Author details:
The study aimed to investigate the efficacy of new mycotoxin adsorbents based on purified and activated bentonites combined with yeast and phytogenic compounds in fattening pigs. The experiment involved 96 pigs (31.2±2.4 kg). Control (C) group was fed a diet naturally contaminated with mycotoxins (5 mg/kg deoxynivalenol, DON) without an adsorbent. Treated groups received the feed with mycotoxin adsorbents: purified and activated bentonite (T1), purified and activated bentonite, yeast derivatives, phytogenic substances (T2), and purified, activated, and sulphurated bentonite with phytogenic substances (T3). Evaluated parameters involved growth performance, organ weight, small intestine and liver histopathology, complete blood count, serum biochemistry, antioxidant status of the organism and total and free DON content in urine. In all treated groups, an significant increase in intestinal GSH and GSH/GSSG ratio was observed when compared to C. No significant effects on liver and kidney weight, complete blood count, serum or intestinal malondialdehyde concentration, or total/free DON content in urine were observed. All adsorbents improved histopathological findings in the liver when compared to C. Moreover, T1, and T2 groups showed no presence of inflammatory reaction or necrotic changes in the livers. Although, mycotoxin adsorbents investigated in this study had no significant impact on pig growth performance, they reduced the oxidative stress, and on the tissue level they protected the jejunal tissue and liver parenchyma under deoxynivalenol challenge.
1. Nesic K, Milicevic D, Nesic V, Ivanovic S. Mycotoxins as one of the foodborne risks most susceptible to climatic change. In: Nastasijevic I, Fries R, Avery S, editors. 58th International Meat Industry Conference. Procedia Food Science. 5. Amsterdam: Elsevier Science Bv; 2015. p. 207–10.
2. Horky P, Skladanka J, Nevrkla P, Slama P. EFFECT OF DIET SUPPLEMENTED WITH ANTIOXIDANTS (SELENIUM, COPPER, VITAMINS E AND C) ON ANTIOXIDANT STATUS AND EJACULATE QUALITY OF BREEDING BOARS. Annals of Animal Science. 2016; 16(2):521–32. https://doi.org/10. 1515/aoas-2015-0085 WOS:000375606300016.
3. Andretta I, Kipper da Silva M, Lehnen C, Hauschild L, Vale M, Lovatto PA. Meta-analytical study of productive and nutritional interactions of mycotoxins in growing pigs. Animal: an international journal of animal bioscience. 2012; 6:1476–82. https://doi.org/10.1017/S1751731111002278 PMID: 23031521
4. Kipper M, Andretta I, Ribeiro AML, Pires PGD, Franceschina CS, Cardinal KM, et al. Assessing the implications of mycotoxins on productive efficiency of broilers and growing pigs. Sci Agric. 2020; 77(3). e20180236 https://doi.org/10.1590/1678-992x-2018-0236 WOS:000484594500001.
5. Pierron A, Alassane-Kpembi I, Oswald IP. Impact of mycotoxin on immune response and consequences for pig health. Animal Nutrition. 2016; 2(2):63–8. https://doi.org/10.1016/j.aninu.2016.03.001 PMID: 29767037
6. Lessard M, Savard C, Deschene K, Lauzon K, Pinilla VA, Gagnon CA, et al. Impact of deoxynivalenol (DON) contaminated feed on intestinal integrity and immune response in swine. Food and Chemical Toxicology. 2015; 80:7–16. https://doi.org/10.1016/j.fct.2015.02.013 PMID: 25701311
7. COMMISSION RECOMMENDATION on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Official Journal of the European Union. 2006:1111–3.
8. Holanda DM, Kim SW. Efficacy of Mycotoxin Detoxifiers on Health and Growth of Newly-Weaned Pigs under Chronic Dietary Challenge of Deoxynivalenol. Toxins (Basel). 2020; 12(5):311. https://doi.org/10. 3390/toxins12050311 PMID: 32397551.
