Ruminants are unique in their ability to convert high fibre forages and crop residues into high quality meat and milk protein for humans. Although the rumen microbiome is often considered the most efficient microbial system at degrading lignocellulosic biomass, often more than 50% of the structural carbohydrates in cereal crop residues are not digested. This low digestibility of crop residues limits their feed value for ruminants. Increasing the efficiency of utilization of fibrous feedstuffs is essential to increase the sustainability of ruminant production systems from both an economic and environmental perspective. This article will focus on two technologies, ammonia fiber expansion (AFEX) and recombinant fibrolytic enzymes that we have recently worked with to improve ruminal fibre digestion of cereal crop residues. Understanding the factors limiting plant cell wall degradation by rumen microbes is essential for developing strategies to improve forage utilization by ruminants. Dietary supplementation with fibrolytic enzymes is not a new concept and they have been shown to improve ruminal fibre digestion. However, results have been inconsistent. Here we discuss the results of our recent work aiming to identify effective recombinant fibrolytic enzymes developed specifically for the rumen environment. We also show that AFEX technology can dramatically improve ruminal fibre digestion, but it still needs to be industrialized. Recombinant enzymes can potentially improve fibre digestion in the future but improvements are likely to be less than that achievable with AFEX.
Adesogan, A.T., Z.X. Ma, J.J. Romero, and K.G. Arriola. 2014. Ruminant nutrition symposium: Improving cell wall digestion and animal performance with fibrolytic enzymes. J. Anim. Sci. 92 1317–1330. https://doi.org/10.2527/jas.2013-7273
Alvira, P., E. Tomás-Pejó, M. Ballesteros, M. Negro. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093.
Arner, A. 1964. The breakdown of asparagine, glutamine, and other amides by microorganisms from the sheep’s rumen. Aust. J. Biol. Sci. 17 170–182. https://doi.org/10.1071/BI9640170.
Arriola, K.G., A.S. Oliveira, Z.X. Ma, I.J. Lean, M.C. Giurcanu and A.T. Adesogan. 2017. A meta-analysis on the effect of dietary application of exogenous fibrolytic enzymes on the performance of dairy cows. J. Dairy Sci. 100 4513–4527. https://doi.org/10.3168/jds.2016-12103
Badhan, A., Y. Wang, R. Gruninger, D. Patton, J. Powlowski, A. Tsang and T. McAllister. 2014. Formulation of enzyme blends to maximize the hydrolysis of alkaline peroxide pretreated alfalfa hay and barley straw by rumen enzymes and commercial cellulases. BMC Biotechnol. 14 31. https://doi.org/10.1186/1472-6750-14-31
Bals, B., F. Teymouri, D. Haddad, W.A. Julian, R. Vismeh, A.D. Jones, P. Mor, B. Van Soest, A. Tyagi and M. VandeHaar. 2019. Presence of acetamide in milk and beef from cattle consuming AFEX-Treated crop residues. J. Agric. Food Chem. 67 10756–10763. https://doi.org/10.1021/acs.jafc.9b04030.
Bals, B., H. Murnen, M. Allen and B. Dale. 2010. Ammonia fiber expansion (AFEX) treatment of eleven different forages: Improvements to fiber digestibility in vitro. Anim. Feed Sci. Technol. 155 147–155. https://doi.org/10.1016/j.anifeedsci.2009.11.004
Beauchemin, K.A., D. Colombatto, D.P. Morgavi and W.Z. Yang. 2003. Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J. Anim. Sci. 81 E37–E47. https://doi.org/10.2527/2003.8114_suppl_2E37x
Beauchemin, K.A., G.O. Ribeiro, T. Ran, M.R.M. Milani, W.Z. Yang, H. Khanaki, R.J. Gruninger, A. Tsang and T.A. McAllister. 2019. Recombinant fibrolytic feed enzymes and ammonia fibre expansion (AFEX) pretreatment of crop residues to improve fibre degradability in cattle. Anim. Feed Sci. Technol. 256 114260. https://doi.org/10.1016/j.anifeedsci.2019.114260
Blümmel, M., F. Teymouri, J. Moore, C. Nielson, J. Videto, P. Kodukula, S. Pothu, R. Devulapalli and P. Varijakshapanicker. 2018. Ammonia Fiber Expansion (AFEX) as spin off technology from 2nd generation biofuel for upgrading cereal straws and stovers for livestock feed. Anim. Feed Sci. Technol. 236 178–186. https://doi.org/10.1016/j.anifeedsci.2017.12.016
Cheng, K.-J., and T.A. McAllister. 1997. Compartmentation in the rumen. In: P. N. Hobson and C. S.Stewart, editors, The rumen microbial ecosystem. 2nd ed. Blackie Academic & Professional, London, UK. p. 492–522.
