Abdul Kader, M., Koshio, S., Ishikawa, M., Yokoyama, S., Bulbul, M., Nguyen, B.T., Gao, J., Laining, A., 2012. Can fermented soybean meal and squid by-product blend be used as fishmeal replacements for Japanese flounder (Paralichthys olivaceus)? Aquaculture Research. 43, 1427-1438.
Adron, J., Mackie, A., 1978. Studies on the chemical nature of feeding stimulants for rainbow trout, Salmo gairdneri Richardson. Journal of Fish Biology. 12, 303-310.
Ahmed, I., 2014. Dietary amino acid l-methionine requirement of fingerling Indian catfish, Heteropneustes fossilis (Bloch-1974) estimated by growth and haemato-biochemical parameters. Aquaculture Research. 45, 243-258.
Ahmed, I., Khan, M.A., Jafri, A., 2003. Dietary methionine requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). Aquaculture international. 11, 449-462.
Alam, M.S., Teshima, S.I., Ishikawa, M., Koshio, S., 2000. Methionine requirement of juvenile Japanese flounder Paralichthys olivaceus. Journal of the World Aquaculture Society. 31, 618-626.
Anusree, M., Nampoothiri, K.M., 2015. White Biotechnology for Amino Acids, Industrial Biorefineries & White Biotechnology. Elsevier, pp. 445-471.
Aragão, C., Conceição, L.E., Martins, D., Rønnestad, I., Gomes, E.d., Dinis, M.T., 2004. A balanced dietary amino acid profile improves amino acid retention in post-larval Senegalese sole (Solea senegalensis). Aquaculture. 233, 293-304.
Ayer, N.W., Tyedmers, P.H., 2009. Assessing alternative aquaculture technologies: life cycle assessment of salmonid culture systems in Canada. Journal of Cleaner production. 17, 362-373.
Azaza, M., Mensi, F., Ksouri, J., Dhraief, M., Brini, B., Abdelmouleh, A., Kraiem, M., 2008. Growth of Nile tilapia (Oreochromis niloticus L.) fed with diets containing graded levels of green algae ulva meal (Ulva rigida) reared in geothermal waters of southern Tunisia. Journal of applied ichthyology. 24, 202-207.
Azeredo, R., Machado, M., Guardiola, F., Cerezuela, R., Afonso, A., Peres, H., Oliva-Teles, A.,Esteban, M., Costas, B., 2017. Local immune response of two mucosal surfaces of theEuropean seabass, Dicentrarchus labrax, fed tryptophan-or methionine-supplementeddiets. Fish & shellfish immunology. 70, 76-86.
Baker, D., Clausing, W.W., Harmon, B., Jensen, A., Becker, D., 1969. Replacement value of cystinefor methionine for the young pig. Journal of Animal Science. 29, 581-584.
Baker, D.H., 2006. Comparative species utilization and toxicity of sulfur amino acids. The Journal of nutrition. 136, 1670S-1675S.
Beal, C.M., Gerber, L.N., Thongrod, S., Phromkunthong, W., Kiron, V., Granados, J., Archibald, I., Greene, C.H., Huntley, M.E., 2018. Marine microalgae commercial production improvessustainability of global fisheries and aquaculture. Scientific reports. 8, 1-8.
Belghit, I., Skiba-Cassy, S., Geurden, I., Dias, K., Surget, A., Kaushik, S., Panserat, S., Seiliez, I.,2014. Dietary methionine availability affects the main factors involved in muscle proteinturnover in rainbow trout (Oncorhynchus mykiss). British journal of nutrition. 112, 493 503.
Bender, D.A., 2003. Nutritional biochemistry of the vitamins. Cambridge university press.
Bender, D.A., 2014. Introduction to nutrition and metabolism. CRC Press.
Berge, G.E., Goodman, M., Espe, M., Lied, E., 2004. Intestinal absorption of amino acids in fish: kinetics and interaction of the in vitro uptake of L-methionine in Atlantic salmon (Salmo salar L.). Aquaculture. 229, 265-273.
Bergheim, A., Sveier, H., 1995. Replacement of fish meal in salmonid diets by soya meal reduces phosphorus excretion. Aquaculture International. 3, 265-268.
Biswas, A.K., Kaku, H., Ji, S.C., Seoka, M., Takii, K., 2007. Use of soybean meal and phytase for partial replacement of fish meal in the diet of red sea bream, Pagrus major. Aquaculture. 267, 284-291.
Boonyoung, S., Haga, Y., Satoh, S., 2013. Preliminary study on effects of methionine hydroxy analog and taurine supplementation in a soy protein concentrate-based diet on the biological performance and amino acid composition of rainbow trout [Oncorhynchus mykiss (Walbaum)]. Aquaculture Research. 44, 1339-1347.
Borlongan, I.G., Coloso, R.M., 1993. Requirements of juvenile milkfish (Chanos chanos Forsskal) for essential amino acids. The Journal of nutrition. 123, 125-132.
Brosnan, J.T., Brosnan, M.E., 2006. The sulfur-containing amino acids: an overview. The Journal of nutrition. 136, 1636S-1640S.
