Author details:
The indiscriminate use of chemical pesticides increasingly harms the health of living beings and the environment. Thus, biological control carried out by microorganisms has gained prominence, since it consists of an environmentally friendly alternative to the use of pesticides for controlling plant diseases. Herein, we evaluated the potential role of endophytic Trichoderma strains isolated from forest species of the Cerrado-Caatinga ecotone as biological control agents of crop pathogenic fungi. Nineteen Trichoderma strains were used to assess the antagonistic activity by in vitro bioassays against the plant pathogens Colletotrichum truncatum, Lasiodiplodia theobromae, Macrophomina phaseolina, and Sclerotium delphinii isolated from soybean, cacao, fava bean, and black pepper crops, respectively. All Trichoderma strains demonstrated inhibitory activity on pathogen mycelial growth, with maximum percent inhibition of 70% against C. truncatum, 78% against L. theobromae, 78% against M. phaseolina, and 69% against S. delphinii. Crude methanol extracts (0.5 to 2.0 mg mL-1) of Trichoderma strains were able to inhibit the growth of C. truncatum, except Trichoderma sp. T3 (UFPIT06) and T. orientale (UFPIT09 and UFPIT17) at 0.5 mg mL-1, indicating that the endophytes employ a biocontrol mechanism related to antibiosis, together with multiple mechanisms. Discriminant metabolites of Trichoderma extracts were unveiled by liquid chromatography-tandem mass spectrometry-based metabolomics combined with principal component analysis (PCA), which included antifungal metabolites and molecules with other bioactivities. These results highlight the biocontrol potential of Trichoderma strains isolated from the Cerrado-Caatinga ecotone against crop pathogenic fungi, providing support for ongoing research on disease control in agriculture.
1. Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, Omidvar R, Kariman K. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol Control. 2018; 117:147–157. https://doi.org/10.1016/j.biocontrol.2017.11.006
2. Villa F, Cappitelli F, Cortesi P, Kunova A. Fungal biofilms: Targets for the development of novel strategies in plant disease management. Front Microbiol. 2017; 8:654. https://doi.org/10.3389/fmicb.2017. 00654 PMID: 28450858
3. Nagy K, Zheng C, Bolognesi C, A´ da´m B. Interlaboratory evaluation of the genotoxic properties of pencycuron, a commonly used phenylurea fungicide. Sci Total Environ. 2019; 647:1052–1057. https://doi. org/10.1016/j.scitotenv.2018.08.067 PMID: 30180313
4. Das S, Pattanayak S. Integrated disease management on grapes–a pioneer of a reformed movement toward sustainability. Int J Curr Microbiol Appl Sci. 2020; 9:993–1005. https://doi.org/10.20546/ijcmas. 2020.905.109
5. Salim HA, Simon S, Lal AA, Abdulrahman AL. Effectiveness of some integrated disease management factors (IDM) on Fusarium wilt infected tomato. J Sci Agri. 2017; 1:244–248. https://doi.org/10.25081/ jsa.2017.v1.820
6. Legrand F, Picot A, Cobo-Dı´az JF, Chen W, Le Floch G. Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F. graminearum. Biol Control. 2017; 113:26–38. https://doi.org/10.1016/j.biocontrol.2017.06.011
7. Leiter E´, Ga´ll T, Csernoch L, Po´csi I. Biofungicide utilizations of antifungal proteins of filamentous ascomycetes: current and foreseeable future developments. Biocontrol. 2017; 62:125–138. https://doi.org/ 10.1007/s10526-016-9781-9
8. Kyekyeku JO, Kusari S, Adosraku RK, Bullach A, Golz C, Strohmann C, et al. Antibacterial secondary metabolites from an endophytic fungus, Fusarium solani JK10. Fitoterapia. 2017; 119:108–114. https:// doi.org/10.1016/j.fitote.2017.04.007 PMID: 28392268
9. Yao YQ, Lan F, Qiao YM, Wei JG, Huang RS, Li LB. Endophytic fungi harbored in the root of Sophora tonkinensis Gapnep: diversity and biocontrol potential against phytopathogens. Microbiologyopen. 2017; 6:437. https://doi.org/10.1002/mbo3.437 PMID: 28299913
10. Huang X, He J, Yan X, Hong Q, Chen K, He Q, et al. Microbial catabolism of chemical herbicides: microbial resources, metabolic pathways and catabolic genes. Pestic Biochem Physiol. 2017; 143:272–297. https://doi.org/10.1016/j.pestbp.2016.11.010 PMID: 29183604