9. Horky P, Skalickova S, Urbankova L, Baholet D, Kociova S, Bytesnikova Z, et al. Zincphosphate-based nanoparticles as a novel antibacterial agent: in vivo study on rats after dietary exposure. Journal of Animal Science and Biotechnology. 2019; 10. 17 https://doi.org/10.1186/s40104-019-0319-8 WOS:000458771600001. PMID: 30805185
10. Gregorio M, Neef D, Jager A, Corassin C, Carão A´, Albuquerque R, et al. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Reviews. 2014; 33:11. https://doi.org/10.3109/15569543. 2014.905604
11. Awad WA, Ghareeb K, Bo¨hm J, Zentek J. Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation. Food Additives & Contaminants: Part A. 2010; 27(4):510–20. https://doi.org/10.1080/19440040903571747 PMID: 20234966
12. Kociova S, Dolezelikova K, Horky P, Skalickova S, Baholet D, Bozdechova L, et al. Zinc phosphatebased nanoparticles as alternatives to zinc oxide in diet of weaned piglets. Journal of Animal Science and Biotechnology. 2020; 11(1). 59 https://doi.org/10.1186/s40104-020-00458-x WOS:000540838100001. PMID: 32528676
13. Elliott CT, Connolly L, Kolawole O. Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin Research. 2020; 36(1):115–26. https://doi.org/10.1007/s12550-019-00375-7 PMID: 31515765
14. Stanic A, Uhlig S, Solhaug A, Rise F, Wilkins AL, Miles CO. Nucleophilic Addition of Thiols to Deoxynivalenol. Journal of Agricultural and Food Chemistry. 2015; 63(34):7556–66. https://doi.org/10.1021/ acs.jafc.5b02864 WOS:000360866500012. PMID: 26242781
15. Tran AT, Kluess J, Berk A, Paulick M, Frahm J, Schatzmayr D, et al. Detoxification of Fusarium-contaminated maize with sodium sulphite—in vivo efficacy with special emphasis on mycotoxin residues and piglet health. Arch Anim Nutr. 2018; 72(1):58–75. https://doi.org/10.1080/1745039X.2017.1418047 WOS:000429416600004. PMID: 29313386
16. Schwartz-Zimmermann HE, Paulick M, Danicke S, Schatzmayr D, Berthiller F. Determination of deoxynivalenol sulphonates in cereal samples: method development, validation and application. World Mycotoxin J. 2014; 7(3):233–45. https://doi.org/10.3920/wmj2013.1684 WOS:000339460900001.
17. Schwartz-Zimmermann HE, Wiesenberger G, Unbekannt C, Hessenberger S, Schatzmayr D, Berthiller F. Reaction of (conjugated) deoxynivalenol with sulphur reagents—novel metabolites, toxicity and application. World Mycotoxin J. 2014; 7(2):187–97. https://doi.org/10.3920/wmj2013.1632 WOS:000334568500009.
18. Schwartz HE, Hametner C, Slavik V, Greitbauer O, Bichl G, Kunz-Vekiru E, et al. Characterization of Three Deoxynivalenol Sulfonates Formed by Reaction of Deoxynivalenol with Sulfur Reagents. Journal of Agricultural and Food Chemistry. 2013; 61(37):8941–8. https://doi.org/10.1021/jf403438b WOS:000330096300028. PMID: 23964860
19. Rempe I, Kersten S, Valenta H, Danicke S. Hydrothermal treatment of naturally contaminated maize in the presence of sodium metabisulfite, methylamine and calcium hydroxide; effects on the concentration of zearalenone and deoxynivalenol. Mycotoxin Research. 2013; 29(3):169–75. https://doi.org/10.1007/ s12550-013-0166-y WOS:000209500500006. PMID: 23536360
20. Lake J, Browers M, Yin XS, Speers RA. Use of sodium bisulfite as a method to reduce DON levels in barley during malting. Journal of the American Society of Brewing Chemists. 2007; 65(3):172–6. https:// doi.org/10.1094/asbcj-2007-0612-01 WOS:000248523500008.