Burr, G.S., Wolters, W.R., Barrows, F.T., Hardy, R.W., 2012. Replacing fishmeal with blends of alternative proteins on growth performance of rainbow trout (Oncorhynchus mykiss), and early or late stage juvenile Atlantic salmon (Salmo salar). Aquaculture. 334, 110- 116.
Caprio, J., Shimohara, M., Marui, T., Kohbara, J., Harada, S., Kiyohara, S., 2015. Amino acid specificity of fibers of the facial/trigeminal complex innervating the maxillary barbel in the Japanese sea catfish, Plotosus japonicus. Physiology & behavior. 152, 288-294.
Carter, C., Hauler, R., 2000. Fish meal replacement by plant meals in extruded feeds for Atlantic salmon, Salmo salar L. Aquaculture. 185, 299-311.
Chen, J., Li, Y., Li, Z., Lu, H., Zhu, P., Li, C., 2018. Dietary L-arginine supplementation improves semen quality and libido of boars under high ambient temperature. Animal: an international journal of animal bioscience. 12, 1611-1620.
Chen, Y.-H., Chen, W.-L., Wang, Y.-H., Huang, M.-Y., Chern, M.-K., 2007. Spatiotemporal expression of zebrafish D-amino acid oxidase during early embryogenesis. Fish Physiology and Biochemistry. 33, 73-80.
Chen, Y., Yang, Y., Wang, Q., Lin, L., Liu, H., Guo, Z., Zhang, D., 2019. The effects of methionine- enriched Artemia nauplii on growth, amino acid profiles, absorption enzyme activity and antioxidant capability of common carp (Cyprinus carpio var. Jian) larvae. Aquaculture research. 50, 1-8.
Cheng, Z., Hardy, R., Blair, M., 2003. Effects of supplementing methionine hydroxy analogue in soybean meal and distiller's dried grain-based diets on the performance and nutrient retention of rainbow trout [Oncorhynchus mykiss (Walbaum)]. Aquaculture Research. 34, 1303-1310.
Cho, C., Bureau, D., 2001. A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture. Aquaculture research. 32, 349-360.
Chou, R., Her, B., Su, M., Hwang, G., Wu, Y., Chen, H., 2004. Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum. Aquaculture. 229, 325-333.
Chu, Z., Gong, Y., Lin, Y., Yuan, Y., Cai, W., Gong, S., Luo, Z., 2014. Optimal dietary methionine requirement of juvenile Chinese sucker, Myxocyprinus asiaticus. Aquaculture nutrition. 20, 253-264.
Cowey, C.B., Cho, C.Y., Sivak, J.G., Weerheim, J.A., Stuart, D.D., 1992. Methionine intake in rainbow trout (Oncorhynchus mykiss), relationship to cataract formation and the metabolism of methionine. The Journal of nutrition. 122, 1154-1163.
Coyle, S.D., Tidwell, J.H., Webster, C.D., 2000. Response of largemouth bass Micropterus salmoides to dietary supplementation of lysine, methionine, and highly unsaturated fatty acids. Journal of the World Aquaculture Society. 31, 89-95.
Craig, S., Helfrich, L.A., Kuhn, D., Schwarz, M.H., 2017. Understanding fish nutrition, feeds, and feeding.
D'Aniello, A., D'Onofrio, G., Pischetola, M., D'Aniello, G., Vetere, A., Petrucelli, L., Fisher, G.H., 1993. Biological role of D-amino acid oxidase and D-aspartate oxidase. Effects of D-amino acids. Journal of Biological Chemistry. 268, 26941-26949.
D'Este, M., Alvarado-Morales, M., Angelidaki, I., 2018. Amino acids production focusing on fermentation technologies–A review. Biotechnology advances. 36, 14-25.
D'Mello, J.F., 2003. Amino acids in animal nutrition. CABI publishing.
Desai, T.A., Rao, C.V., 2010. Regulation of arabinose and xylose metabolism in Escherichia coli. Appl. Environ. Microbiol. 76, 1524-1532.
Dias, J., Conceição, L.E., Ribeiro, A.R., Borges, P., Valente, L.M., Dinis, M.T., 2009. Practical diet with low fish-derived protein is able to sustain growth performance in gilthead seabream (Sparus aurata) during the grow-out phase. Aquaculture. 293, 255-262.
Dibner, J.J., Knight, C.D., 1984. Conversion of 2-hydroxy-4-(methylthio) butanoic acid to L- methionine in the chick: a stereospecific pathway. The Journal of nutrition. 114, 1716-1723.
Dibner, j.j., Ivey, F., 1992. Capacity in the liver of the broiler chick for conversion of supplemental methionine activity to L-methionine. Poultry science. 71, 700-708.
Diógenes, A., Fernandes, J., Dorigam, J., Sakomura, N., Rodrigues, F., Lima, B., Gonçalves, F.,2016. Establishing the optimal essential amino acid ratios in juveniles of Nile tilapia(Oreochromis niloticus) by the deletion method. Aquaculture Nutrition. 22, 435-443.
Duan, Y., Zhu, X., Han, D., Yang, Y., Xie, S., 2012. Dietary choline requirement in slightmethionine-deficient diet for juvenile gibel carp (Carassius auratus gibelio). Aquaculture Nutrition. 18, 620-627.
El-Sayed, A.-F.M., 1999. Alternative dietary protein sources for farmed tilapia, Oreochromis spp.Aquaculture. 179, 149-168.
