Albers GAA, Gray GD, Piper LR, Barker JSF, Jambre LFL, Barger IA. The genetics of resistance and resilience to Haemonchus contortus infection in young merino sheep. International Journal for Parasitology. 17:1355-1363. doi:10.1016/0020-7519(87)90103-2, 1987.
Berckmans D. General introduction to precision livestock farming. Animal Frontiers. 7:6-11. doi:10.2527/af.2017.0102, 2017.
Bijma P, Woolliams JA, van Arendonk JAM. Genetic gain of pure line selection and combined crossbred purebred selection with constrained inbreeding. Animal Science. 72:225-232, 2001.
Bishop SC, Woolliams JA. Genomics and disease resistance studies in livestock. Livestock Science. 166:190-198. doi:10.1016/j.livsci.2014.04.034, 2014.
Chen C, Zhu W, Steibel J, Siegford J, Wurtz K, Han J, Norton T. Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory. Computers and Electronics in Agriculture. 169:105166. doi:10.1016/j.compag.2019.105166, 2020.
Clunies-Ross I. Observations on the resistance of sheep to infestations by the stomach worm, Haemonchus contortus. Journal of the Council for Scientific and Industrial Research. 5:73-80, 1932.
Colditz IG, Hine BC. Resilience in farm animals: biology, management, breeding and implications for animal welfare. Animal Production Science. 56:1961. doi:10.1071/AN15297. 2016.
Dekkers JCM. Marker-assisted selection for commercial crossbred performance. Journal of Animal Science. 85:2104-2114. doi:10.2527/jas.2006-683, 2007.
Donham KJ. Relationships of air quality and productivity in intensive swine housing. Agri-Practice. 10:15-26, 1990.
Dufrasne M, Misztal I, Tsuruta S, Gengler N, Gray KA. Corrigendum to “Genetic analysis of pig survival up to commercial weight in a crossbred population” [Livest. Sci. 167C (2014) 19-24]. Livestock Science. 174:154. doi:10.1016/j.livsci.2015.02.00, 2015.
Dufrasne M, Misztal I, Tsuruta S, Holl J, Gray KA, Gengler N. Estimation of genetic parameters for birth weight, preweaning mortality, and hot carcass weight of crossbred pigs. Journal of Animal Science. 91:5565-5571. doi:10.2527/jas.2013-6684, 2013.
Elgersma G G, G de Jong R van der Linde, H A Mulder. Fluctuations in milk yield are heritable and can be used as a resilience indicator to breed healthy cows. Journal of Dairy Science. 101:1240-1250. doi:10.3168/jds.2017-13270. 2018.
Fernandes AFA, Dórea JRR, Fitzgerald R, Herring W, Rosa GJM. A novel automated system to acquire biometric and morphological measurements and predict body weight of pigs via 3D computer vision. 13, 2018.
Garrido-Izard M, Correa E-C, Requejo J-M, B Diezma. Continuous Monitoring of Pigs in Fattening Using a Multi-Sensor System: Behavior Patterns. Animals. 10:52. doi:10.3390/ani10010052, 2019.
Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R. ASReml user guide release 4.1 structural specification. VSN International Ltd., Hemel Hempstead, UK. Available from: https://www.vsni.co.uk/downloads/asreml/release4/UserGuideStructural.pdf, 2015.
Hermesch S, Li L, Doeschl-Wilson AB, H Gilbert. Selection for productivity and robustness traits in pigs. Animal Production Science. 55:1437. doi:10.1071/AN15275, 2015.
Hermesch S, Ludemann CI, Amer PR. Economic weights for performance and survival traits of growing pigs. Journal of Animal Science. 92:5358-5366. doi:10.2527/jas.2014-7944, 2014.
Holck JT, Schinckel AP, Coleman JL, Wilt VM, Senn MK, Thacker BJ, Thacker EL, Grant AL. The influence of environment on the growth of commercial finisher pigs. Journal of Swine Health and Production. 6:141-149, 1998.
Holtkamp DJ, Kliebenstein JB, Neumann EJ, Zimmerman JJ, Rotto HF, Yoder TK, Wang C, Yeske PE, CL Mowrer, Haley CA. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J Swine Health Prod. 21:72-84, 2013.
Hubbs T, Preckel PV, Schinckel AP, Deen J, Foster KA, Curtis SE, Johnson EW. 2008. The New Economics of Livestock Production Management. In: American Agricultural Economics Asociation Annual Meeting. 2008.
