1. NRC. Nutrient Requirements of Swine. Washington, DC: National Academy
Press (2012).
2. Flachowsky G, Kamphues J. Carbon footprints for food of animal origin: what are the most preferable criteria to measure animal yields? Animals. (2012) 2:108–26. doi: 10.3390/ani2020108
3. Dourmad JY, Seve B, Latimier P, Boisen S, Fernandez J, Van Der PeetSchwering C, et al. Nitrogen consumption, utilisation and losses in pig production in France, The Netherlands and Denmark. Livestock Production
Science. (1999) 58:261–4. doi: 10.1016/S0301-6226(99)00015-9
4. Gerber P, Key N, Portet F, Steinfeld H. Policy options in addressing livestock’s contribution to climate change. Animal. (2010)
4:393–406. doi: 10.1017/S1751731110000133
5. Niemann H, Kuhla B, Flachowsky G. Perspectives for feed-efficient animal production. J Anim Sci. (2011) 89:4344–63. doi: 10.2527/jas.2011-4235
6. Wilkinson JM. Re-defining efficiency of feed use by livestock. Animal. (2011)
5:1014–22. doi: 10.1017/S175173111100005X
7. CAST. Animal Agriculture and Global Food Supply. Ames, IA: Council for
Agricultural Science and Technology (CAST) (1999).
8. Gill M, Smith P, Wilkinson JM. Mitigating climate change: the role of domestic livestock. Animal. (2010) 4:323–
33. doi: 10.1017/S1751731109004662
9. Ertl P, Knaus W, Zollitsch W. An approach to including protein quality when assessing the net contribution of livestock to human food supply. Animal. (2016) 10:1883–9. doi: 10.1017/S1751731116000902
10. Baber JR, Sawyer JE, Wickersham TA. Estimation of human-edible protein conversion efficiency, net protein contribution, and enteric methane production from beef production in the United States. Transl Anim Sci. (2018) 2:439–50. doi: 10.1093/tas/txy086
11. Ertl P, Steinwidder A, Schönauer M, Krimberger K, Knaus W, Zollitsch
W. Net food production of different livestock: a national analysis for
Austria including relative occupation of different land categories [NettoLebensmittelproduktion der Nutztierhaltung: Eine nationale Analyse für
Österreich inklusive relativer Flächenbeanspruchung]. J Land Manag Food
Environ. (2016) 67:91–103. doi: 10.1515/boku-2016-0009
12. Wilkinson JM, Lee MRF. Review: use of human-edible animal feeds by ruminant livestock. Animal. (2018) 12:1735–
43. doi: 10.1017/S175173111700218X
13. Rauw WM, Rydhmer L, Kyriazakis I, Overland M, Gilbert H, Dekkers
JC, et al. Prospects for sustainability of pig production in relation to climate change and novel feed resources. J Sci Food Agric. (2020) 100:3575–
86. doi: 10.1002/jsfa.10338
14. Moughan PJ. An overview of energy and protein utilisation during growth in simple-stomached animals. Anim Prod Sci. (2018) 58:646–
54. doi: 10.1071/AN15791
15. Mohn S, Gillis AM, Moughan PJ, De Lange CF. Influence of dietary lysine and energy intakes on body protein deposition and lysine utilization in the growing pig. J Anim Sci. (2000) 78:1510–9. doi: 10.2527/2000.786
1510x
16. Van Barneveld RJ, Batterham ES, Norton BW. The effect of heat on amino acids for growing pigs 3. The availability of lysine from heat-treated field peas (Pisum sativum cultivar Dundale) determined using the slope-ratio assay. Br
J Nutr. (1994) 72:257–75. doi: 10.1079/BJN19940028
17. Almeida FN, Htoo JK, Thomson J, Stein HH. Effects of balancing crystalline amino acids in diets containing heat-damaged soybean meal or distillers dried grains with solubles fed to weanling pigs. Animal. (2014) 8:1594–
602. doi: 10.1017/S175173111400144X
18. Remus A, Del Castillo JRE, Pomar C. Improving the estimation of amino acid requirements to maximize nitrogen retention in precision feeding for growing-finishing pigs. Animal. (2020)
14:2032–41. doi: 10.1017/S1751731120000798
19. Mcauliffe GA, Chapman DV, Sage CL. A thematic review of life cycle assessment (LCA) applied to pig production. Environ Impact Assess Rev. (2016) 56:12–22. doi: 10.1016/j.eiar.2015.08.008
20. Andretta I, Remus A, Franceschi CH, Orso C, Kipper M. Chapter
3 - environmental impacts of feeding crops to poultry and pigs.