El-Sayed, A.-F.M., 2019. Tilapia culture. Academic Press.
El-Saidy, D.M., Gaber, M.M., 2002. Complete replacement of fish meal by soybean meal withdietary L-lysine supplementation for Nile tilapia Oreochromis niloticus (L.) fingerlings.Journal of the World Aquaculture Society. 33, 297-306.
El-Saidy, D.M., Gaber, M.M., 2003. Replacement of fish meal with a mixture of different plantprotein sources in juvenile Nile tilapia, Oreochromis niloticus (L.) diets. Aquacultureresearch. 34, 1119-1127.
Elmada, C., Huang, W., Jin, M., Liang, X., Mai, K., Zhou, Q., 2016. The effect of dietary methionineon growth, antioxidant capacity, innate immune response and disease resistance ofjuvenile yellow catfish (Pelteobagrus fulvidraco). Aquaculture Nutrition. 22, 1163-1173.
Escaffre, A.-M., Kaushik, S., Mambrini, M., 2007. Morphometric evaluation of changes in thedigestive tract of rainbow trout (Oncorhynchus mykiss) due to fish meal replacementwith soy protein concentrate. Aquaculture. 273, 127-138.
Espe, M., Lemme, A., Petri, A., El-Mowafi, A., 2006. Can Atlantic salmon (Salmo salar) grow ondiets devoid of fish meal? Aquaculture. 255, 255-262.
Espe, M., Hevrøy, E.M., Liaset, B., Lemme, A., El-Mowafi, A., 2008. Methionine intake affecthepatic sulphur metabolism in Atlantic salmon, Salmo salar. Aquaculture. 274, 132-141.
Fagbenro, O.A., Davies, S.J., 2004. Use of High Percentages of Soy Protein Concentrate as FishMeal Substitute in Practical Diets for African Catfish, Clarias gariepinus (Burchell 1822)Growth, Diet Utilization, and Digestibility. Journal of Applied Aquaculture. 16, 113-124.
FAO, 2018. The State of World Fisheries and Aquaculture 2018. Rome.
FAO, 2020. The State of World Fisheries and Aquaculture 2020. Rome. https://doi.org/10.4060/ca9229en.
Figueiredo-Silva, C., Lemme, A., Sangsue, D., Kiriratnikom, S., 2015. Effect of DL-methionine supplementation on the success of almost total replacement of fish meal with soybean meal in diets for hybrid tilapia (O reochromis niloticus× O reochromis mossambicus). Aquaculture Nutrition. 21, 234-241.
Fontagné-Dicharry, S., Alami-Durante, H., Aragão, C., Kaushik, S.J., Geurden, I., 2017. Parental and early-feeding effects of dietary methionine in rainbow trout (Oncorhynchus mykiss). Aquaculture. 469, 16-27.
Føre, M., Frank, K., Norton, T., Svendsen, E., Alfredsen, J.A., Dempster, T., Eguiraun, H., Watson, W., Stahl, A., Sunde, L.M., 2018. Precision fish farming: A new framework to improve production in aquaculture. biosystems engineering. 173, 176-193.
Furuya, W.M., Furuya, V.R.B., 2010. Nutritional innovations on amino acids supplementation in Nile tilapia diets. Revista Brasileira de Zootecnia. 39, 88-94.
Furuya, W.M., Hayashi, C., Furuya, V.R.B., Botaro, D., da Silva, L.C., Neves, P.R., 2001. Exigênciasde metionina+ cistina total e digestível para alevinos revertidos de tilápia do Nilo,Oreochromis niloticus (L.), baseadas no conceito de proteína ideal. Acta Scientiarum.Animal Sciences. 23, 885-889.
Furuya, W.M., Pezzato, L.E., Barros, M.M., Pezzato, A.C., Furuya, V.R., Miranda, E.C., 2004a. Useof ideal protein concept for precision formulation of amino acid levels in fish-meal-freediets for juvenile Nile tilapia (Oreochromis niloticus L.). Aquaculture Research. 35, 1110-1116.
Furuya, W.M., Silva, L.C.R., Neves, P.R., Botaro, D., Hayashi, C., Sakaguti, E.S., Furuya, V.R.B.,2004b. Exigência de metionina+ cistina para alevinos de Tilápia do Nilo (Oreochromisniloticus). Ciência Rural. 34, 1933-1937.
Gao, Z., Wang, X., Tan, C., Zhou, H., Mai, K., He, G., 2019. Effect of dietary methionine levels ongrowth performance, amino acid metabolism and intestinal homeostasis in turbot(Scophthalmus maximus L.). Aquaculture. 498, 335-342.
García-Ortega, A., Kissinger, K.R., Trushenski, J.T., 2016. Evaluation of fish meal and fish oilreplacement by soybean protein and algal meal from Schizochytrium limacinum in dietsfor giant grouper Epinephelus lanceolatus. Aquaculture. 452, 1-8.
Gatlin ?, D.M., Barrows, F.T., Brown, P., Dabrowski, K., Gaylord, T.G., Hardy, R.W., Herman, E.,Hu, G., Krogdahl, Å., Nelson, R., Overturf, K., Rust, M., Sealey, W., Skonberg, D., Edward,J.S., Stone, D., Wilson, R., Wurtele, E., 2007. Expanding the utilization of sustainableplant products in aquafeeds: a review. Aquaculture research. 38, 551-579.