Iung L H de S, Carvalheiro R, de R Neves HH, Mulder HA. Genetics and genomics of uniformity and resilience in livestock and aquaculture species: A review. Journal of Animal Breeding and Genetics. doi:10.1111/jbg.12454. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/jbg.12454, 2019.
Kim KS, Larsen N, Short T, Plastow G, Rothschild MF. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mammalian Genome. 11:131-135. doi:10.1007/s003350010025. 2000.
Koltes JE, Cole JB, Clemmens R, Dilger RN, Kramer LM, Lunney JK, McCue ME, McKay SD, Mateescu RG, Murdoch BM, Reuter R, Rexroad CE, Rosa GJM, Serão NVL, White SN, Woodward-Greene MJ, Worku M, Zhang H, Reecy JM. A Vision for Development and Utilization of High-Throughput Phenotyping and Big Data Analytics in Livestock. Frontiers in Genetics. 10. doi:10.3389/fgene.2019.01197. Available from: https://www.frontiersin.org/article/10.3389/fgene.2019.01197/full, 2019.
Madsen TN, Andersen S, Kristensen AR. Modelling the drinking patterns of young pigs using a state space model. Computers and Electronics in Agriculture. 48:39-61. doi:10.1016/j.compag.2005.01.001, 2005.
Martínez-Miró S, Tecles F, Ramón M, Escribano D, Hernández F, Madrid J, Orengo J, Martínez-Subiela S, Manteca X, Cerón JJ. Causes, consequences and biomarkers of stress in swine: an update. BMC Veterinary Research. 12. doi:10.1186/s12917-016-0791-8. Available from: http://bmcvetres.biomedcentral.com/articles/ 10.1186/s12917-016-0791-8, 2016.
Mittek M, Psota ET, Pérez LC, Schmidt T, Mote B. Health Monitoring of Group-Housed Pigs using Depth-Enabled Multi-Object Tracking. 4, 2016.
Mulder HA, Hill WG, Vereijken A, Veerkamp RF. Estimation of genetic variation in residual variance in female and male broiler chickens. animal. 3:1673-1680. doi:10.1017/S1751731109990668. 2009.
Mulder HA, Rönnegård L, Veerkamp RF. Prediction Of Breeding Values For Mean And Environmental Variance With An Iterative BLUP- Procedure. 4, 2018.
Poppe M, Veerkamp RF, ML van Pelt, Mulder HA. Exploration of variance, autocorrelation, and skewness of deviations from lactation curves as resilience indicators for breeding. Journal of Dairy Science. 103:1667-1684. doi:10.3168/jds.2019-17290. 2020.
Putz AM, Harding JCS, Dyck MK, Fortin F, Plastow GS, Dekkers JCM, Canada P. Novel Resilience Phenotypes Using Feed Intake Data From a Natural Disease Challenge Model in Wean-to-Finish Pigs. Front. Genet. 9. doi:10.3389/fgene.2018.00660. Available from: https://www.frontiersin.org/articles/10.3389/fgene.2018.00660/full, 2019.
Rönnegård L, Felleki M, Fikse F, Mulder HA, Strandberg E. Genetic heterogeneity of residual variance - estimation of variance components using double hierarchical generalized linear models. Genetics Selection Evolution. 42:8. doi:10.1186/1297-9686-42-8, 2010.
Senthilselvan A, Zhang Y, Dosman JA, Barber EM, Holfeld LE, Kirychuk SP, Cormier Y, Hurst TS, Rhodes CS. Positive Human Health Effects of Dust Suppression with Canola Oil in Swine Barns. Am J Respir Crit Care Med. 156:410-417. doi:10.1164/ajrccm.156.2.9612069, 1997.
Sorensen D, Waagepetersen R. Normal linear models with genetically structured residual variance heterogeneity: a case study. Genetical Research. 82:207-222, 2003.
St-Pierre NR, Cobanov B, Schnitkey G. Economic Losses from Heat Stress by US Livestock Industries. Journal of Dairy Science. 86:E52-E77. doi:10.3168/jds.S0022-0302(03)74040-5, 2003.
van der Waaij EH, Bijma, Bishop PSC, van Arendonk JA. Modeling selection for production traits under constant infection pressure. Journal of Animal Science. 78:2809-2820. doi:10.2527/2000.78112809x. 2000.
Wientjes YCJ, Calus MPL. Board invited review: The purebred-crossbred correlation in pigs: A review of theory, estimates, and implications. J Anim Sci. 95:3467-3478. doi:10.2527/jas.2017.1669, 2017.