In: Galanakis CM, editor. Environmental Impact of Agro-Food
Industry and Food Consumption. London: Academic Press (2021). p.
59–79. doi: 10.1016/B978-0-12-821363-6.00001-1
21. Brossard L, Dourmad JY, Rivest J, Van Milgen J. Modelling the variation in performance of a population of growing pig as affected by lysine supply and feeding strategy. Animal. (2009)
3:1114–23. doi: 10.1017/S1751731109004546
22. Hauschild L, Pomar C, Lovatto PA. Systematic comparison of the empirical and factorial methods used to estimate the nutrient requirements of growing pigs. Animal. (2010) 4:714–23. doi: 10.1017/S1751731109991546
23. Remus A, Hauschild L, Pomar C. Simulated amino acid requirements of growing pigs differ between current factorial methods. Animal. (2020)
14:725–30. doi: 10.1017/S1751731119002660
24. Pomar C, Hauschild L, Zhang GH, Pomar J, Lovatto PA. Applying precision feeding techniques in growing-finishing pig operations. Rev Brasil Zoot. (2009) 38:226–37. doi: 10.1590/S1516-35982009001300023
25. Pomar C, Pomar J, Rivest J, Cloutier L, Letourneau-Montminy MP, Andretta
I, et al. Estimating real-time individual amino acid requirements in growingfinishing pigs : towards a new definition of nutrient requirements? In:
Sakomura NK, Gous R, Kyriazakis I, Hauschild L, editors. Nutritional
Modelling for Pigs and Poultry. Wallingford: CAB International (2015). p. 157–74. doi: 10.1079/9781780644110.0157
26. Pomar C, Andretta I, Hauschild L. Meeting individual nutrient requirements to improve nutrient efficiency and the sustainability of growing pig production systems. In: Wiseman J, editor. Achieving Sustainable Production of Pig Meat. Sawston; Cambridge: Burleigh Dodds Science Publishing (2017). p. 287–98. doi: 10.19103/AS.2017.0013.31
27. Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, et al. Tackling Climate Change Through Livestock – A Global Assessment of Emissions and Mitigation Opportunities. Roma: Food and Agriculture
Organization of the United Nations (FAO) (2013).
28. Tullo E, Finzi A, Guarino M. Review: Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Sci Total
Environ. (2019) 650:2751–60. doi: 10.1016/j.scitotenv.2018.10.018
29. Patience JF, Thacker PA, De Lange CFM. Swine Nutrition Guide. Saskatoon,
SK: University of Saskatchewan; Prairie Swine Center (1995).
30. Heidari MD, Gandasasmita S, Li E, Pelletier N. Proposing a framework for sustainable feed formulation for laying hens: a systematic review of recent developments and future directions. J Clean Prod. (2021)
288:125585. doi: 10.1016/j.jclepro.2020.125585
31. Wilton JW, Morris CA, Jenson EA, Leigh AO, Pfeiffer WC. A linear programming model for beef cattle production. Can J Anim Sci. (1974)
54:693–707. doi: 10.4141/cjas74-084
32. Stein HH, Seve B, Fuller MF, Moughan PJ, De Lange CFM.
Invited review: amino acid bioavailability and digestibility in pig feed ingredients: terminology and application. J Anim Sci. (2007)
85:172–80. doi: 10.2527/jas.2005-742
33. Jondreville C, Dourmad JY. Le phosphore dans la nutrition des porcs. INRA Prod Anim. (2005) 18:183–
92. doi: 10.20870/productions-animales.2005.18.3.3523
34. Sanjayan N, Heo JM, Nyachoti CM. Nutrient digestibility and growth performance of pigs fed diets with different levels of canola meal from
Brassica napus black and Brassica juncea yellow. J Anim Sci. (2014) 92:3895–
905. doi: 10.2527/jas.2013-7215
35. Mitchell HH. Comparative Nutrition of Man and Domestic Animals. New
York, NY: Academic Press (1962).