11. Macı´as-Rubalcava ML, Sa´nchez-Ferna´ndez RE. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J Microbiol Biotechnol. 2017; 33:15. https://doi.org/10.1007/s11274-016-2174-5 PMID: 27896581
12. Harrison JG & Griffin EA. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? Environmental microbiology. 2020; 22:2107–2123. https://doi.org/10.1111/1462-2920.14968 PMID: 32115818
13. Noriler SA, Savi DC, Aluizio R, Pala´cio-Cortes AM, Possiede YM, Glienke C. Bioprospecting and structure of fungal endophyte communities found in the Brazilian biomes, Pantanal, and Cerrado. Frontiers in microbiology. 2018; 9: 1526. https://doi.org/10.3389/fmicb.2018.01526 PMID: 30087658
14. Zonas de transic¸ão [cited 19 December 2021]. In: World Wide Fund for Nature (WWF) [Internet]. Available from: https://www.wwf.org.br/natureza_brasileira/questoes_ambientais/biomas/bioma_transicao.
15. Kark S. Effects of Ecotones on Biodiversity. In: Reference module in life sciences. Oxford, England, Science Direct. 2017; 1–7.
16. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000; 403:853–858. https://doi.org/10.1038/35002501 PMID: 10706275
17. Biodiversidade do cerrado [cited 19 December 2021]. In: CBC ICMBio [Internet]. Available from: https:// www.icmbio.gov.br/cbc/conservacao-da-biodiversidade/biodiversidade.html.
18. Caatinga [cited 19 December 2021]. In: Ministe´rio do Meio Ambiente [Internet]. Available from: https:// antigo.mma.gov.br/biomas/caatinga.html.
19. Lapola DM, Martinelli LA, Peres CA, Ometto JPHB, Ferreira ME, Nobre CA, et al. Pervasive transition of the Brazilian land-use system. Nat Clim Chang. 2013; 4:27–35. https://doi.org/10.1038/ NCLIMATE2056
20. Berg G. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied microbiology and biotechnology. 2009; 84: 11–18. https://doi. org/10.1007/s00253-009-2092-7 PMID: 19568745
21. Benı´tez T, Rinco´n AM, Limo´n MC, Codon AC. Biocontrol mechanisms of Trichoderma strains. International microbiology. 2004; 7: 249–260. PMID: 15666245
22. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E. Trichoderma: The genomics of opportunistic success. Nat Rev Microbiol. 2011; 9:749. https://doi.org/10.1038/ nrmicro2637 PMID: 21921934
23. Inglis PW, Mello SC, Martins I, Silva JB, Macêdo K, Sifuentes DN, et al. Trichoderma from Brazilian garlic and onion crop soils and description of two new species: Trichoderma azevedoi and Trichoderma peberdyi. PloS One. 2020; 15: e0228485. https://doi.org/10.1371/journal.pone.0228485 PMID: 32130211
24. Kredics L, Hatvani L, Naeimi S, Ko¨rmo¨czi P, Manczinger L, Va´gvo¨lgyi C, et al. Biodiversity of the genus Hypocrea/Trichoderma in different habitats. In: Biotechnology and biology of Trichoderma. 2014; 3–24. https://doi.org/10.1016/B978-0-444-59576-8.00001–1
25. Ma J, Tsegaye E, Li M, Wu B, Jiang X. Biodiversity of Trichoderma from grassland and forest ecosystems in Northern Xinjiang, China. 3 Biotech. 2020; 10: 1–13. https://doi.org/10.1007/s13205-019-1978- z PMID: 31815083
26. Silva HF, Santos AMG, Santos MVOD, Bezerra JL, Luz EDMN. Seasonal variation in the occurrence of fungi associated with forest species in a Cerrado-Caatinga transition area. Revista A´rvore. 2020; 44. https://doi.org/10.1590/1806-908820200000009
27. Silva HF, Costa EM, Santos AMG, Amaral ACT, Oliveira RJV, Bezerra JL, et al. Molecular identification and phylogenetic analysis of Trichoderma isolates obtained from woody plants of the semi-arid of Northeast Brazil. Nova Hedwigia. 2021; 112:485–500. https://doi.org/10.1127/nova_hedwigia/2021/0622
28. Silva HF, Santos AMG, Amaral ACT, Bezerra JL, Luz EDMN. Bioprospection of Trichoderma spp. originating from a Cerrado-Caatinga ecotone on Colletotrichum truncatum, in soybean. Revista Brasileira de Ciências Agra´rias (Agra´ria). 2020; 15. https://doi.org/10.5039/agraria.v15i1a7680
29. Mota JM, Melo MP, Silva FFS, Sousa EMJ, Sousa ES, Barguil BM, et al. Fungal diversity in lima bean seeds. Revista Brasileira de Engenharia de Biossistemas. 2017; 11:79–87.
