Within the context of maximizing the use of dietary phosphorus, a growing-finishing pig study was conducted to determine the optimal total dietary calcium (Ca) to digestible phosphorus (dP) ratio and to verify the possibility of mineral phosphate removal during the finishing period on growth performance and mineral status. The potential for replacing chemical and mechanical bone properties by dual energy X-ray absorptiometry (DXA) measures on non-dissected feet was also verified. Three Ca to dP ratios (2.2:1, 2.5:1 and 2.8:1) within two dP levels (P+, P–) were fed during 91 days to 84 pigs. The grower and finisher P+ diets contained 3.0 and 2.4 and P– diets contained 2.5 and 1.7 g dP/kg, respectively. Growth performance and blood serum mineral content were independent of treatments, except that 2.2:1 impaired finisher feed conversion ratio compared to 2.5:1 and 2.8:1. Urinary P concentration increased by 37% in 2.2:1 compared to 2.5:1 and 2.8:1. Maximal load on bone and DXA mineral density were reduced in 2.2:1 compared to 2.8:1. Bone ash and volumetric density were reduced in 2.2:1 and 2.5:1 compared to 2.8:1. Diet P– reduced bone ash, maximal load, volumetric density and DXA bone mineral content and density. No interaction was observed between Ca and dP level. Therefore, 2.2:1 was insufficient for an efficient metabolic use of P, 2.5:1 was sufficient to maximize growth performance and 2.8:1 further improved bone mineralization. Increasing dietary Ca did not impair bone zinc content. Diets P– without supplemented mineral phosphates during the finisher period resulted, per pig, in a decrease of its use by 65% and of the calculated P excretion by 41%, without impaired growth performance. Finally, DXA data responded to dietary treatments as did labor intensive chemical and mechanical bone properties.
Keywords: pig; calcium; phosphorus; zinc; phytase; dual-energy X-ray absorptiometry; DXA
1. Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: global food security and food for thought. Global Environ. Chang. 2009, 19, 292–305. [CrossRef]
2. Suttle, N. Mineral Nutrition of Livestock, 4th ed.; CABI: Wallingford, UK, 2010; pp. 122–167.
3. Létourneau-Montminy, M.P.; Jondreville, C.; Sauvant, D.; Narcy, A. Meta-analysis of phosphorus utilization by growing pigs: effect of dietary phosphorus, calcium and exogenous phytase. Animal 2012, 6, 1590–1600. [CrossRef] [PubMed]
4. Oberleas, D.; Muhrer, M.E.; O’Dell, B.L. Dietary metal-complexing agents and zinc availability in the rat. J. Nutr. 1966, 90, 56–62. [CrossRef] [PubMed]
5. Gonzàlez-Vega, J.C.; Walk, C.L.; Murphy, M.R.; Stein, H.H. Requirement for digestible calcium by 25 to 50 kg pigs at different dietary concentrations of phosphorus as indicated by growth performance, bone ash concentration, and calcium and phosphorus balances. J. Anim. Sci. 2016, 94, 5272–5285. [CrossRef]
6. Lagos, L.V.; Walk, C.L.; Murphy, M.R.; Stein, H.H. Effects of dietary digestible calcium on growth performance and bone ash concentration in 50- to 85-kg growing pigs fed diets with different concentrations of digestible phosphorus. Anim. Feed Sci. Technol. 2019, 247, 262–272. [CrossRef]
7. Vier, C.M.; Dritz, S.S.; Tokach, M.D.; De Rouchey, J.M.; Goodband, R.D.; Gonçalves, M.A.D.; Orlando, U.A.D.; Bergstrom, J.R.; Woodworth, J.C. Calcium to phosphorus ratio requirement of 26- to 127-kg pigs fed diets with or without phytase. J. Anim. Sci. 2019, 97, 4041–4052. [CrossRef] [PubMed]
8. Agroscope. Fütterungsempfehlungen für Schweine. Available online: https://www.agroscope.admin. ch/agroscope/de/home/services/dienste/futtermittel/fuetterungsempfehlungen-schweine (accessed on 1 February 2018).
9. Gesellschaft für Ernährung. Empfehlungen zur Energie- und Nährstoffversorgung von Schweinen; DLG Verlag: Frankfurt am Main, Germany, 2006.
10. National Research Council. Nutrient Requirements of Swine, 11th ed.; National Academy Press: Washington, DC, USA, 2012.
11. Bikker, P.; Blok, M.C. Phosphorus and Calcium Requirements of Growing Pigs and Sows; Wageningen Livestock Research (CVB documentation report): Wageningen, The Netherlands, 2017; p. 72.
12. Mitchell, A.D.; Conway, J.M.; Potts, W.J.E. Body Composition Analysis of Pigs by Dual-Energy X-Ray Absorptiometry. J. Anim. Sci. 1996, 74, 2663–2671. [CrossRef] [PubMed]
13. Marcoux, M.; Bernier, J.F.; Pomar, C. Estimation of Canadian and European lean yields and composition of pig carcasses by dual-energy X-ray absorptiometry. Meat Sci. 2003, 63, 359–365. [CrossRef]
14. Norris, S.A.; Pettifor, J.M.; Gray, D.A.; Biscardi, A.; Buffenstein, R. Validation and application of dual-energy X-ray absorptiometry to measure bone mineral density in rabbit vertebrae. J. Clin. Densitom. 2000, 3, 49–55. [CrossRef]
15. Scholz, A.M.; Heller, P.; Waldmann, K.-H.; Wolf, P.; Kamphues, J.; Förster, M. Bone mineralization in boars of two commercial sow lines using dual energy x-ray absorptiometry. Züchtungskunde 2004, 76, 94–107.