21. Bahrenthien L, Kluess J, Berk A, Kersten S, Saltzmann J, Huether L, et al. Detoxifying deoxynivalenol (DON)-contaminated feedstuff: consequences of sodium sulphite (SoS) treatment on performance and blood parameters in fattening pigs. Mycotoxin Research. 2020; 36(2):213–23. https://doi.org/10.1007/ s12550-019-00385-5 WOS:000528385200009. PMID: 31960350
22. Tran A-T, Kluess J, Kersten S, Berk A, Paulick M, Schatzmayr D, et al. Sodium sulfite (SoS) as decontamination strategy forFusarium-toxin contaminated maize and its impact on immunological traits in pigs challenged with lipopolysaccharide (LPS). Mycotoxin Research. 2020; 36(4):429–42. https://doi. org/10.1007/s12550-020-00403-x WOS:000568751000001. PMID: 32902833
23. Weaver AC, See MT, Kim SW. Protective Effect of Two Yeast Based Feed Additives on Pigs Chronically Exposed to Deoxynivalenol and Zearalenone. Toxins (Basel). 2014; 6(12):3336–53. https://doi. org/10.3390/toxins6123336 WOS:000346794900009. PMID: 25533517
24. Chlebicz A, Slizewska K. In Vitro Detoxification of Aflatoxin B-1, Deoxynivalenol, Fumonisins, T-2 Toxin and Zearalenone by Probiotic Bacteria from Genus Lactobacillus and Saccharomyces cerevisiae Yeast. Probiotics and Antimicrobial Proteins. 2020; 12(1):289–301. https://doi.org/10.1007/s12602- 018-9512-x WOS:000519537600031. PMID: 30721525
25. van der Peet-Schwering CMC, Jansman AJM, Smidt H, Yoon I. Effects of yeast culture on performance, gut integrity, and blood cell composition of weanling pigs. Journal of Animal Science. 2007; 85 (11):3099–109. https://doi.org/10.2527/jas.2007-0110 WOS:000250648400036. PMID: 17609465
26. Abdel-Wahhab MA, El-Nekeety AA, Salman AS, Abdel-Aziem SH, Mehaya FM, Hassan NS. Protective capabilities of silymarin and inulin nanoparticles against hepatic oxidative stress, genotoxicity and cytotoxicity of Deoxynivalenol in rats. Toxicon. 2018; 142:1–13. https://doi.org/10.1016/j.toxicon.2017.12. 045 WOS:000425201000002. PMID: 29248467
27. Wan MLY, Turner PC, Co VA, Wang MF, Amiri KMA, El-Nezami H. Schisandrin A protects intestinal epithelial cells from deoxynivalenol-induced cytotoxicity, oxidative damage and inflammation. Scientific Reports. 2019; 9. 19173 https://doi.org/10.1038/s41598-019-55821-4 WOS:318441237900002.
28. Perczak A, Jus K, Gwiazdowska D, Marchwnska K, Waskiewicz A. The Efficiency of Deoxynivalenol Degradation by Essential Oils under In Vitro Conditions. Foods. 2019; 8(9). 403 https://doi.org/10.3390/ foods8090403 WOS:000487655600029. PMID: 31514336
29. Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, et al. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. Journal of Biological Chemistry. 2003; 278(48):47905–14. https://doi.org/10.1074/jbc.M307552200 WOS:000186731400068. PMID: 12970342
30. Egresi A, Sule K, Szentmihalyi K, Blazovics A, Feher E, Hagymasi K, et al. Impact of milk thistle (Silybum marianum) on the mycotoxin caused redox-homeostasis imbalance of ducks liver. Toxicon. 2020; 187:181–7. https://doi.org/10.1016/j.toxicon.2020.09.002 WOS:000582386000023. PMID: 32920016
31. Jin L, Wang W, Degroote J, Van Noten N, Yan H, Majdeddin M, et al. Mycotoxin binder improves growth rate in piglets associated with reduction of toll-like receptor-4 and increase of tight junction protein gene expression in gut mucosa. Journal of Animal Science and Biotechnology. 2017; 8. https://doi.org/10. 1186/s40104-017-0210-4 WOS:000414420300002. PMID: 29118977
32. International D. Available from: https://docplayer.net/45981320-Nutritional-requirements-for-danbredpigs.html.
33. Chrpova J, Sip V, Sumikova T, Salava J, Palicova J, Stockova L, et al. Occurrence of Fusarium species and mycotoxins in wheat grain collected in the Czech Republic. World Mycotoxin J. 2016; 9(2):317–27. https://doi.org/10.3920/wmj2015.1917 WOS:000371816400016.
34. AOAC. Official methods of analysis. Association of official Annalytical Chemists: Gaithersburg, MD. 2007.
35. Zhong HY, Marcus SL, Li L. Microwave-assisted acid hydrolysis of proteins combined with liquid chromatography MALDI MS/MS for protein identification. Journal of the American Society for Mass Spectrometry. 2005; 16(4):471–81. https://doi.org/10.1016/j.jasms.2004.12.017 WOS:000228021400007. PMID: 15792716
36. Husek P, Sweeley CC. GAS-CHROMATOGRAPHIC SEPARATION OF PROTEIN AMINO-ACIDS IN 4 MINUTES. HRC-J High Resolut Chromatogr. 1991; 14(11):751–3. WOS:A1991HH35900008.
