Intestinal epithelial cells are major producers of antimicrobial proteins, which play an important role in innate immunity. In addition to defensins, the Ribonuclease A superfamily includes important antimicrobial proteins involved in host-defense mechanisms in vertebrates. Angiogenin-4 (Ang4), a member of this RNase superfamily, has been demonstrated to be secreted by Paneth cells in mice. We have successfully cloned and characterized a new chicken gene (chAng4), found for the first time in a nonmammalian species, from intestinal epithelial and lymphoid cells. Characterization of chAng4 revealed 99% nucleotide and 97% amino acid sequence homology to mouse Ang4. Similar functional regions were identified, suggesting a role in innate immunity and regulation of gut microbiota. Furthermore, the mRNA expression pattern of chAng4 was studied in broilers in the presence or absence of beneficial bacteria (probiotics) and organic acids. The results showed that one-day-old chickens expressed low levels of Ang4 in almost all the evaluated tissues (crop, proventriculus, duodenum, jejunum, ileum, and cecal tonsils), except in the bursa of Fabricius that presented the highest expression level. The addition of probiotics and organic acids for either 7 or 14 consecutive days demonstrated a direct effect of probiotics and organic acids on chAng4 expression; moreover, broilers receiving probiotics and organic acids for only 7 D showed higher levels of chAng4 expression compared with those treated for 14 D. Broilers without treatment had a constant high level of expression in cecal tonsils and bursa. In conclusion, we were able to identify and characterize a new antimicrobial gene in chickens (chAng4) throughout the gastrointestinal tract. chAng4 mRNA gene expression was associated with the presence of naturally occurring and supplemented (probiotic) bacteria. The encoded protein might have a potential bactericidal effect against intestinal nonpathogenic and pathogenic microbes, modulating the intestinal microbiota and the innate immunity, and thereby may help minimize the use of antibiotics in poultry feed.
Key words: angiogenin, antimicrobial protein, Ang4, Paneth cells, B cells.
Akbari, M. R., H. R. Haghighi, J. R. Chambers, J. Brisbin, L. R. Read, and S. Sharif. 2008. Expression of antimicrobial peptides in cecal tonsils of chickens treated with probiotics and infected with Salmonella enterica serovar Typhimurium. Clin. Vaccine Immunol. 15:1689–1693.
Arakawa, H., K. Kuma, M. Yasuda, S. Ekino, A. Shimizu, and H. Yamagishi. 2002. Effect of environmental antigens on the Ig diversification and the selection of productive V-J joints in the bursa. J. Immunol. 169:818–828.
Bar-Shira, E., and A. Friedman. 2018. Innate immune functions of avian intestinal epithelial cells: response to bacterial stimuli and localization of responding cells in the developing avian digestive tract. PLoS One 13:e0200393.
Bar-Shira, E., D. Sklan, and A. Friedman. 2003. Establishment of immune competence in the avian GALT during the immediate post-hatch period. Dev. Comp. Immunol. 27:147–157.
Casteleyn, C., M. Doom, E. Lambrechts, W. van den Broeck, P. Simoens, and P. Cornillie. 2010. Locations of gut-associated lymphoid tissue in the 3-month-old chicken: a review. Avian Pathol. 39:143–150.
Crabtree, B., D. E. Holloway, M. D. Baker, K. R. Acharya, and V. Subramanian. 2007. Biological and structural features of murine angiogenin-4, an angiogenic protein. Biochemistry 46:2431–2443.
Davani, D., Z. Pancer, and M. J. Ratcliffe. 2014. Ligation of surface Ig by gut-derived antigen positively selects chicken bursal and peripheral B cells. J. Immunol. 192:3218–3227.
Diaz Carrasco, J. M., N. A. Casanova, and M. E. Fernandez Miyakawa. 2019. Microbiota, gut health and chicken productivity: what is the connection? Microorganisms. 7:374.
Dittoe, D. K., S. C. Ricke, and A. S. Kiess. 2018. Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Front. Vet. Sci. 5:216.
Farner, D. S. 1942. The hydrogen ion concentration in avian digestive tracts. Poult. Sci. 21:445–450.
Forder, R. E. A., G. S. Howarth, D. R. Tivey, and R. J. Hughes. 2007. Bacterial modulation of small intestinal goblet cells and mucin composition during early posthatch development of poultry. Poult. Sci. 86:2396–2403.
Forman, R. A., M. L. deSchoolmeester, R. J. Hurst, S. H. Wright, A. D. Pemberton, and K. J. Else. 2012. The goblet cell is the cellular source of the anti-microbial angiogenin 4 in the large intestine post Trichuris muris infection. PLoS One 7:e42248.
Friedman, A., E. Bar-Shira, and D. Sklan. 2003. Ontogeny of gut associated immune competence in the chick. Worlds Poul Sci. J. 59:209–219.
Gallo, R. L., and L. V. Hooper. 2012. Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 12:503–516.
Hegde, S. N., B. A. Rolls, A. Turvey, and M. E. Coates. 1982. Influence of gut microflora on the lymphoid tissue of the chicken (Gallus domesticus) and Japanese quail (Coturnix coturnix japonica). Comp. Biochem. Physiol. A. Physiol. 72:205–209.