30. Severo R, Shibutani LJ, Sousa ES, Matos KS, Beserra Ju´nior JEA, Melo MP. Sclerotium delphinii causing concentric leaf spots in Piper nigrum in Brazil. Australas Plant Pathol. 2021. https://doi.org/10.1007/ s13313-021-00820-1 PMID: 34608354
31. Mariano RLR. Me´todos de selec¸ão “in vitro” para controle microbiolo´gico. Revisão Anual de Patologia de Plantas, Passo Fundo. 1993; 1:369–409.
32. Camporota P. Antagonism in vitro of Trichoderma spp. vis-a-vis Rhizoctonia solani Kuhln. Agronomie. 1985; 5:613–620.
33. Oliveira JA. Efeito do tratamento fungicida em sementes no controle de tombamento de plaˆntulas de pepino (Cucumis sativa L.) e pimentão (Capsicum annanum L.). M.Sc. Thesis, Federal University of Lavras. 1991. Available from: http://repositorio.ufla.br/handle/1/33483.
34. Fernandes EG, Pereira OL, Silva CC, Bento CBP, Queiroz MV. Diversity of endophytic fungi in Glycine max. Microbiol Res. 2015; 181:84–92. https://doi.org/10.1016/j.micres.2015.05.010 PMID: 26111593
35. Tam EW, Chen JH, Lau EC, Ngan AH, Fung KS, Lee KC, et al. Misidentification of Aspergillus nomius and Aspergillus tamarii as Aspergillus flavus: characterization by internal transcribed spacer, β-tubulin, and calmodulin gene sequencing, metabolic fingerprinting, and matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol. 2014; 52: 1153–1160. https://doi.org/10.1128/ JCM.03258-13 PMID: 24452174
36. Yadav M, Dubey MK, Upadhyay RS. Systemic Resistance in Chilli Pepper against Anthracnose (Caused by Colletotrichum truncatum) induced by Trichoderma harzianum, Trichoderma asperellum and Paenibacillus dendritiformis. Journal of Fungi. 2021; 7: 307. https://doi.org/10.3390/jof7040307 PMID: 33923782
37. Begum MM, Sariah M, Abidin ZMA, Puteh AB, Rahman MA. Antagonistic potential of selected fungal and bacterial biocontrol agents against Colletotrichum truncatum of soybean seeds. Pertanica J. Trop. Agric. Sci. 2008; 31: 45–53.
38. Jagtap GP, Gavate DS, Dey U. Control of Colletotrichum truncatum causing anthracnose/pod blight of soybean by aqueous leaf extracts and biocontrol agents. Legume Research-An International Journal. 2014; 37: 329–334. https://doi.org/10.5958/j.0976-0571.37.3.050
39. Wanjiku EK, Waceke JW, Mbaka JN. Suppression of Stem-End Rot on Avocado Fruit Using Trichoderma spp. in the Central Highlands of Kenya. Advances in Agriculture. 2021; 2021. d https://doi.org/ 10.1155/2021/8867858
40. Bhadra M, Khair A, Hossain MA, Sikder MM. Efficacy of Trichoderma spp. and fungicides against Lasiodiplodia theobromae. Bangladesh Journal of Scientific and Industrial Research. 2014; 49: 125–130. https://doi.org/10.3329/bjsir.v49i2.22008
41. Thangavelu R, Sangeetha G, Mustaffa MM. Cross-infection potential of crown rot pathogen (Lasiodiplodia theobromae) isolates and their management using potential native bioagents in banana. Australasian Plant Pathology. 2007; 36: 595–605.