Chundawat, S.P., R. Vismeh, L.N. Sharma, J.F. Humpula, L.C. Sousa, C.K. Chambliss, A.D. Jones, V. Balan and B.E. Dale. 2010. Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments. Bioresour. Technol. 101 8429–8438. https://doi.org/10.1016/j.biortech.2010.06.027
Cotanch, K.W., R.J. Grant, M.E. Van Amburgh, A. Zontini, M. Fustini, A. Palmonari, A. Formigoni. 2014. Applications of uNDF in ration modeling and formulation. Cornell Nutrition Conference for Feed Manufacturers, Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca (Accessed March 01, 2020). https://hdl.handle.net/1813/37979.
Edwards, J.E., A.H. Kingston-Smith, H.R. Jimenez, S.A. Huws, K.P. Skøt, G.W. Griffith, N.R. McEwan and M.K. Theodorou. 2008. Dynamics of initial colonization of non-conserved perennial ryegrass by anaerobic fungi in the bovine rumen. FEMS Microbiol. Ecol. 66 537–545.
Ellis, W.C., D.P. Poppi, J.H. Matis, H. Lippke, T.M. Hill and F.M. Roquette Jr. 1999. Dietarydigestive-metabolic interactions determining the nutritive potential of ruminant diets. H.J.G. Jung, G.C. Fahey Jr. (Eds.), Proc. 5th Int. Symp. Nutr. Herbivores, Am. Soc. Anim. Sci., Savoy, IL, pp. 423-481.
Eun, J.-S., K.A. Beauchemin, S.-H. Hong, and M.W. Bauer. 2006. Exogenous enzymes added to untreated or ammoniated rice straw: Effects on in vitro fermentation characteristics and degradability. Anim. Feed Sci. Technol. 131 86–101. https://doi.org/10.1016/j.anifeedsci.2006.01.026
Fahey, G.C., L.D. Bourquin, E.C. Titgemeyer and D.G. Atwell. 1993. Postharvest treatment of fibrous feedstuffs to improve the nutritive value. In: H.G. Jung, D.R. Buxton, R.D. Hatfield and J. Ralph, editors, Forage cell wall structure and digestibility. Am. Soc. Agron., Crop Sci. Soc. Am., and Soil Sci. Soc. Am., Madison, WI. p. 715–766. https://doi.org/10.2134/1993.foragecellwall.c26
FAO. 2018. The future of food and agriculture – Alternative pathways to 2050. Supplementary material. Rome. 64 pp. Licence: CC BY-NC-SA 3.0 IGO. http://www.fao.org/3/CA1564EN/CA1564EN.pdf
Fleischman, R.W., J.R. Baker, M. Hagopian, G.G. Wade, D.W. Hayden, E.R. Smith, J.H. Weisburger and E.K. Weisburger. 1980. Carcinogenesis bioassay of acetamide, hexanamide, adipamide, urea and para-tolylurea in mice and rats. J. Environ. Pathol. Toxicol. 3 149–170.
Giraldo, L.A., M.L. Tejido, M.J. Ranilla, and M.D. Carro. 2007. Effects of exogenous cellulase supplementation on microbial growth and ruminal fermentation of a high-forage diet in Rusitec fermenters. J. Anim. Sci. 85 1962–1970. https://doi.org/10.2527/jas.2006-318
Griffith, C. L., G.O. Ribeiro, Jr., M. Oba, T.A. McAllister and K.A. Beauchemin. 2016. Fermentation of ammonia fiber expansion treated and untreated barley straw in a rumen simulation technique using rumen inoculum from cattle with slow versus fast rate of fiber disappearance. Front. Microbiol. 7 1839. https://doi.org/10.3389/fmicb.2016.01839
Hu Y., Y. He, S. Gao, Z. Liao, T. Lai, H. Zhou, Q. Chen, L. Li, H. Gao and W. Lu. 2020. The effect of a diet based on rice straw co-fermented with probiotics and enzymes versus a fresh corn stover-based diet on the rumen bacterial community and metabolites of beef cattle. Sci. Rep. 10 10721.
Huhtanen, P., U. Asikainen, M. Arkkila and S. Jaakkola. 2007. Cell wall digestion and passage kinetics estimated by marker and in situ methods or by rumen evacuations in cattle fed hay 2 or 18 times daily. Anim. Feed Sci. Technol.,133 206–227.
Huws, S.A., J.E. Edwards, C.J. Creevey, P.R. Stevens, W. Lin, S.E. Girdwood, J.A. Pachebat and A.H. Kingston-Smith. 2016. Temporal dynamics of the metabolically active rumen bacteria colonizing fresh perennial ryegrass. FEMS Microbiol. Ecol. 92(1) fiv137.