Gaylord, T.G., Barrows, F.T., 2009. Multiple amino acid supplementations to reduce dietaryprotein in plant-based rainbow trout, Oncorhynchus mykiss, feeds. Aquaculture. 287,180-184.
Goff, J.B., Gatlin III, D.M., 2004. Evaluation of different sulfur amino acid compounds in the dietof red drum, Sciaenops ocellatus, and sparing value of cystine for methionine.Aquaculture. 241, 465-477.
Gomes, J., Kumar, D., 2005. Production of L-methionine by submerged fermentation: A review. Enzyme and microbial technology. 37, 3-18.
Guo, T.-Y., He, J.-Y., Liao, S.-Y., Xie, J.-J., Xie, S.-W., Masagounder, K., Liu, Y.-J., Tian, L.-X., Niu, J.,2020. Dietary dl-methionyl-dl-methionine supplementation increased growthperformance, antioxidant ability, the content of essential amino acids and improved thediversity of intestinal microbiota in Nile tilapia (Oreochromis niloticus). British Journal ofNutrition. 123, 72-83.
Hara, T., Evans, D., 1993. Chemoreception [in fish]. CRC Marine science series. 191-218.
Hardy, R.W., 2010. Utilization of plant proteins in fish diets: effects of global demand andsupplies of fishmeal. Aquaculture Research. 41, 770-776.
Harpaz, S., 2005. L-carnitine and its attributed functions in fish culture and nutrition—a review.Aquaculture. 249, 3-21.
He, J.Y., Han, B., Tian, L.X., Yang, H.J., Zeng, S.L., Liu, Y.J., 2016. The sparing effect of cystine onmethionine at a constant TSAA level in practical diets of juvenile Nile tilapia Oreochromisniloticus. Aquaculture Research. 47, 2031-2039.
He, J.Y., Long, W.Q., Han, B., Tian, L.X., Yang, H.J., Zeng, S.L., Liu, Y.J., 2017. Effect of dietary l-methionine concentrations on growth performance, serum immune and antioxidativeresponses of juvenile Nile tilapia, Oreochromis niloticus. Aquaculture Research. 48, 665-674.
Hernández, M., Martínez, F., Jover, M., García, B.G., 2007. Effects of partial replacement of fishmeal by soybean meal in sharpsnout seabream (Diplodus puntazzo) diet. Aquaculture.263, 159-167.
Ikeda, M., 2003. Amino acid production processes, Microbial production of l-amino acids Springer, pp. 1-35.
Jackson, A., Capper, B., 1982. Investigations into the requirements of the tilapia Sarotherodonmossambicus for dietary methionine, lysine and arginine in semi-synthetic diets.Aquaculture. 29, 289-297.
Kase, H., Nakayama, K., 1974. Production of O-Acetyl-l-homoserme by MethionineAnalogresistant Mutants and. Regulation of Homosenne-O-transacetylase inGorynebacterium glutamicum. Agricultural and Biological Chemistry. 38, 2021-2030.
Kasper, C.S., White, M.R., Brown, P.B., 2000. Choline is required by tilapia when methionine isnot in excess. The Journal of nutrition. 130, 238-242.
Kaushik, S., Hemre, G.-I., 2008. Plant proteins as alternative sources for fish feed and farmed fish quality, Improving farmed fish quality and safety. Elsevier, pp. 300-327.
Kaushik, S., Coves, D., Dutto, G., Blanc, D., 2004. Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture. 230, 391-404.
Kaushik, S., Cravedi, J., Lalles, J., Sumpter, J., Fauconneau, B., Laroche, M., 1995. Partial or totalreplacement of fish meal by soybean protein on growth, protein utilization, potentiaestrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout,Oncorhynchus mykiss. Aquaculture. 133, 257-274.
Keembiyehetty, C., Gatlin III, D., 1995. Evaluation of different sulfur compounds in the diet ojuvenile sunshine bass (Morone chrysops × M. saxatilis ). Comparative Biochemistryand Physiology Part A: Physiology. 112, 155-159.
Keembiyehetty, C.N., Gatlin III, D.M., 1993. Total sulfur amino acid requirement of juvenilehybrid striped bass (Morone chrysops × M. saxatilis). Aquaculture. 110, 331-339.
Keembiyehetty, C.N., Gatlin III, D.M., 1997. Performance of sunshine bass fed soybean-meal-based diets supplemented with different methionine compounds. The Progressive fish-culturist. 59, 25-30.
Kelly, M., Grisdale-Helland, B., Helland, S.J., Gatlin III, D.M., 2006. Refined understanding ofsulphur amino acid nutrition in hybrid striped bass, Morone chrysops × M. saxatilis Aquaculture Research. 37, 1546-1555.
Khan, M.A., 2014. Total sulfur amino acid requirement and cystine replacement value forfingerling stinging catfish, Heteropneustes fossilis (Bloch). Aquaculture. 426, 270-281.
Kim, K.-I., Kayes, T.B., Amundson, C.H., 1992. Requirements for sulfur amino acids and utilizatio of D-methionine by rainbow trout (Oncorhynchus mykiss). Aquaculture. 101, 95-103.