36. Fuller MF, Mcwilliam R, Wang TC, Giles LR. The optimum dietary amino acid pattern for growing pigs. Br J Nutr. (1989) 62:255–
67. doi: 10.1079/BJN19890028
37. Jean Dit Bailleul P, Rivest J, Dubeau F, Pomar C. Reducing nitrogen excretion in pigs by modifying the traditional least-cost formulation algorithm.
Livestock Prod Sci. (2001) 72:199–211. doi: 10.1016/S0301-6226(01)00224-X
38. Castrodeza C, Lara P, Pena T. Multicriteria fractional model for feed formulation: economic, nutritional and environmental criteria. Agric Syst. (2005) 86:76–96. doi: 10.1016/j.agsy.2004.08.004
39. Pomar C, Dubeau F, Létourneau Montminy MP, Boucher C, Julien P-O.
Reducing phosphorus concentration in pig diets by adding an environmental objective to the traditional feed formulation algorithm. Livest Sci. (2007)
111:16–27. doi: 10.1016/j.livsci.2006.11.011
40. Lara P, Stancu-Minasian I. Fractional programming: a tool for the assessment of sustainability. Agric Syst. (1999) 62:131–
41. doi: 10.1016/S0308-521X(99)00062-1
41. Tozer PR, Stokes JR. A multi-objective programming approach to feed ration balancing and nutrient management. Agric Syst. (2001) 67:201–
15. doi: 10.1016/S0308-521X(00)00056-1
42. Niemi JK. A dynamic programming model for optimising feeding and slaughter decisions regarding fattening pigs. Agric Food Sci. (2006) 15:6–
121. doi: 10.23986/afsci.5855
43. Garcia-Launay F, Dusart L, Espagnol S, Laisse-Redoux S, Gaudré D, Méda
B, et al. Multiobjective formulation is an effective method to reduce environmental impacts of livestock feeds. Br J Nutr. (2018) 120:1298–
309. doi: 10.1017/S0007114518002672
44. Meul M, Ginneberge C, Van Middelaar CE, De Boer IJM,
Fremaut D, Haesaert G. Carbon footprint of five pig diets using three land use change accounting methods. Livest Sci. (2012)
149:215–23. doi: 10.1016/j.livsci.2012.07.012
45. Selle PH, De Paula Dorigam JC, Lemme A, Chrystal PV, Liu SY. Synthetic and crystalline amino acids: alternatives to soybean meal in chicken-meat production. Animals. (2020) 10:729. doi: 10.3390/ani10040729
46. Cappelaere L, Le Cour Grandmaison J, Martin N, Lambert W.
Amino acid supplementation to reduce environmental impacts of broiler and pig production: a review. Front Vet Sci. (2021)
8:689259. doi: 10.3389/fvets.2021.689259
47. Ikeda M. Amino acid production processes. Adv Biochem Eng Biotechnol. (2003) 79:1–35. doi: 10.1007/3-540-45989-8_1
48. Van Der Werf HMG, Petit J, Sanders J. The environmental impacts of the production of concentrated feed: the case of pig feed in Bretagne. Agric Syst. (2005) 83:153–77. doi: 10.1016/j.agsy.2004.03.005
49. Garcia-Launay F, Van Der Werf HMG, Nguyen TTH, Le Tutour L, Dourmad
JY. Evaluation of the environmental implications of the incorporation of feed-use amino acids in pig production using Life Cycle Assessment. Livest
Sci. (2014) 161:158–75. doi: 10.1016/j.livsci.2013.11.027
50. Monteiro ANTR, Bertol TM, De Oliveira PV., Dourmad JY,
Coldebella A, Kessler AM. The impact of feeding growing-finishing pigs with reduced dietary protein levels on performance, carcass traits, meat quality and environmental impacts. Livestock Sci. (2017)
198:162–9. doi: 10.1016/j.livsci.2017.02.014
51. Monteiro ANTR, Dourmad J-Y, Pozza PC. Life cycle assessment as a tool to evaluate the impact of reducing crude protein in pig diets %J Ciência Rural.