37. Pavlik A, Slama P, Bures D, Kotrba R. EFFECT OF FEEDING ON GROWTH AND BLOOD BIOCHEMISTRY OF MALE FALLOW DEER. J Microbiol Biotechnol Food Sci. 2018; 8(3):911–3. https://doi.org/ 10.15414/jmbfs.2018-19.8.3.911–913 WOS:000455221000011.
38. Urbankova L, Horky P, Skladanka J, Pribilova M, Smolikova V, Nevrkla P, et al. Antioxidant status of rats’ blood and liver affected by sodium selenite and selenium nanoparticles. Peerj. 2018; 6. e4862 https://doi.org/10.7717/peerj.4862 WOS:000434233100008. PMID: 29868274
39. Kong C, Shin SY, Kim BG. Evaluation of mycotoxin sequestering agents for aflatoxin and deoxynivalenol: an in vitro approach. Springerplus. 2014; 3. 346 https://doi.org/10.1186/2193-1801-3-346. WOS:000359054000004.
40. Taszkun I, Tomaszewska E, Dobrowolski P, Zmuda A, Sitkowski W, Muszynski S. Evaluation of Collagen and Elastin Content in Skin of Multiparous Minks Receiving Feed Contaminated with Deoxynivalenol (DON, vomitoxin) with or without Bentonite Supplementation. Animals. 2019; 9(12). 1081 https://doi. org/10.3390/ani9121081 WOS:000506636400080. PMID: 31817218
41. Park S-H, Kim J, Kim D, Moon Y. Mycotoxin detoxifiers detoxifiers attenuate deoxynivalenol-induced pro-inflammatory barrier insult in porcine enterocytes as an in vitro evaluation model of feed mycotoxin reduction. Toxicol Vitro. 2017; 38:108–16. https://doi.org/10.1016/j.tiv.2016.10.003 WOS:000389167600013. PMID: 27737795
42. Yu Y-H, Lai Y-H, Hsiao FS-H, Cheng Y-H. Effects of Deoxynivalenol and Mycotoxin Adsorbent Agents on Mitogen-Activated Protein Kinase Signaling Pathways and Inflammation-Associated Gene Expression in Porcine Intestinal Epithelial Cells. Toxins (Basel). 2021; 13(5). 301 https://doi.org/10.3390/ toxins13050301 WOS:000654606100001. PMID: 33922863
43. Avantaggiato G, Solfrizzo M, Visconti A. Recent advances on the use of adsorbent materials for detoxification of Fusarium mycotoxins. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment. 2005; 22(4):379–88. https://doi.org/10.1080/19440049.2015.1125530 WOS:000229181700012. PMID: 26743589
44. Holanda DM, Yiannikouris A, Kim SW. Investigation of the Efficacy of a Postbiotic Yeast Cell WallBased Blend on Newly-Weaned Pigs under a Dietary Challenge of Multiple Mycotoxins with Emphasis on Deoxynivalenol. Toxins (Basel). 2020; 12(8). 504 https://doi.org/10.3390/toxins12080504 WOS:000564104100001. PMID: 32781569
45. Van Le Thanh B, Lessard M, Chorfi Y, Guay F. The efficacy of anti-mycotoxin feed additives in preventing the adverse effects of wheat naturally contaminated with Fusarium mycotoxins on performance, intestinal barrier function and nutrient digestibility and retention in weanling pigs. Canadian Journal of Animal Science. 2015; 95(2):197–209. https://doi.org/10.4141/cjas-2014-126 WOS:000355743200008.