Kinoshita, S., 1959. The production of amino acids by fermentation processes, Advances inapplied microbiology. Elsevier, pp. 201-214.
Kissinger, K.R., García-Ortega, A., Trushenski, J.T., 2016. Partial fish meal replacement by soyprotein concentrate, squid and algal meals in low fish-oil diets containing Schizochytriumlimacinum for longfin yellowtail Seriola rivoliana. Aquaculture. 452, 37-44.
Kohbara, J., Miyazaki, T., Takii, K., Hosokawa, H., Ukawa, M., Kumai, H., 2006. Gustatoryresponses in Pacific bluefin tuna Thunnus orientalis (Temminck & Schlegel). AquacultureResearch. 37, 847-854.
Kumar, D., Gomes, J., 2005. Methionine production by fermentation. Biotechnology advances.23, 41-61.
Kumar, S., Sándor Zs, J., Nagy, Z., Fazekas, G., Havasi, M., Sinha, A., De Boeck, G., Gál, D., 2017.Potential of processed animal protein versus soybean meal to replace fish meal inpractical diets for European catfish (Silurus glanis): growth response and liver geneexpression. Aquaculture Nutrition. 23, 1179-1189.
Kwasek, K., Terova, G., Lee, B.-J., Bossi, E., Saroglia, M., Dabrowski, K., 2014. Dietary methioninesupplementation alters the expression of genes involved in methionine metabolism insalmonids. Aquaculture. 433, 223-228.
Lane, E., Whitear, M., 1982. Sensory structures at the surface of fish skin: I. Putativechemoreceptors. Zoological Journal of the Linnean Society. 75, 141-151.
Li, P., Mai, K., Trushenski, J., Wu, G., 2009. New developments in fish amino acid nutrition:towards functional and environmentally oriented aquafeeds. Amino acids. 37, 43-53.
Li, P., Yin, Y.-L., Li, D., Kim, S.W., Wu, G., 2007. Amino acids and immune function. British Journalof Nutrition. 98, 237-252.
Liao, Y., Ren, M., Liu, B., Sun, S., Cui, H., Xie, J., Zhou, Q., Pan, L., Chen, R., Ge, X., 2014. Dietarymethionine requirement of juvenile blunt snout bream (Megalobrama amblycephala)at a constant dietary cystine level. Aquaculture nutrition. 20, 741-752.
Liebert, F., 2009. Amino acid requirement studies in Oreochromis niloticus by application ofprinciples of the diet dilution technique. Journal of animal physiology and animalnutrition. 93, 787-793.
Liebert, F., Benkendorff, K., 2007. Modelling of threonine and methionine requirements ofOreochromis niloticus due to principles of the diet dilution technique. Aquaculturenutrition. 13, 397-406.
Lloyd, L.E., McDonald, B.E., Crampton, E.W., 1978. Fundamentals of nutrition. WH Freeman andCo.
Lunger, A.N., McLean, E., Gaylord, T., Kuhn, D., Craig, S., 2007. Taurine supplementation toalternative dietary proteins used in fish meal replacement enhances growth of juvenilecobia (Rachycentron canadum). Aquaculture. 271, 401-410.
Ma, R., Hou, H., Mai, K., Bharadwaj, A.S., Cao, H., Ji, F., Zhang, W., 2013. Comparative study onthe effects of L-methionine or 2-hydroxy-4-(methylthio) butanoic acid as dietarymethionine source on growth performance and anti-oxidative responses of turbot(Psetta maxima). Aquaculture. 412, 136-143.
Machado, M., Azeredo, R., Díaz-Rosales, P., Afonso, A., Peres, H., Oliva-Teles, A., Costas, B., 2015.Dietary tryptophan and methionine as modulators of European seabass (Dicentrarchuslabrax) immune status and inflammatory response. Fish & shellfish immunology. 42,353-362.
Mackie, A., Mitchell, A., 1983. Studies on the chemical nature of feeding stimulants for thejuvenile European eel, Anguilla anguilla (L.). Journal of Fish Biology. 22, 425-430.
Mai, K., Wan, J., Ai, Q., Xu, W., Liufu, Z., Zhang, L., Zhang, C., Li, H., 2006. Dietary methioninerequirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture. 253, 564-572.
Malmezat, T., Breuillé, D., Pouyet, C., Buffière, C., Denis, P., Mirand, P.P., Obled, C., 2000.Methionine transsulfuration is increased during sepsis in rats. American Journal ofPhysiology-Endocrinology And Metabolism. 279, E1391-E1397.
Mambrini, M., Roem, A.J., Carvedi, J., Lalles, J., Kaushik, S., 1999. Effects of replacing fish mealwith soy protein concentrate and of DL-methionine supplementation in high-energy,extruded diets on the growth and nutrient utilization of rainbow trout, Oncorhynchusmykiss. Journal of animal science. 77, 2990-2999.
Martinell, D.P., Cashion, T., Parker, R., Sumaila, U.R., 2020. Closing the high seas to fisheries:Possible impacts on aquaculture. Marine Policy, 103854.