42. Sridharan AP, Sugitha T, Karthikeyan G, Nakkeeran S, Sivakumar U. Metabolites of Trichoderma longibrachiatum EF5 inhibits soil borne pathogen, Macrophomina phaseolina by triggering amino sugar metabolism. Microbial Pathogenesis. 2021; 150: 104714. https://doi.org/10.1016/j.micpath.2020. 104714 PMID: 33383148
43. Saravanakumar K & Wang M. Isolation and molecular identification of Trichoderma species from wetland soil and their antagonistic activity against phytopathogens. Physiological and Molecular Plant Pathology. 2020; 109: 101458. https://doi.org/10.1016/j.pmpp.2020.101458
44. Swain H, Adak T, Mukherjee AK, Sarangi S, Samal P, Khandual A, et al. Seed biopriming with Trichoderma strains isolated from tree bark improves plant growth, antioxidative defense system in rice and enhance straw degradation capacity. Frontiers in Microbiology. 2021; 12: 240. https://doi.org/10.3389/ fmicb.2021.633881 PMID: 33717027
45. Kottb M, Gigolashvili T, GRoßkinsky DK, Piechulla B. Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi. Front Microbiol. 2015; 6:995. https://doi.org/10. 3389/fmicb.2015.00995 PMID: 26483761
46. Mendoza JLH, Pe´rez MIS, Prieto JMG, Vela´squez JDQ, Olivares JGG, Langarica HRG. Antibiosis of Trichoderma spp. strains native to northeastern Mexico against the pathogenic fungus Macrophomina phaseolina. Braz J Microbiol. 2015; 46:1093–1101. https://doi.org/10.1590/S1517-838246420120177 PMID: 26691467
47. Khaledi N, Taheri P. Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina. J Plant Prot Res. 2016; 56:21–31. https://doi.org/10.1515/jppr2016-0004
48. Cheng M.J.; Wu M.D.; Chen J.J.; Hsieh S.Y.; Yuan G.F.; Chen I.S.; et al. Secondary metabolites from the endophytic fungus of Annulohypoxylon ilanense. Chem. Nat. Compd. 2013, 49, 523–525. https:// doi.org/10.1007/s10600-013-0658-1
49. Tian Y, Yu D, Liu N, Tang Y, Yan Z, Wu A. Confrontation assays and mycotoxin treatment reveal antagonistic activities of Trichoderma and the fate of Fusarium mycotoxins in microbial interaction. Environmental Pollution. 2020; 267: 115559. https://doi.org/10.1016/j.envpol.2020.115559 PMID: 33254604
50. Vinci G, Cozzolino V, Mazzei P, Monda H, Spaccini R, Piccolo A. An alternative to mineral phosphorus fertilizers: The combined effects of Trichoderma harzianum and compost on Zea mays, as revealed by 1H NMR and GC–MS metabolomics. PloS One. 2018; 13: e0209664. https://doi.org/10.1371/journal. pone.0209664 PMID: 30589863
51. Ni M, Wu Q, Wang GS, Liu QQ, Yu MX, Tang J. Analysis of metabolic changes in Trichoderma asperellum TJ01 at different fermentation time-points by LC-QQQ-MS. J Environ Sci Health, Part B. 2019; 54:20–26. https://doi.org/10.1080/03601234.2018.1507227 PMID: 30896331
52. Khan RAA, Najeeb S, Hussain S, Xie B, Li Y. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms. 2020; 8:817. https://doi.org/10.3390/ microorganisms8060817 PMID: 32486107
53. Reino JL, Guerrero RF, Herna´ndez-Gala´n R, Collado IG. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev. 2008; 7:89–123.