16. Nielsen, D.H.; Mc Evoy, F.J.; Madsen, M.T.; Jensen, J.B.; Svalastoga, E. Relationship between bone strength and dual-energy X-ray absorptiometry measurements in pigs. J. Anim. Sci. 2007, 85, 667–672. [CrossRef] [PubMed]
17. Agroscope. Referenzwerte Einzelfutter. Available online: https://www.agroscope.admin.ch/agroscope/de/ home/services/dienste/futtermittel/fuetterungsempfehlungen-schweine (accessed on 1 February 2018).
18. Bee, G.; Jacot, S.; Guex, G.; Biolley, C. Effects of two supplementation levels of linseed combined with CLA or tallow on meat quality traits and fatty acid profile of adipose and different muscle tissues in slaughter pigs. Animal 2008, 2, 800–811. [CrossRef] [PubMed]
19. Schlegel, P.; Gutzwiller, A. Effect of dietary calcium level and source on mineral utilisation by piglets fed diets containing exogenous phytase. J. Anim. Physiol. Anim. Nutr. 2017, 101, e165–e174. [CrossRef] [PubMed]
20. Bracher, A.; Spring, P. Rohproteingehalte in Schweinefutter - Bestandesaufnahme 2008. Agrarforsch. Schweiz 2011, 2, 244–251.
21. Ruiz-Ascacibar, I.; Stoll, P.; Bee, G.; Schlegel, P. Dynamics of the mineral composition and deposition rates in the empty body of entire males, castrates and female pigs. Animal 2019, 13, 950–958. [CrossRef]
22. Swiss Federal Council. Ordonnance du 7 Décembre 1998 sur les Paiements Directs Versés dans l’agriculture, Art. 6. Available online: www.admin.ch/opc/fr/classified-compilation/19983379/index (accessed on 1 November 2019).
23. Castaing, J.; Paboeuf, F.; Skiba, F.; Chauvel, M.; Cazaux, J.G.; van Milgen, J.; Jondreville, C. Estimation of the apparent digestible P requirements in growing-finishing pigs through the analysis of recent growth trials results. In Proceedings of the Journées Recherche Porcine, Paris, France, 4–6 February 2003; IFIP, INRA: Paris, France, 2003; pp. 47–54.
24. Hastad, C.W.; Dritz, S.S.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L.; de Rouchey, J.M.; Boyd, R.D.; Johnston, M.E. Phosphorus requirements of growing-finishing pigs reared in a commercial environment. J. Anim. Sci. 2004, 82, 2945–2952. [CrossRef]
25. Ryan, W.F.; Lynch, P.B.; O’Doherty, J.V. Compensatory effect of dietary phosphorus on performance of growing pigs and development of bone mineral density assessed using dual energy X-ray absorptiometry. Livest. Sci. 2011, 138, 89–95. [CrossRef]
26. Sørensen, K.U.; Tauson, A.–H.; Poulsen, H.D. Long term differentiated phosphorus supply from below to above requirement affects nutrient balance and retention, body weight gain and bone growth in growing-finishing pigs. Livest. Sci. 2018, 211, 14–20. [CrossRef]
27. Larsen, T.; Fernández, J.A.; Engberg, R.M. Bone turnover in growing pigs fed three levels of dietary calcium. Can. J. Anim. Sci. 2000, 80, 547–557. [CrossRef]
28. Létourneau-Montminy, M.P.; Lovatto, P.A.; Pomar, C. Apparent total tract digestibility of dietary calcium and phosphorus and their efficiency in bone mineral retention are affected by body mineral status in growing pigs. J. Anim. Sci. 2014, 92, 3914–3924. [CrossRef] [PubMed]
29. Larsen, T.; Sandström, B. Effect of dietary calcium level on mineral and trace-element utilization from a rapeseed (Brassica-Napus L) diet fed to ileum fistulated pigs. Br. J. Nutr. 1993, 69, 211–224. [CrossRef] [PubMed]
30. Windisch, W.; Kirchgessner, M. Effect of phytase on apparent digestibility and gross utilization of Fe, Cu, Zn and Mn at different levels of calcium supply in piglets and broilers. Agribiol. Res. 1995, 49, 23–29.
31. Jolliff, J.S.; Mahan, D.C. Effect of dietary calcium and phosphorus levels on the total tract digestibility of innate and supplemental organic and inorganic microminerals in a corn-soybean meal based diet of grower pigs. J. Anim. Sci. 2013, 91, 2775–2783. [CrossRef]
32. Morgan, D.P.; Young, E.P.; Earle, I.P.; Davey, R.J.; Stevenson, J.W. Effects of dietary calcium and zinc on calcium, phosphorus and zinc retention in swine. J. Anim. Sci. 1969, 29, 900–905. [CrossRef]
33. Schlegel, P.; Sauvant, D.; Jondreville, C. Bioavailability of zinc sources and their interaction with phytates in broilers and piglets. Animal 2013, 7, 47–59. [CrossRef]
34. Schlegel, P.; Nys, Y.; Jondreville, C. Zinc availability and digestive zinc solubility in piglets and broilers fed diets varying in their phytate contents, phytase activity and supplemented zinc source. Animal 2010, 4, 200–209. [CrossRef]