Honjo, K., T. Hagiwara, K. Itoh, E. Takahashi, and Y. Hirota. 1993. Immunohistochemical analysis of tissue distribution of B and T cells in germfree and conventional chickens. J. Vet. Med. Sci. 55:1031–1034.
Hooper, L. V., D. R. Littman, and A. J. Macpherson. 2012. Interactions between the microbiota and the immune system. Science 336:1268–1273.
Hooper, L. V., T. S. Stappenbeck, C. V. Hong, and J. I. Gordon. 2003. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunol. 4:269–273.
Hooper, L. V., M. H. Wong, A. Thelin, L. Hansson, P. G. Falk, and J. I. Gordon. 2001. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884.
Houssaint, E., M. Belo, and N. M. Le Douarin. 1976. Investigations on cell lineage and tissue interactions in the developing bursa of Fabricius through interspecific chimeras. Dev. Biol. 53:250–264.
Jeurissen, S. H., F. Wagenaar, and E. M. Janse. 1999. Further characterization ofMcells in gut-associated lymphoid tissues of the chicken. Poult. Sci. 78:965–972.
Jing, M., G. B. Tactacan, J. C. Rodriguez-Lecompte, A. Kroeker, and J. D. House. 2009. Molecular cloning and tissue distribution of reduced folate carrier and effect of dietary folate supplementation on the expression of reduced folate carrier in laying hens. Poult. Sci. 88:1939–1947.
Klenova, E. M., I. Botezato, V. Laudet, G. H. Goodwin, J. C. Wallace, and V. V. Lobanenkov. 1992. Isolation of a cDNA clone encoding the RNase-superfamily-related gene highly expressed in chicken bone marrow cells. Biochem. Biophys. Res. Commun. 185:231–239.
Ko, K. H., I. K. Lee, G. Kim, M. J. Gu, H. Y. Kim, B. C. Park, T. S. Park, S. H. Han, and C. H. Yun. 2018. Changes in bursal B cells in chicken during embryonic development and early life after hatching. Sci. Rep. 8:16905.
Lassila, O. 1989. Emigration of B cells from chicken bursa of Fabricius. Eur. J. Immunol. 19:955–958.
Le Douarin, N. M., E. Houssaint, F. V. Jotereau, and M. Belo. 1975. Origin of hemopoietic stem cells in embryonic bursa of Fabricius and bone marrow studied through interspecific chimeras. Proc. Natl. Acad. Sci. U S A. 72:2701–2705.
Lydyard, P. M., C. E. Grossi, and M. D. Cooper. 1976. Ontogeny of B cells in the chicken. I. Sequential development of clonal diversity in the bursa. J. Exp. Med. 144:79–97.
Mabelebele, M., O. J. Alabi, J. W. Ng`ambi, D. Norris, and M. M. Ginindza. 2014. Comparison of gastrointestinal tracts and pH values of digestive organs of Ross 308 broiler and indigenous Venda chickens fed the same diet. Asian J. Anim. Vet. Adv. 9:71–76.
Maki, J. J., C. L. Klima, M. J. Sylte, and T. Looft. 2019. The microbial pecking order: utilization of intestinal microbiota for poultry health. Microorganisms. 7:376.
Malik, E., S. R. Dennison, F. Harris, and D. A. Phoenix. 2016. pH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Pharmaceuticals. 9:67.
McCormack, W. T., L. W. Tjoelker, C. F. Barth, L. M. Carlson, B. Petryniak, E. H. Humphries, and C. B. Thompson. 1989. Selection for B cells with productive IgL gene rearrangements occurs in the bursa of Fabricius during chicken embryonic development. Genes Dev. 3:838–847.
Motyka, B., and J. D. Reynolds. 1991. Apoptosis is associated with the extensive B cell death in the sheep ileal Peyer’s patch and the chicken bursa of Fabricius: a possible role in B cell selection. Eur. J. Immunol. 21:1951–1958.
Nakano, T., and T. Graf. 1992. Identification of genes differentially expressed in two types of v-myb-transformed avian myelomonocytic cells. Oncogene 7:527–534.
Nitto, T., K. D. Dyer, M. Czapiga, and H. F. Rosenberg. 2006. Evolution and function of leukocyte RNase A ribonucleases of the avian species, Gallus gallus. J. Biol. Chem. 281:25622–25634.
Nkukwana, T. T., V. Muchenje, P. J. Masika, and B. Mushonga. 2015. Intestinal morphology, digestive organ size and digesta pH of broiler chickens fed diets supplemented with or without Moringa oleifera leaf meal. S. Afr. J. Anim. Sci. 45:362–370.
Oakley, B. B., H. S. Lillehoj, M. H. Kogut, W. K. Kim, J. J. Maurer, A. Pedroso, M. D. Lee, S. R. Collett, T. J. Johnson, and N. A. Cox. 2014. The chicken gastrointestinal microbiome. FEMS Microbiol. Lett. 360:100–112.