46. Patience JF, Myers AJ, Ensley S, Jacobs BM, Madson D. Evaluation of two mycotoxin mitigation strategies in grow-finish swine diets containing corn dried distillers grains with solubles naturally contaminated with deoxynivalenol. Journal of Animal Science. 2014; 92(2):620–6. https://doi.org/10.2527/jas.2013- 6238 WOS:000331106400023. PMID: 24398837
47. Paulick M, Winkler J, Kersten S, Schatzmayr D, Frahm J, Kluess J, et al. Effects of oral exposure to sodium sulphite-treated deoxynivalenol (DON)-contaminated maize on performance and plasma concentrations of toxins and metabolites in piglets. Arch Anim Nutr. 2018; 72(1):42–57. https://doi.org/10. 1080/1745039X.2017.1415550 WOS:000429416600003. PMID: 29271253
48. Tran AT, Kluess J, Berk A, Paulick M, Frahm J, Schatzmayr D, et al. Detoxification of Fusarium-contaminated maize with sodium sulphite—in vivo efficacy with special emphasis on mycotoxin residues and piglet health. Arch Anim Nutr. 2018; 72(1):58–75. https://doi.org/10.1080/1745039X.2017.1418047 WOS:000429416600004. PMID: 29313386
49. Anh-Tuan T, Kluess J, Berk A, Paulick M, Frahm J, Schatzmayr D, et al. Effects of a Fusarium ToxinContaminated Maize Treated with Sodium Sulfite on Male Piglets in the Presence of an LPS-Induced Acute Inflammation. Toxins (Basel). 2018; 10(10). 419 https://doi.org/10.3390/toxins10100419 WOS:000448820400040. PMID: 30340332
50. Mwaniki AW, Buis QR, Trott D, Huber L-A, Yang C, Kiarie EG. Comparative efficacy of commercially available deoxynivalenol detoxifying feed additives on growth performance, total tract digestibility of components, and physiological responses in nursery pigs fed diets formulated with naturally contaminated corn. Translational animal science. 2021; 5(2):txab050–txab. https://doi.org/10.1093/tas/txab050 MEDLINE:PMID: 34085027.
51. Guerre P. Worldwide Mycotoxins Exposure in Pig and Poultry Feed Formulations. Toxins (Basel). 2016; 8(12). https://doi.org/10.3390/toxins8120350 WOS:000389342000004. PMID: 27886128
52. Yiannikouris A, Poughon L, Francois J, Cameleyre X, Dussap GA, Bertin G, et al. Study of organic binders able to complex mycotoxins and limit their impact on animals and residues in edible animal products. Paris: Inst Natl Recherche Agronomique; 2002. 42- p.
53. Nguyen-Ba H, Taghipoor M, van Milgen J. Modelling the feed intake response of growing pigs to diets contaminated with mycotoxins. Animal. 2020; 14:S303–S12. Pii s175173112000083x https://doi.org/ 10.1017/S175173112000083X WOS:323498313300011.
54. Wu L, Liao P, He L, Ren W, Yin J, Duan J, et al. Growth performance, serum biochemical profile, jejunal morphology, and the expression of nutrients transporter genes in deoxynivalenol (DON)-challenged growing pigs. Bmc Veterinary Research. 2015; 11. 144 https://doi.org/10.1186/s12917-015-0449-y WOS:000357307100001.
55. Reddy KE, Song J, Lee H-J, Kim M, Kim D-W, Jung HJ, et al. Effects of High Levels of Deoxynivalenol and Zearalenone on Growth Performance, and Hematological and Immunological Parameters in Pigs. Toxins (Basel). 2018; 10(3). 114 https://doi.org/10.3390/toxins10030114 WOS:000428565500022. PMID: 29518941
56. Iordanov MS, Pribnow D, Magun JL, Dinh TH, Pearson JA, Chen SLY, et al. Ribotoxic stress response: Activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA. Molecular and Cellular Biology. 1997; 17(6):3373–81. https://doi.org/10.1128/MCB.17.6.3373 WOS: A1997WZ63700042. PMID: 9154836
57. Pestka JJ. Deoxynivalenol: Toxicity, mechanisms and animal health risks. Animal Feed Science and Technology. 2007; 137(3–4):283–98. https://doi.org/10.1016/j.anifeedsci.2007.06.006 WOS:000249473500006.
58. Thanh BVL, Lemay M, Bastien A, Lapointe J, Lessard M, Chorfi Y, et al. The potential effects of antioxidant feed additives in mitigating the adverse effects of corn naturally contaminated with Fusarium mycotoxins on antioxidant systems in the intestinal mucosa, plasma, and liver in weaned pigs. Mycotoxin Research. 2016; 32(2):99–116. https://doi.org/10.1007/s12550-016-0245-y WOS:000374268300007. PMID: 27021614
59. Juan-Garcia A, Carbone S, Ben-Mahmoud M, Sagratini G, Manes J. Beauvericin and ochratoxin A mycotoxins individually and combined in HepG2 cells alter lipid peroxidation, levels of reactive oxygen species and glutathione. Food and Chemical Toxicology. 2020; 139. 111247 https://doi.org/10.1016/j. fct.2020.111247 WOS:000526412300005. PMID: 32165234
60. Oh SY, Mead PJ, Sharma BS, Quinton VM, Boermans HJ, Smith TK, et al. Effect of Penicillium mycotoxins on the cytokine gene expression, reactive oxygen species production, and phagocytosis of bovine macrophage (BoMacs) function. Toxicol Vitro. 2015; 30(1):446–53. https://doi.org/10.1016/j.tiv. 2015.09.017 WOS:000367635500026. PMID: 26394380
61. Horky P, Tmejova K, Kensova R, Cernei N, Kudr J, Ruttkay-Nedecky B, et al. Effect of Heat Stress on the Antioxidant Activity of Boar Ejaculate Revealed by Spectroscopic and Electrochemical Methods. Int J Electrochem Sci. 2015; 10(8):6610–26. WOS:000359200400047.