Michelato, M., Furuya, W.M., Graciano, T.S., Vidal, L.V.O., Xavier, T.O., Moura, L.B.d., Furuya,V.R.B., 2013. Digestible methionine+ cystine requirement for Nile tilapia from 550 to700 g. Revista Brasileira de Zootecnia. 42, 7-12.
Millamena, O.M., 2002. Replacement of fish meal by animal by-product meals in a practical dietfor grow-out culture of grouper Epinephelus coioides. Aquaculture. 204, 75-84.
Mir, I.N., Sahu, N., Pal, A.K., Makesh, M., 2017. Synergistic effect of L-methionine and fucoidanrich extract in eliciting growth and non-specific immune response of Labeo rohitafingerlings against Aeromonas hydrophila. Aquaculture. 479, 396-403.
Mondal, S., Das, Y., Chatterjee, S., 1996. Methionine production by microorganisms. Foliamicrobiologica. 41, 465-472.
Moon, H.Y., Gatlin III, D.M., 1991. Total sulfur amino acid requirement of juvenile red drum,Sciaenops ocellatus. Aquaculture. 95, 97-106.
Murray, R.K., Granner, D.K., Mayes, P.A., Rodwell, V.W., 1996. Harper’s Biochemistry. Appleton& Lange, Stamford, CT.
Murthy, H., Varghese, T., 1998. Total sulphur amino acid requirement of the Indian major carp,Labeo rohita (Hamilton).
Naz, M., Türkmen, M., 2009. The changes in digestive enzymes and hormones of giltheadseabream larvae (Sparus aurata, L 1758) fed on Artemia nauplii enriched with freemethionine. Aquaculture international. 17, 243-256.
Nguyen, T., Davis, D., 2009a. Re-evaluation of total sulphur amino acid requirement anddetermination of replacement value of cystine for methionine in semi-purified diets ofjuvenile Nile tilapia, Oreochromis niloticus. Aquaculture nutrition. 15, 247-253.
Nguyen, T.N., Allen Davis, D., 2009b. Methionine requirement in practical diets of juvenile Niletilapia, Oreochromis niloticus. Journal of the world aquaculture society. 40, 410-416.
NRC, 2011. Nutrient Requirements of Fish and Shrimp. The National Academies Press,Washington, DC.
Nunes, A.J., Sá, M.V., Browdy, C.L., Vazquez-Anon, M., 2014. Practical supplementation ofshrimp and fish feeds with crystalline amino acids. Aquaculture. 431, 20-27.
Poppi, D.A., Moore, S.S., Glencross, B.D., 2017. Redefining the requirement for total sulfur aminoacids in the diet of barramundi (Lates calcarifer) including assessment of the cystinereplacement value. Aquaculture. 471, 213-222.
Poston, H.A., 1986. Response of rainbow trout to source and level of supplemental dietarymethionine. Comparative Biochemistry and Physiology, Part A: Physiology. 83, 739-744.
Powell, C.D., Chowdhury, M.K., Bureau, D.P., 2017. Assessing the bioavailability of L-methionineand a methionine hydroxy analogue (MHA-Ca) compared to DL-methionine in rainbowtrout (Oncorhynchus mykiss). Aquaculture Research. 48, 332-346.
Ravi, J., Devaraj, K., 1991. Quantitative essential amino acid requirements for growth of catla,Catla catla (Hamilton). Aquaculture. 96, 281-291.
Rawles, S., Riche, M., Gaylord, T., Webb, J., Freeman, D., Davis, M., 2006. Evaluation of poultryby-product meal in commercial diets for hybrid striped bass (Morone chrysops × M.saxatilis ) in recirculated tank production. Aquaculture. 259, 377-389.
Robinson, E.H., Allen Jr, O.W., Poe, W.E., Wilson, R.P., 1978. Utilization of dietary sulfurcompounds by fingerling channel catfish: L-methionine, DL-methionine, methioninehydroxy analogue, taurine and inorganic sulfate. The Journal of nutrition. 108, 1932-1936.
Rodehutscord, M., Jacobs, S., Pack, M., Pfeffer, E., 1995. Response of rainbow trout(Oncorhynchus mykiss) growing from 50 to 150 g to supplements of DL-methionine in asemipurified diet containing low or high levels of cystine. The Journal of nutrition. 125,964-969.
Rodehutscord, M., Becker, A., Pack, M., Pfeffer, E., 1997. Response of rainbow trout(Oncorhynchus mykiss) to supplements of individual essential amino acids in asemipurified diet, including an estimate of the maintenance requirement for essentialamino acids. The Journal of nutrition. 127, 1166-1175.
Roy, S., Biswas, S., Mishra, A., NANDA, G., 1989. Production and purification of methionine froma multi-analog resistant mutant B6US-215 of Bacillus megaterium B71. Journal of Microbial Biotechnology. 4, 37-41.
Ruchimat, T., Masumoto, T., Hosokawa, H., Shimeno, S., 1997. Quantitative methioninerequirement of yellowtail (Seriola quinqueradiata). Aquaculture. 150, 113-122.
Rumsey, G.L., Page, J.W., Scott, M.L., 1983. Methionine and cystine requirements of rainbowtrout. The Progressive Fish-Culturist. 45, 139-143.
Sabri, S., Nielsen, L.K., Vickers, C.E., 2013. Molecular control of sucrose utilization in Escherichiacoli W, an efficient sucrose-utilizing strain. Appl. Environ. Microbiol. 79, 478-487.