Huws, S.A., J.E. Edwards, L. Wanchang, F. Rubino, M. Alston, D. Swarbreck, S. Caim, P.R. Stevens, J. Pachebat, M.Y. Won, L.B. Oyama, C.J. Creevy and A.H. Kingston-Smith. 2020. Microbiomes attached to fresh perennial ryegrass- are temporally resilient and adapt to changing ecological niches. bioRxiv 2020. https://doi.org/10.1101/2020.11.17.386292
Huws, S.A., O.L. Mayorga, M.K. Theodorou, L.A. Onime, E.J. Kim, A.H. Cookson, C.J. Newbold and A.H. Kingston-Smith. 2013. Successional colonization of perennial ryegrass by rumen bacteria. Lett. Appl. Microbiol. 56(3) 186-196.
Jackson, B., and F.I. Dessau. 1961. Liver tumors in rats fed acetamide. Lab. Invest. 10 909–923.
Jung, H.G. and M.S. Allen. 1995. Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. J. Anim. Sci.73 2774–2790. https://doi.org/10.2527/1995.7392774x
Klopfenstein, T., and F.G. Owen. 1981. Value and potential use of crop residues and by-products in dairy rations. J. Dairy Sci. 64 1250–1268. https://doi.org/10.3168/jds.S0022-0302(81)82699-9
McAllister, T.A., A.N. Hristov, K.A. Beauchemin, L.M. Rode, and K.J. Cheng. 2001. Enzymes in ruminant diets. In: M. R. Bedford and G. G. Partridge, editors, Enzymes in farm animal nutrition. CABI Publishing, Wallingford, UK. p. 273–289.
McAllister, T.A., H.D. Bae, G.A. Jones and K.J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72 3004-3018.
Meale, S.J., K.A. Beauchemin, A.N. Hristov, A.V. Chaves and T.A. McAllister. 2014. BoardInvited Review: Opportunities and challenges in using exogenous enzymes to improve ruminant production. J. Anim. Sci. 92 427–442. https://doi.org/10.2527/jas.2013–6869
Mor, P., B. Bals, A.K. Tyagi, F. Teymouri, N. Tyagi, S. Kumar, V. Bringi and M. VandeHaar. 2018. Effect of ammonia fiber expansion on the available energy content of wheat straw fed to lactating cattle and buffalo in India. J. Dairy Sci. 101 7990–8003. https://doi.org/10.3168/jds.2018- 14584
Mottet, A., C. de Haan, A. Falcucci, G. Tempio, C. Opio and P. Gerber. 2017. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14 1-8. https://doi.org/10.1016/j.gfs.2017.01.001
Passetti, R.A.C., L.C.G. Passetti, R.J. Gruninger, G.O. Ribeiro, M.R.M. Milani, I.N. Prado and T.A. McAllister. 2020. Effect of ammonia fibre expansion (AFEX) treatment of rice straw on in situ digestibility, microbial colonization, acetamide levels and growth performance of lambs. Anim. Feed Sci. Technol. 261 114411.
Piao, H., M. Lachman, S. Malfatti, A. Sczyrba, B. Knierim, M. Auer, S.G. Tringe, R.I. Mackie, C.J. Yeoman and M. Hess. 2014. Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Front. Microbiol. 5 307.
Ribeiro, G.O., A. Badhan, J. Huang, K.A. Beauchemin, W. Yang, Y. Wang, A. Tsang and T.A. McAllister. 2018. New recombinant fibrolytic enzymes for improved in vitro ruminal fiber degradability of barley straw. J. Anim. Sci. 96 3928–3942. https://doi.org/10.1093/jas/sky251
Ribeiro, G.O., L. C. Gonçalves, L.G. Pereira, A.V. Chaves, Y. Wang, K.A. Beauchemin and T.A. McAllister. 2015. Effect of fibrolytic enzymes added to a Andropogon gayanus grass silageconcentrate diet on rumen fermentation in batch cultures and the artificial rumen (Rusitec). Animal 9 1153–1162. https://doi.org/10.1017/S1751731115000221
Ribeiro, G.O., R.J. Gruninger, D.R. Jones, K.A. Beauchemin, W.Z. Yang, Y. Wang, D.W. Abbott, A. Tsang and T.A. McAllister. 2020. Effect of ammonia fiber expansion-treated wheat straw and a recombinant fibrolytic enzyme on rumen microbiota and fermentation parameters, total tract digestibility, and performance of lambs. J. Anim. Sci. 98 skaa116. https://doi.org/10.1093/jas/skaa116
Saleem A.M., G.O. Ribeiro, H. Sanderson, D. Alipour, T. Brand, M. Hünerberg, W.Z. Yang, L.V. Santos and T.A. McAllister. 2019. Effect of exogenous fibrolytic enzymes and ammonia fiber expansion on the fermentation of wheat straw in an artificial rumen system (RUSITEC). J. Anim. Sci. 97 3535-3549.