Ciência Rural. (2017) 47:1–8. doi: 10.1590/0103-8478cr20161029
52. Le Bellego L, Noblet J. Performance and utilization of dietary energy and amino acids in piglets fed low protein diets. Livestock Prod Sci. (2002)
76:45–58. doi: 10.1016/S0301-6226(02)00008-8
53. Van Milgen J, Valancogne A, Dubois S, Dourmad J-Y, Seve
B, Noblet J. InraPorc: A model and decision support tool for the nutrition of growing pigs. Anim Feed Sci Technol. (2008)
143:387–405. doi: 10.1016/j.anifeedsci.2007.05.020
54. Van Milgen J, Dourmad J-Y. Concept and application of ideal protein for pigs. J Anim Sci Biotechnol. (2015) 6:15. doi: 10.1186/s40104-015-0016-1
55. Wang Y, Zhou J, Wang G, Cai S, Zeng X, Qiao S. Advances in low-protein diets for swine. J Anim Sci Biotechnol. (2018)
9:60. doi: 10.1186/s40104-018-0276-7
56. Hauschild L, Lovatto PA, Pomar J, Pomar C. Development of sustainable precision farming systems for swine: estimating real-time individual amino acid requirements in growing-finishing pigs. J Anim Sci. (2012) 90:2255–
63. doi: 10.2527/jas.2011-4252
57. Hauschild L, Kristensen AR, Andretta I, Remus A, Santos LS, Pomar C.
Toward better estimates of the real-time individual amino acid requirements of growing-finishing pigs showing deviations from their typical feeding patterns. Animal. (2020) 14:s371–81. doi: 10.1017/S1751731120001226
58. Remus A, Hauschild L, Corrent E, Letourneau-Montminy MP, Pomar C.
Pigs receiving daily tailored diets using precision-feeding techniques have different threonine requirements than pigs fed in conventional phase-feeding systems. J Anim Sci Biotechnol. (2019) 10:16. doi: 10.1186/s40104-019-0328-7
59. Remus, A., Pomar, C., and Andretta, I. (2021). Estratégias para maximar a retenção de proteína e energia. Available online at: https://www.3tres3.com. br.; https://www.3tres3.com.br/guia333/empresas/laboratorio-de-ensinozootecnico-ufrgs/posts/730 (accessed September 28, 2021).
60. Remus A, Hauschild L, Methot S, Pomar C. Precision livestock farming: real-time estimation of daily protein deposition in growing-finishing pigs.
Animal. (2020) 14:s360–70. doi: 10.1017/S1751731120001469
61. Noblet J. Net energy evaluation of feeds and determination of net energy requirements for pigs. Rev Brasil Zoot. (2007)
36:277–84. doi: 10.1590/S1516-35982007001000025
62. Van Milgen J, Noblet J, Dubois S. Energetic efficiency of starch, protein and lipid utilization in growing pigs. J Nutr. (2001) 131:1309–
18. doi: 10.1093/jn/131.4.1309
63. Reeds PJ, Fuller MF, Cadenhead A, Lobley GE, Mcdonald JD. Effects of changes in the intakes of protein and non-protein energy on wholebody protein turnover in growing pigs. Br J Nutr. (1981) 45:539–
46. doi: 10.1079/BJN19810132
64. Pomar C, Pomar J, Dubeau F, Joannopoulos E, Dussault J-P. The impact of daily multiphase feeding on animal performance, body composition, nitrogen and phosphorus excretions, and feed costs in growing–finishing pigs. Animal. (2014) 8:704–13. doi: 10.1017/S1751731114000408
65. Moore KL, Mullan BP, Kim JC. An evaluation of the alternative feeding strategies, blend feeding, three-phase feeding or a single diet, in pigs from 30 to 100 kg liveweight. Anim Feed Sci Technol. (2016) 216:273–
80. doi: 10.1016/j.anifeedsci.2016.04.001
66. Letourneau Montminy MP, Boucher C, Pomar C, Dubeau F, Dussault JP.
The impact of different formulation methods and feeding programs on feeding cost and nitrogen and phosphorus excretion in growing-finishing pigs. In: International Workshop on Green Pork Production: “Porcherie verte”,
A Research Initiative on Environment-Friendly Pig Production (Paris) (2005).