Santiago, C.B., Lovell, R.T., 1988. Amino acid requirements for growth of Nile tilapia. The journalof nutrition. 118, 1540-1546.
Sardar, P., Abid, M., Randhawa, H., Prabhakar, S., 2009. Effect of dietary lysine and methioninesupplementation on growth, nutrient utilization, carcass compositions and haemato-biochemical status in Indian Major Carp, Rohu (Labeo rohita H.) fed soy protein-baseddiet. Aquaculture Nutrition. 15, 339-346.
Sarower, M.G., Matsui, T., Abe, H., 2003. Distribution and characteristics of D-amino acid and D-aspartate oxidases in fish tissues. Journal of Experimental Zoology Part A: ComparativeExperimental Biology. 295, 151-159.
Schwarz, F.J., Kirchgessner, M., Deuringer, U., 1998. Studies on the methionine requirement ofcarp (Cyprinus carpio L.). Aquaculture. 161, 121-129.
Séité, S., Mourier, A., Camougrand, N., Salin, B., Figueiredo-Silva, A.C., Fontagné-Dicharry, S.,Panserat, S., Seiliez, I., 2018. Dietary methionine deficiency affects oxidative status,mitochondrial integrity and mitophagy in the liver of rainbow trout (Oncorhynchusmykiss). Scientific reports. 8, 1-14.
Shiau, S.-Y., Chuang, J.-L., Sun, C.-L., 1987. Inclusion of soybean meal in tilapia (Oreochromisniloticus × O. aureus) diets at two protein levels. Aquaculture. 65, 251-261.
Shim, J., Shin, Y., Lee, I., Kim, S.Y., 2016. L-methionine production, Amino Acid Fermentation.Springer, pp. 153-177.
Silva, J., Espe, M., Conceição, L., Dias, J., Valente, L., 2009. Senegalese sole juveniles (Soleasenegalensis Kaup, 1858) grow equally well on diets devoid of fish meal provided thedietary amino acids are balanced. Aquaculture. 296, 309-317.
Simmons, A.L.A., 1998. Dietary methionine requirement of juvenile arctic charr (Salvelinusalpinus). Aquaculture Nutrition. 5, 93^100.
Small, B.C., Soares Jr, J.H., 1999. Quantitative dietary threonine requirement of juvenile stripedbass Morone saxatilis. Journal of the World Aquaculture Society. 30, 319-323.
Su, Y.-N., Wu, P., Feng, L., Jiang, W.-D., Jiang, J., Zhang, Y.-A., Figueiredo-Silva, C., Zhou, X.-Q.,Liu, Y., 2018. The improved growth performance and enhanced immune function by DLmethionyl-DL-methionine are associated with NF-κB and TOR signalling in intestine ofjuvenile grass carp (Ctenopharyngodon idella). Fish & shellfish immunology. 74, 101-118.
Sugimoto, M., 2009. Amino acids, production processes. Encyclopedia of IndustrialBiotechnology: Bioprocess, Bioseparation, and Cell Technology, 1-18.
Tacon, A., Cowey, C., 1985. Protein and amino acid requirements, Fish energetics. Springer, pp.155-183.
Tacon, A.G., Metian, M., 2008a. Aquaculture feed and food safety. Annals of the New YorkAcademy of Sciences. 1140, 50-59.
Tacon, A.G., Metian, M., 2008b. Global overview on the use of fish meal and fish oil in industriallycompounded aquafeeds: trends and future prospects. Aquaculture. 285, 146-158.
Takagi, S., Shimeno, S., Hosokawa, H., Ukawa, M., 2001. Effect of lysine and methioninesupplementation to a soy protein concentrate diet for red sea bream Pagrus major.Fisheries Science. 67, 1088-1096.
Tang, L., Wang, G.X., Jiang, J., Feng, L., Yang, L., Li, S.H., Kuang, S.Y., Zhou, X.Q., 2009. Effect ofmethionine on intestinal enzymes activities, microflora and humoral immune of juvenileJian carp (Cyprinus carpio var. Jian). Aquaculture nutrition. 15, 477-483.
Thebault, H., Alliot, E., Pastoureaud, A., 1985. Quantitative methionine requirement of juvenilesea-bass (Dicentrarchus labrax). Aquaculture. 50, 75-87.
Trushenski, J.T., Kasper, C.S., Kohler, C.C., 2006. Challenges and opportunities in finfish nutrition.North American Journal of Aquaculture. 68, 122-140.
Tulli, F., Messina, M., Calligaris, M., Tibaldi, E., 2010. Response of European sea bass(Dicentrarchus labrax) to graded levels of methionine (total sulfur amino acids) in soyaprotein-based semi-purified diets. British journal of nutrition. 104, 664-673.
Twibell, R., Griffin, M., Martin, B., Price, J., Brown, P., 2003. Predicting dietary essential aminoacid requirements for hybrid striped bass. Aquaculture Nutrition. 9, 373-381.
Twibell, R.G., Wilson, K.A., Brown, P.B., 2000. Dietary sulfur amino acid requirement of juvenileyellow perch fed the maximum cystine replacement value for methionine. The Journalof nutrition. 130, 612-616.