54. Yang ML, Kuo PC, Hwang TL, Wu TS. Anti-inflammatory principles from Cordyceps sinensis. Journal of Natural Products. 2011; 74:1996–2000. https://doi.org/10.1021/np100902f PMID: 21848266
55. Wood KV, Bonham CC, Miles D, Rothwell AP, Peel G, Wood BC, et al. Characterization of betaines using electrospray MS/MS. Phytochemistry. 2002; 59:759–765. https://doi.org/10.1016/s0031-9422 (02)00049-3 PMID: 11909633
56. Liu MH, Tong X, Wang JX, Zou W, Cao H, Su WW. Rapid separation and identification of multiple constituents in traditional Chinese medicine formula Shenqi Fuzheng Injection by ultra-fast liquid chromatography combined with quadrupole-time-of-flight mass spectrometry. J Pharm Biomed Anal. 2013; 74:141–155. https://doi.org/10.1016/j.jpba.2012.10.024 PMID: 23245245
57. Lu X, Zheng Y, Wen F, Huang W, Chen X, Ruan S, et al. Study of the active ingredients and mechanism of Sparganii rhizoma in gastric cancer based on HPLC-Q-TOF–MS/MS and network pharmacology. Sci Rep. 2021; 11:1–17. https://doi.org/10.1038/s41598-020-79139-8 PMID: 33414495
58. Illescas M, Pedrero-Me´ndez A, Pitorini-Bovolini M, Hermosa R, Monte E. Phytohormone Production Profiles in Trichoderma Species and Their Relationship to Wheat Plant Responses to Water Stress. Pathogens. 2021; 10:991, 2021. https://doi.org/10.3390/pathogens10080991 PMID: 34451455
59. Großkinsky D, Edelsbrunner K, Pfeifhofer H, Van der Graaff E, Roitsch T. Cis- and trans-zeatin differentially modulate plant immunity. Plant Signaling & Behavior. 2013; 8:e24798. https://doi.org/10.4161/ psb.24798 PMID: 23656869
60. Ahmed EA, Hassan EA, El Tobgy KMK, Ramadan EM. Evaluation of rhizobacteria of some medicinal plants for plant growth promotion and biological control. Annals of Agricultural Sciences. 2014; 59:273– 280. https://doi.org/10.1016/j.aoas.2014.11.016
61. Zhong TH, Zeng XM, Feng SB, Zhang HT, Zhang YH, Luo ZH, et al. Three new phomalone derivatives from a deep-sea-derived fungus Alternaria sp. MCCC 3A00467. Nat Prod Res. 2020; 1–5. https://doi. org/10.1080/14786419.2020.1771706 PMID: 32524853
62. Zhang L, Ge Y, Li J, Hao J, Wang H, He J, et al. Simultaneous determination of columbianetin-β-d-glucopyranoside and columbianetin in a biological sample by high-performance liquid chromatography with fluorescence detection and identification of other columbianetin-β-d-glucopyranoside metabolites by ultra high-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry. J Pharm Biomed Anal. 2018; 153:221–231. https://doi.org/10.1016/j.jpba.2018.02.055 PMID: 29506005
63. Nicoletti R, Fiorentino A. Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture. 2015; 5:918–970.
64. Zhu JJ & Jiang JG. Pharmacological and nutritional effects of natural coumarins and their structure– activity relationships. Molecular nutrition & food research. 2018; 62:1701073. https://doi.org/10.1002/ mnfr.201701073 PMID: 29750855
65. Souza SM, Delle Monache F, Smaˆnia A. Antibacterial activity of coumarins. Zeitschrift fuer Naturforschung C. 2005; 60:693–700. https://doi.org/10.1515/znc-2005-9-1006 PMID: 16320610
66. Guzma´n-Guzma´n P, Porras-Troncoso MD, Olmedo-Monfil V, Herrera-Estrella A. Trichoderma species: versatile plant symbionts. J Phytopathol. 2019; 109:6–16. https://doi.org/10.1094/PHYTO-07-18-0218- RVW PMID: 30412012
67. Thiruvengadam M, Baskar V, Kim SH, Chung IM. Effects of abscisic acid, jasmonic acid and salicylic acid on the content of phytochemicals and their gene expression profiles and biological activity in turnip (Brassica rapa ssp. rapa). Plant Growth Regulation. 2016; 80:377–390. https://doi.org/10.1007/ s10725-016-0178-7
68. Phukhamsakda C, Macabeo APG, Yuyama KT, Hyde KD, Stadler M. Biofilm inhibitory abscisic acid derivatives from the plant-associated Dothideomycete fungus, Roussoella sp. Molecules. 2018; 23:2190. https://doi.org/10.3390/molecules23092190 PMID: 30200229
69. Oh JH, Joo YH, Karadeniz F, Ko J, Kong CS. Syringaresinol inhibits UVA-induced MMP-1 expression by suppression of MAPK/AP-1 signaling in HaCaT keratinocytes and human dermal fibroblasts. International journal of molecular sciences. 2020; 21:3981. https://doi.org/10.3390/ijms21113981 PMID: 32492931
70. Fang M, Wang J, Huang Y, Zhao Y. Rapid Screening and Identification of Brefeldin A in Endophytic Fungi Using HPLC–MS/MS. Frontiers of Chemistry in China. 2006; 1:15–19.