67. Brossard L, Vautier B, Van Milgen J, Salaun Y, Quiniou N. Comparison of in vivo and in silico growth performance and variability in pigs when applying a feeding strategy designed by simulation to control the variability of slaughter weight. Anim Prod Sci. (2014) 54:1939–45. doi: 10.1071/AN14521
68. Feddes JJR, Ouellette CA, Leonard JJ. A system for providing protein for pigs in intermediately sized grower/finisher barns. Canad Agric Eng. (2000) 42:209–13.
69. Joannopoulos E, Dubeau F, Haddou M, Dussault J-P, Pomar C. Nouvelle méthode d’alimentation hybride: un mixte de l’alimentation traditionnelle par phases et par mélange. In: 49th Journées Recherche Porcine. Paris (2017). p. 93–8.
70. Black JL, Banhazi TM. Economic and social advantages from Precision
Livestock Farming in the pig industry. In: Precision Livestock Farming 2013 - Papers Presented at the 6th European Conference on Precision Livestock
Farming, ECPLF 2013. Leuven (2013). p. 199–208.
71. Pomar C, Van Milgen J, Remus A. Precision animal nutrition, principle and practice. In: Hendriks W, Verstegen M, Babinszky L, editors. Poultry and Pig Nutrition: Challenges of the 21st
Century. Wageningen: Wageningen Academic Publishers (2019). p.
397–418. doi: 10.3920/978-90-8686-884-1_18
72. Rostagno HS, Albino LFT, Hannas MI, Donzele JL, Sakomura NK, Perazzo
FG, et al. (2017). Brazilian Tables for Poultry and Swine: Composition of
Feedstuffs and Nutritional Requirements. Viçosa: UFV.
73. Pomar C, Kyriazakis I, Emmans GC, Knap PW. Modeling stochasticity: dealing with populations rather than individual pigs. J Anim Sci. (2003) 81:E178–86. doi: 10.2527/2003.8114_suppl_2E178x
74. Pomar C, Remus A. Precision pig feeding: a breakthrough toward sustainability. Anim Front. (2019) 9:52–9. doi: 10.1093/af/vfz006
75. Andretta I, Pomar C, Rivest J, Pomar J, Lovatto PA, Radunz Neto J.
The impact of feeding growing-finishing pigs with daily tailored diets using precision feeding techniques on animal performance, nutrient utilization, and body and carcass composition. J Anim Sci. (2014) 92:3925–
36. doi: 10.2527/jas.2014-7643
76. Andretta I, Pomar C, Rivest J, Pomar J, Radunz J. Precision feeding can significantly reduce lysine intake and nitrogen excretion without compromising the performance of growing pigs. Animal. (2016) 10:1137–
47. doi: 10.1017/S1751731115003067
77. Remus A, Hauschild L, Létourneau-Montminy MP, Corrent E,
Pomar C. The ideal protein profile for late-finishing pigs in precision feeding systems: threonine. Anim Feed Sci Technol. (2020)
265:114500. doi: 10.1016/j.anifeedsci.2020.114500
78. Liu JB, Yan HL, Liao YP, Xie ZJ, Yin YL. Effects of feed intake level on the additivity of apparent and standardized ileal digestibility of amino acids in diets for growing pigs. Anim Feed Sci Technol. (2020)
266:114525. doi: 10.1016/j.anifeedsci.2020.114525
79. Oliveira MSF, Abelilla JJ, Jaworski NW, Htoo JK, Stein HH. Crystalline amino acids do not influence calculated values for standardized ileal digestibility of amino acids in feed ingredients included in diets for pigs. J Anim Sci. (2020)
98. doi: 10.1093/jas/skaa333
80. Acosta JA, Stein HH, Patience JF. Impact of increasing the levels of insoluble fiber and on the method of diet formulation measures of energy and nutrient digestibility in growing pigs. J Anim Sci. (2020) 98. doi: 10.1093/jas/skaa130
81. Chen T, Chen D, Tian G, Zheng P, Mao X, Yu J, et al. Effects of soluble and insoluble dietary fiber supplementation on growth performance, nutrient digestibility, intestinal microbe and barrier function in weaning piglet. Anim
Feed Sci Technol. (2020) 260:114335. doi: 10.1016/j.anifeedsci.2019.114335
82. Fuller MF, Chamberlain AG. Protein requirements of pigs. In: Haresign W, editor. Recent Advances in Animal Nutrition. London: Butterwoths (1982). p.
