitcharoenphon P, Hansen IM, et al. Multiplex PCR for detection of plasmid-mediated mcr-4 and mcr-5 for surveillance purposes. Euro Surveill. 2018; 23(6).
64. Wang X, Wang Y, Zhou Y, Li J, Yin W, Wang S, et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect. 2018; 7(1):122. https:// doi.org/10.1038/s41426-018-0124-z PMID: 29970891
65. Yang Y-Q, Li YX, Lei CW, Zhang AY, Wang HN. Novel plasmid-mediated colistin resistance gene mcr7.1 in Klebsiella pneumoniae. J Antimicrob Chemother. 2018; https://doi.org/10.1093/jac/dky111 PMID: 29912417
66. Casella T, Nogueira MCL, Saras E, Haenni M, Madec JY. High prevalence of ESBLs in retail chicken meat despite reduced use of antimicrobials in chicken production, France. Int J Food Microbiol. 2017; 257:271–275. https://doi.org/10.1016/j.ijfoodmicro.2017.07.005 PMID: 28728058
67. Casella T, Rodrı´guez MM, Takahashi JT, Ghiglione B, Dropa M, Assunc¸ão E, et al. Detection of blaCTX-M-type genes in complex class 1 integrons carried by Enterobacteriaceae isolated from retail chicken meat in Brazil. Int J Food Microbiol. 2015; 197:88–91. https://doi.org/10.1016/j.ijfoodmicro. 2014.12.001 PMID: 25576985
68. Cartelle Gestal M, Zurita J, Paz y Mino A, Ortega-Paredes D, Alcocer I. Characterization of a small outbreak of Salmonella enterica serovar Infantis that harbour CTX-M-65 in Ecuador. Braz J Infect Dis. 2016; 20(4):406–407. https://doi.org/10.1016/j.bjid.2016.03.007 PMID: 27215783
69. Zurita J, Ortega-Paredes D, Barba P. First Description of Shigella sonnei Harboring blaCTX-M-55 Outside Asia. J Microbiol Biotechnol. 2016; 26(12):2224–2227. https://doi.org/10.4014/jmb.1605.05069 PMID: 27558432
70. Vinueza-Burgos C, Cevallos M, Ron-Garrido L, Bertrand S, De Zutter L. Prevalence and Diversity of Salmonella Serotypes in Ecuadorian Broilers at Slaughter Age. Plos One. 2017; 11(7):e0159567.
71. Vinueza-Burgos C, Wautier M, Martiny D, Cisneros M, Van Damme I, De Zutter L. Prevalence, antimicrobial resistance and genetic diversity of Campylobacter coli and Campylobacter jejuni in Ecuadorian broilers at slaughter age. Poult Sci. 2017 Jul 1; 96(7):2366–74. https://doi.org/10.3382/ps/pew487 PMID: 28339716
72. Berghaus RD, Mathis DL, Bramwell RK, Macklin KS, Wilson JL, Wineland MJ, et al. Multilevel analysis of environmental Salmonella prevalences and management practices on 49 broiler breeder farms in four south-eastern States, USA. Zoonoses Public Health. 2012; 59(5):365–374. https://doi.org/10. 1111/j.1863-2378.2012.01464.x PMID: 22650982
73. Newell DG, Elvers KT, Dopfer D, Hansson I, Jones P, James S, et al. Biosecurity-based interventions and strategies to reduce Campylobacter spp. on poultry farms. Applied and Environmental Microbiology. Appl Environ Microbiol. 2011; 77(24):8605–8614. https://doi.org/10.1128/AEM.01090-10 PMID: 21984249