71. Anadu NO, Davisson VJ, Cushman M. Synthesis and anticancer activity of brefeldin A ester derivatives. Journal of medicinal chemistry. 2006; 49: 3897–3905. https://doi.org/10.1021/jm0602817 PMID: 16789745
72. Li T, Tang J, Karuppiah V, Li Y, Xu N, Chen J. Co-culture of Trichoderma atroviride SG3403 and Bacillus subtilis 22 improves the production of antifungal secondary metabolites. Biological Control. 2020; 140: 104122. https://doi.org/10.1016/j.biocontrol.2019.104122
73. Dieu A, Mambu L, Champavier Y, Chaleix V, Sol V, Gloaguen V, et al. Antibacterial activity of the lichens Usnea florida and Flavoparmelia caperata (Parmeliaceae). Nat Prod Res. 2020; 34:3358–3362. https:// doi.org/10.1080/14786419.2018.1561678 PMID: 30676068
74. Meng-Reiterer J, Varga E, Nathanail AV, Bueschl C, Rechthaler J, McCormick SP, et al. Tracing the metabolism of HT-2 toxin and T-2 toxin in barley by isotope-assisted untargeted screening and quantitative LC-HRMS analysis. Anal Bioanal Chem. 2015; 407:8019–8033. https://doi.org/10.1007/s00216- 015-8975-9 PMID: 26335000
75. Dapic I, Brkljacic L, Jakasa I, Kobetic R. Characterization of ceramides with phytosphingosine backbone by hydrogen-deuterium exchange mass spectrometry. Croat Chem Acta. 2019; 92:1E–1E. https://doi.org/10.5562/cca3506
76. Kondo N, Ohno Y, Yamagata M, Obara T, Seki N, Kitamura T, et al. Identification of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids. Nat Commun. 2014; 5:1–13. https://doi. org/10.1038/ncomms6338 PMID: 25345524
77. Choi HK, Cho YH, Lee EO, Kim JW, Park CS. Phytosphingosine enhances moisture level in human skin barrier through stimulation of the filaggrin biosynthesis and degradation leading to NMF formation. Archives of dermatological research. 2017; 309: 795–803. https://doi.org/10.1007/s00403-017-1782-8 PMID: 28936777
78. Kaur J, Famta P, Khurana N, Vyas M, Khatik GL. Biomedical applications of 4-hydroxycoumarin as a fungal metabolite and its derivatives. New Fut Devel Microbiol Biotech Bioeng. Elsevier. 2020; 209– 218. https://doi.org/10.1016/B978-0-12-821006-2.00016–9
79. Obaiah N, Bodke YD, Telkar S. Synthesis of 3-[(1H-Benzimidazol-2-ylsulfanyl)(aryl) methyl]-4-hydroxycoumarin derivatives as potent bioactive molecules. ChemistrySelect. 2020; 5:178–184. https://doi. org/10.1002/slct.201903472
80. Xie Y, Peng Q, Ji Y, Xie A, Yang L, Mu S, et al. Isolation and identification of antibacterial bioactive compounds from Bacillus megaterium L2. Front Microbiol. 2021; 12. https://doi.org/10.3389/fmicb.2021. 645484 PMID: 33841370
81. Farid MM, Yang X, Kuboyama T, Tohda C. Trigonelline recovers memory function in Alzheimer’s disease model mice: evidence of brain penetration and target molecule. Sci Rep. 2020; 10:1–10. https:// doi.org/10.1038/s41598-019-56847-4 PMID: 31913322