Verstegen, M.W., Jongbloed, A.W., 2003. 24 Crystalline Amino Acids and Nitrogen Emission.Amino acids in animal nutrition, 449.
Walton, M.J., Cowey, C.B., Adron, J.W., 1982. Methionine metabolism in rainbow trout fed dietsof differing methionine and cystine content. The Journal of nutrition. 112, 1525-1535.
Wang, J., Tao, Q., Wang, Z., Mai, K., Xu, W., Zhang, Y., Ai, Q., 2017. Effects of fish mealreplacement by soybean meal with supplementation of functional compound additiveson intestinal morphology and microbiome of Japanese seabass (Lateolabrax japonicus).Aquaculture Research. 48, 2186-2197.
Wang, Y., Che, J., Tang, B., Yu, S., Wang, Y., Yang, Y., 2016a. Dietary methionine requirement ofjuvenile Pseudobagrus ussuriensis. Aquaculture Nutrition. 22, 1293-1300.
Wang, Z., Mai, K., Xu, W., Zhang, Y., Liu, Y., Ai, Q., 2016b. Dietary methionine level influencesgrowth and lipid metabolism via GCN2 pathway in cobia (Rachycentron canadum).Aquaculture. 454, 148-156.
Watanabe, T., 2002. Strategies for further development of aquatic feeds. Fisheries science. 68,242-252.
Webster, C., Goodgame-Tiu, L., Tidwell, J., 1995. Total replacement of fish meal by soy beanmeal, with various percentages of supplemental L-methionine, in diets for blue catfish,Ictalurus furcatus (Lesueur). Aquaculture Research. 26, 299-306.
Webster, C., Rawles, S., Koch, J., Thompson, K., Kobayashi, Y., Gannam, A., Twibell, R., Hyde, N.,2016. Bio-Ag reutilization of distiller's dried grains with solubles (DDGS) as a substratefor black soldier fly larvae, Hermetia illucens, along with poultry by-product meal andsoybean meal, as total replacement of fish meal in diets for Nile tilapia, Oreochromisniloticus. Aquaculture nutrition. 22, 976-988.
Willke, T., 2014. Methionine production—a critical review. Applied microbiology andbiotechnology. 98, 9893-9914.
Wilson, R., Halver, J., Hardy, R., 2002. Fish nutrition. Amino acids and proteins, 143-179.
Wilson, R.P., 2003. Amino acids and proteins, Fish nutrition. Elsevier, pp. 143-179.
Wu, G., Davis, D.A., 2005. Interrelationship among methionine, choline, and betaine in channelcatfish Ictalurus punctatus. Journal of the World Aquaculture Society. 36, 337-345.
Xiao, W.W., Feng, L., Liu, Y., Jiang, J., Hu, K., Jiang, W.D., Li, S.H., Zhou, X.Q., 2011. Effects ofdietary methionine hydroxy analogue supplement on growth, protein deposition andintestinal enzymes activities of juvenile Jian carp (Cyprinus carpio var. Jian). AquacultureNutrition. 17, 408-417.
Yokoyama, M., Nakazoe, J.-I., 1992. Accumulation and excretion of taurine in rainbow trout(Oncorhynchus mykiss) fed diets supplemented with methionine, cystine and taurine.Comparative Biochemistry and Physiology Part A: Physiology. 102, 565-568.
Yokoyama, M., Takeuchi, T., Park, G., Nakazoe, J., 2001. Hepatic cysteinesulphinatedecarboxylase activity in fish. Aquaculture Research. 32, 216-220.
Yoshii, K., Kamo, N., Kurihara, K., Kobatake, Y., 1979. Gustatory responses of eel palatinereceptors to amino acids and carboxylic acids. The Journal of general physiology. 74,301-317.
Zehra, S., Khan, M.A., 2016. Total sulphur amino acid requirement and maximum cysteinereplacement value for methionine for fingerling Catla catla (H amilton). Aquacultureresearch. 47, 304-317.
Zhao, H., Jiang, R., Xue, M., Xie, S., Wu, X., Guo, L., 2010. Fishmeal can be completely replacedby soy protein concentrate by increasing feeding frequency in Nile tilapia (Oreochromisniloticus GIFT strain) less than 2 g. Aquaculture Nutrition. 16, 648-653.
Zhou, F., Xiao, J., Hua, Y., Ngandzali, B., Shao, Q., 2011. Dietary l-methionine requirement ofjuvenile black sea bream (Sparus macrocephalus) at a constant dietary cystine level.Aquaculture Nutrition. 17, 469-481.
Zhou, Q.-C., Wu, Z.-H., Tan, B.-P., Chi, S.-Y., Yang, Q.-H., 2006. Optimal dietary methioninerequirement for juvenile cobia (Rachycentron canadum). Aquaculture. 258, 551-557.
Zhou, Q.C., Mai, K.S., Tan, B.P., Liu, Y.J., 2005. Partial replacement of fishmeal by soybean mealin diets for juvenile cobia (Rachycentron canadum). Aquaculture Nutrition. 11, 175-182.
Zuend, S.J., Coughlin, M.P., Lalonde, M.P., Jacobsen, E.N., 2009. Scaleable catalytic asymmetricStrecker syntheses of unnatural α-amino acids. Nature. 461, 968-970.