62. Gambacorta L, Olsen M, Solfrizzo M. Pig Urinary Concentration of Mycotoxins and Metabolites Reflects Regional Differences, Mycotoxin Intake and Feed Contaminations. Toxins (Basel). 2019; 11(7). 378 https://doi.org/10.3390/toxins11070378 WOS:000482110000053. PMID: 31262000
63. Winkler J, Kersten S, Valenta H, Huether L, Meyer U, Engelhardt U, et al. Simultaneous determination of zearalenone, deoxynivalenol and their metabolites in bovine urine as biomarkers of exposure. World Mycotoxin J. 2015; 8(1):63–74. https://doi.org/10.3920/wmj2014.1745 WOS:000349133200006.
64. Rodriguez-Carrasco Y, Font G, Ruiz-Leal MJ, Houda B. A short study of deoxynivalenol correlation in diet and urine. Toxicol Lett. 2015; 238(2):S66–S7. https://doi.org/10.1016/j.toxlet.2015.08.235 WOS:000370693801073.
65. Brezina U, Rempe I, Kersten S, Valenta H, Humpf HU, Danicke S. Diagnosis of intoxications of piglets fed with Fusarium toxin-contaminated maize by the analysis of mycotoxin residues in serum, liquor and urine with LC-MS/MS. Arch Anim Nutr. 2014; 68(6):425–47. https://doi.org/10.1080/1745039X.2014. 973227 WOS:000344478400001. PMID: 25355041
66. Bouchard MJ, Chorfi Y, Letourneau-Montminy MP, Guay F. Effects of deoxynivalenol and sodium meta-bisulphite on nutrient digestibility in growing pigs. Arch Anim Nutr. 2019; 73(5):360–73. https://doi. org/10.1080/1745039X.2019.1641369 WOS:000479459600001. PMID: 31342788
67. Przybylska-Gornowicz B, Tarasiuk M, Lewczuk B, Prusik M, Ziolkowska N, Zielonka L, et al. The Effects of Low Doses of Two Fusarium Toxins, Zearalenone and Deoxynivalenol, on the Pig Jejunum. A Light and Electron Microscopic Study. Toxins (Basel). 2015; 7(11):4684–705. https://doi.org/10.3390/ toxins7114684 WOS:000365647700020. PMID: 26569306
68. Gonkowski S, Gajecka M, Makowska K. Mycotoxins and the Enteric Nervous System. Toxins (Basel). 2020; 12(7). 461 https://doi.org/10.3390/toxins12070461 WOS:000557834200001. PMID: 32707706
69. Pierron A, Alassane-Kpembi I, Oswald IP. Impact of two mycotoxins deoxynivalenol and fumonisin on pig intestinal health. Porcine Health Manag. 2016; 2. Unsp 21 https://doi.org/10.1186/s40813-016- 0041-2 WOS:000407481600001. PMID: 28405447
70. Kim SW, Holanda DM, Gao X, Park I, Yiannikouris A. Efficacy of a Yeast Cell Wall Extract to Mitigate the Effect of Naturally Co-Occurring Mycotoxins Contaminating Feed Ingredients Fed to Young Pigs: Impact on Gut Health, Microbiome, and Growth. Toxins (Basel). 2019; 11(11). 633 https://doi.org/10. 3390/toxins11110633 WOS:000501604700044. PMID: 31683617
71. Zielonka L, Wisniewska M, Gajecka M, Obremski K, Gajecki M. Influence of low doses of deoxynivalenol on histopathology of selected organs of pigs. Polish Journal of Veterinary Sciences. 2009; 12(1):89– 95. WOS:000264277500013. PMID: 19459445
72. Skiepko N, Przybylska-Gornowicz B, Gajecka M, Gajecki M, Lewczuk B. Effects of Deoxynivalenol and Zearalenone on the Histology and Ultrastructure of Pig Liver. Toxins (Basel). 2020; 12(7). 463 https:// doi.org/10.3390/toxins12070463 WOS:326984271200001.