175–186. doi: 10.1016/B978-0-408-71015-2.50012-2
83. Fuller MF. The Encyclopedia of Farm Animal Production. Wallingford: CABI
Pub (2004). doi: 10.1079/9780851993690.0000
84. Noblet J, Quiniou N. Principaux facteurs de variation du besoin en acides aminés du porc en croissance. Techni-Porc. (1999) 22:9–16.
85. Knap PW. Stochastic simulation of growth in pigs: relations between body composition and maintenance requirements as mediated through protein turn-over and thermoregulation. Anim Sci. (2000)
71:11–30. doi: 10.1017/S1357729800054850
86. Vautier B, Quiniou N, Van Milgen J, Brossard L. Accounting for variability among individual pigs in deterministic growth models. Animal. (2013)
7:1265–73. doi: 10.1017/S1751731113000554
87. Van Milgen J, Noblet J. Partitioning of energy intake to heat, protein, and fat in growing pigs. J Anim Sci. (2003) 81(E Suppl 2):E86–
93. doi: 10.2527/2003.8114_suppl_2E86x
88. Ferguson NS, Gous RM, Emmans GC. Preferred components for the construction of a new simulation model of growth, feed intake and nutrient requirements of growing pigs. S Afr J Anim Sci. (1994) 24:10–7.
89. Mahan DC, Shields RG. Essential and nonessential amino acid composition of pigs from birth to 145 kilograms of body weight, and comparison to other studies. J Anim Sci. (1998) 76:513–21. doi: 10.2527/1998.762513x
90. Noblet J, Le Goff G. Effect of dietary fibre on the energy value of feeds for pigs. Anim Feed Sci Technol. (2001) 90:35–
52. doi: 10.1016/S0377-8401(01)00195-X
91. Noblet J, Van Milgen J. Energy value of pig feeds: effect of pig body weight and energy evaluation system. J Anim Sci. (2004) 82:E229–
238. doi: 10.2527/2004.8213_supplE229x
92. Cloutier L, Pomar C, Letourneau Montminy MP, Bernier JF, Pomar
J. Evaluation of a method estimating real-time individual lysine requirements in two lines of growing-finishing pigs. Animal. (2015)
9:561–8. doi: 10.1017/S1751731114003073
93. Conde-Aguilera JA, Barea R, Le Floc’h N, Lefaucheur L, Van
Milgen J. A sulfur amino acid deficiency changes the amino acid composition of body protein in piglets. Animal. (2010)
4:1349–58. doi: 10.1017/S1751731110000340
94. Conde-Aguilera JA, Cobo-Ortega C, Mercier Y, Tesseraud S, Van Milgen
J. The amino acid composition of tissue protein is affected by the total sulfur amino acid supply in growing pigs. Animal. (2014) 8:401–
9. doi: 10.1017/S1751731113002425
95. Conde-Aguilera JA, Cholet JCG, Lessire M, Mercier Y, Tesseraud S, Van
Milgen J. The level and source of free-methionine affect body composition and breast muscle traits in growing broilers1. Poult Sci. (2016) 95:2322–
31. doi: 10.3382/ps/pew105
96. Mitchel HH. Comparative Nutrition of Man and Domestic Animals. New
York, NY: Academic Press (1962).