Olah, I., and B. Glick. 1978. The number and size of the Follicular epithelium (FE) and follicles in the bursa of Fabricius. Poult. Sci. 57:1445–1450.
Olah, I., N. Nagy, A. Magyar, and V. Palya. 2003. Esophageal tonsil: a novel gut-associated lymphoid organ. Poult. Sci. 82:767–770.
Pfaffl, M., and M. Hageleit. 2001. Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real-time RT-PCR. Biotechnol. Lett. 23:275–282.
Ratcliffe, M. J., O. Lassila, J. R. Pink, and O. Vainio. 1986. Avian B cell precursors: surface immunoglobulin expression is an early, possibly bursa-independent event. Eur. J. Immunol. 16:129–133.
Reynaud, C. A., V. Anquez, H. Grimal, and J. C. Weill. 1987. A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell 48:379–388.
Reynaud, C. A., B. A. Imhof, V. Anquez, and J. C. Weill. 1992. Emergence of committed B lymphoid progenitors in the developing chicken embryo. EMBO J. 11:4349–4358.
Reynolds, J. D. 1987. Mitotic rate maturation in the Peyer’s patches of fetal sheep and in the bursa of Fabricius of the chick embryo. Eur. J. Immunol. 17:503–507.
Rodríguez-Lecompte, J. C., A. Yitbarek, J. Brady, S. Sharif, M. D. Cavanagh, G. Crow, W. Guenter, J. D. House, and G. Camelo-Jaimes. 2012. The effect of microbial-nutrient interaction on the immune system of young chicks after early probiotic and organic acid administration. J. Anim. Sci. 90:2246–2254.
Schwartz, L., A. Cohen, J. Thomas, and J. D. Spencer. 2018. The immunomodulatory and antimicrobial properties of the vertebrate Ribonuclease A Superfamily. Vaccines (Basel) 6:76.
Sheng, J., and Z. Xu. 2016. Three decades of research on angiogenin: a review and perspective. Acta Biochim. Biophys. Sin. (Shangai) 48:399–410.
Sorvari, R., A. Naukkarinen, and T. E. Sorvari. 1977. Anal suckinglike movements in the chicken and chick embryo followed by the transportation of environmental material to the bursa of Fabricius, caeca and caecal Tonsils. Poult. Sci. 56:1426–1429.
Stanley, D., R. J. Hughes, and R. J. Moore. 2014. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl. Microbiol. Biotechnol. 98:4301–4310.
Sugiharto, S. 2016. Role of nutraceuticals in gut health and growth performance of poultry. J. Saudi Soc. Agric. Sci. 15:99–111.
Thompson, C. B., and P. E. Neiman. 1987. Somatic diversification of the chicken immunoglobulin light chain gene is limited to the rearranged variable gene segment. Cell 48:369–378.
Thouzeau, C., Y. Le Maho, G. Froget, L. Sabatier, C. Le Bohec, J. A. Hoffmann, and P. Bulet. 2003. Spheniscins, avian ß-defensins in preserved stomach contents of the king penguin, Aptenodytes patagonicus. J. Biol. Chem. 278:51053–51058.
Uni, Z., A. Smirnov, and D. Sklan. 2003. Pre- and posthatch development of goblet cells in the broiler small intestine: effect of delayed access to feed. Poult. Sci. 82:320–327.
van der Wielen, P. W., S. Biesterveld, S. Notermans, H. Hofstra, B. A. Urlings, and F. van Knapen. 2000. Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. Appl. Environ. Microbiol. 66:2536–2540.
Vaughn, L. E., P. S. Holt, and R. K. Gast. 2008. Cellular assessment of crop lymphoid tissue from specific-pathogen-free white leghorn chickens after Salmonella enteritidis challenge. Avian Dis. 52:657–664.
Walker, C. R., I. Hautefort, J. E. Dalton, K. Overweg, C. E. Egan, R. J. Bongaerts, D. J. Newton, S. M. Cruickshank, E. M. Andrew, and S. R. Carding. 2013. Intestinal intraepithelial lymphocyteenterocyte crosstalk regulates production of bactericidal Angiogenin 4 by Paneth Cells upon microbial challenge. PLoS One 8:e84553.
Wang, L., J. Li, J. Li, Jr, R. X. Li, C. F. Lv, S. Li, Y. L. Mi, and C. Q. Zhang. 2016. Identification of the Paneth cells in chicken small intestine. Poult. Sci. 95:1631–1635.
Xi, Y., J. Yan,M. Li, S. Ying, and Z. Shi. 2019.Gut microbiota dysbiosis increase the risk of visceral gout in goslings through translocation of gut-derived lipopolysaccharide. Poult. Sci. 98:5361–5373.
Zhang, J., and H. F. Rosenberg. 2002. Diversifying selection of the tumor-growth promoter angiogenin in primate evolution. Mol. Biol. Evol. 19:438–445.
Zocco, M. A., M. E. Ainora, G. Gasbarrini, and A. Gasbarrini. 2007. Bacteroides thetaiotaomicron in the gut: molecular aspects of their interaction. Dig. Liver Dis. 39:707–712.