Sarks, C., B.D. Bals, J. Wynn, F. Teymouri, S. Schwegmann, K. Sanders, M. Jin, V. Balan, B.E. Dale. 2016. Scaling up and benchmarking of ethanol production from pelletized pilot scale AFEX treated corn stover using Zymomonas mobilis 8b. Biofuels 7 253–262.
Scott, S.L., R.S. Mbifo, J. Chiquette, P. Savoie and G. Turcotte. 2011. Rumen disappearance kinetics and chemical characterization of by-products from cellulosic ethanol production. Anim. Feed Sci. Technol. 165 151–160.
Soufizadeh, M., R. Pirmohammadi, Y. Alijoo, and H.K. Behroozyar. 2018. Indigestible neutral detergent fibers: relationship between forage fragility and neutral detergent fibers digestibility in total mixed ration and some feedstuffs in dairy cattle. Vet. Res. Forum 9 49–57.
Tao Ran, A.M. Saleem, Y. Shen, G.O. Ribeiro Jr, K.A. Beauchemin, A. Tsang, W. Yang and T.A. McAllister. 2019. Effects of a recombinant fibrolytic enzyme on fiber digestion, ruminal fermentation, nitrogen balance, and total tract digestibility of heifers fed a high forage diet. J. Anim. Sci. 97 3578–3587. https://doi.org/10.1093/jas/skz216
Terry, S.A., G.O. Ribeiro, C.C. Conrad, K.A. Beauchemin, T.A. McAllister and R.J. Gruninger. 2020. Pretreatment of crop residues by ammonia fiber expansion (AFEX) alters the temporal colonization of feed in the rumen by rumen microbes, FEMS Microbiol. Ecol. 96 fiaa074. https://doi.org/10.1093/femsec/fiaa074
Teymouri, F., L. Laureano-Perez, H. Alizadeh and B.E. Dale. 2005. Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour. Technol. 96 2014–2018. https://doi.org/10.1016/j.biortech.2005.01.016.
United Nations (UN), Department of Economic and Social Affairs, Population Division. 2019. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423). https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf
Van Amburgh, M.E., E. Collao-Saenz, R. Higgs, D. Ross, E. Recktenwald, E. Raffrenato, L. Chase, T. Overton, J. Mills and A. Foskolos. 2015. The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. J. Dairy Sci., 98 6361-6380. https://doi.org/10.3168/jds.2015-9378
Vismeh, R., D. Haddad, J. Moore, C. Nielson, B. Bals, T. Campbell, A. Julian, F. Teymouri, A. D. Jones and V. Bringi. 2018. Exposure assessment of acetamide in milk, beef, and coffee using xanthydrol derivatization and gas chromatography/mass spectrometry. J. Agric. Food Chem. 66 298–305. https://doi.org/10.1021/acs.jafc.7b02229
Wang, Y., B.M. Spratling, D.R. ZoBell, R.D. Wiedmeier, and T.A. McAllister. 2004. Effect of alkali pretreatment of wheat straw on the efficacy of exogenous fibrolytic enzymes. J. Anim. Sci. 82 198–208. https://doi.org/10.2527/2004.821198x
Wang, Y., T.A. McAllister, L.M. Rode, K.A. Beauchemin, D.P. Morgavi, V.L. Nsereko, A.D. Iwaasa and W. Yang. 2001. Effects of an exogenous enzyme preparation on microbial protein synthesis, enzyme activity and attachment to feed in the Rumen Simulation Technique (Rusitec). Br. J. Nutr. 85 325–332. https://doi.org/10.1079/bjn2000277
Weimer, P.J., D.R. Mertens, E. Ponnampalam, B.F. Severin, and B.E. Dale. 2003. FIBEXtreated rice straw as a feed ingredient for lactating dairy cows. Anim. Feed Sci. Technol. 103 41– 50.
Wilson, J.R., and D. R. Mertens. 1995. Cell wall accessibility and cell structure limitations to microbial digestion of forage. Crop Sci. 35 251–259. https://doi.org/10.2135/cropsci1995.0011183X003500010046x
World Health Organization (WHO) International Agency for Research on Cancer, 1999. ICAR Monographs on the Evaluation of Carcinogenic Risks to Humans Vol. 71. Reevaluation of some organic chemical, hydrazine and hydrogen peroxide, Lyon, France 1586 pages.
Xiao, B., X.F. Sun and RunCang Sun. 2001. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym. Degrad. Stab. 74 307-319. https://doi.org/10.1016/S0141-3910(01)00163-X
Zhou M., Y.H. Chung, K.A. Beauchemin, L. Holtshausen, M. Oba, T.A. McAllister and L.L. Guan. 2011. Relationship between rumen methanogens and methane production in dairy cows fed diets supplemented with a feed enzyme additive. J. Appl. Microbiol. 111 1148-1158.