97. Gloaguen M, Le Floc’h N, Brossard L, Barea R, Primot Y, Corrent E, et al. Response of piglets to the valine content in diet in combination with the supply of other branched-chain amino acids. Animal. (2011) 5:1734–
42. doi: 10.1017/S1751731111000760
98. Gloaguen M, Le Floc’h N, Primot Y, Corrent E, Van Milgen J. Response of piglets to the standardized ileal digestible isoleucine, histidine and leucine supply in cereal-soybean meal-based diets. Animal. (2013) 7:901–
8. doi: 10.1017/S1751731112002339
99. Cemin HS, Tokach MD, Vier CM, Dritz SS, Woodworth JC, Derouchey
JM, et al. 176 effects of standardized ileal digestible histidine:lysine ratio on growth performance of 7 to 11 Kg pigs. J Anim Sci. (2018)
96:93. doi: 10.1093/jas/sky073.173
100. Soto JA, Tokach MD, Dritz SS, Woodworth JC, Derouchey JM, Goodband
RD, et al. Optimal dietary standardized ileal digestible lysine and crude protein concentration for growth and carcass performance in finishing pigs weighing greater than 100 kg1,2. J Anim Sci. (2019) 97:1701–
11. doi: 10.1093/jas/skz052
101. Jansman AJM, Cirot O, Corrent E, Lambert W, Ensink J, Van Diepen JTM.
Interaction and imbalance between indispensable amino acids in young piglets. Animal. (2019) 13:941–9. doi: 10.1017/S175173111800263X
102. Gloaguen M, Le Floc’h N, Corrent E, Primot Y, Van Milgen J. Providing a diet deficient in valine but with excess leucine results in a rapid decrease in feed intake and modifies the postprandial plasma amino acid and α-keto acid concentrations in pigs. J Anim Sci. (2012) 90:3135–
42. doi: 10.2527/jas.2011-4956
103. Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. (2009) 37:1–17. doi: 10.1007/s00726-009-0269-0
104. Rodrigues LA, Wellington MO, González-Vega JC, Htoo JK, Van Kessel
AG, Columbus DA. Functional amino acid supplementation, regardless of dietary protein content, improves growth performance and immune status of weaned pigs challenged with Salmonella Typhimurium. J Anim Sci. (2021)
99:365. doi: 10.1093/jas/skaa365
105. De Ridder K, Levesque CL, Htoo JK, De Lange CFM. Immune system stimulation reduces the efficiency of tryptophan utilization for body protein deposition in growing pigs. J Anim Sci. (2012) 90:3485–
91. doi: 10.2527/jas.2011-4830
106. Wu G. Functional amino acids in growth, reproduction, and health. Adv
Nutr. (2010) 1:31–7. doi: 10.3945/an.110.1008
107. Le Floc’h N, Wessels A, Corrent E, Wu G, Bosi P. The relevance of functional amino acids to support the health of growing pigs. Animal Feed Sci Technol. (2018) 245:104–16. doi: 10.1016/j.anifeedsci.2018.09.007
108. Le Floc’h N, Gondret F, Matte JJ, Quesnel H. Towards amino acid recommendations for specific physiological and patho-physiological states in pigs. Proc Nutr Soc. (2012) 71:425–32. doi: 10.1017/S0029665112000560
109. Rakhshandeh A, Htoo JK, Karrow N, Miller SP, De Lange CF.
Impact of immune system stimulation on the ileal nutrient digestibility and utilisation of methionine plus cysteine intake for whole-body protein deposition in growing pigs. Br J Nutr. (2013)
111:101–10. doi: 10.1017/S0007114513001955
110. Pastorelli H, Van Milgen J, Lovatto P, Montagne LJA. Meta-analysis of feed intake and growth responses of growing pigs after a sanitary challenge. (2012)
6:952–61. doi: 10.1017/S175173111100228X
111. Remus A, Hauschild L, Andretta I, Kipper M, Lehnen CR, Sakomura
NK. A meta-analysis of the feed intake and growth performance of broiler chickens challenged by bacteria. Poult Sci. (2014) 93:1149–
58. doi: 10.3382/ps.2013-03540
112. Reckmann K, Krieter J. Environmental impacts of the pork supply chain with regard to farm performance. J Agric Sci. (2015) 153:411–
21. doi: 10.1017/S0021859614000501
113. Cadéro A, Aubry A, Dourmad JY, Salaün Y, Garcia-Launay F. Effects of interactions between feeding practices, animal health and farm infrastructure on technical, economic and environmental performances of a pig-fattening unit. Animal. (2020) 14:s348–59. doi: 10.1017/S1751731120000300