1. Havenstein, G.B.; Ferket, P.R.; Qureshi, M.A. Growth, liveability and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 2003, 82, 1500–1508. [CrossRef]
2. Zuidhof, M.J.; Schneider, B.L.; Carney, V.L.; Korver, D.R.; Robinson, F.E. Growth, efficiency, and yield of commercial broilers from 1957, 1978 and 2005. Poult. Sci. 2014, 93, 2970–2982. [CrossRef]
3. Nitsan, Z.; Ben-Avraham, G.; Zoref, Z.; Nir, I. Growth and development of the digestive organs and some enzymes in broiler chicks after hatching. Br. Poult. Sci. 1991, 32, 515–523. [CrossRef]
4. Nir, I.; Nitsan, Z.; Mahaga, M. Comparative growth and development of the digestive organs and of some enzymes in broiler and egg type chicks after hatching. Br. Poult. Sci. 1993, 34, 523–532. [CrossRef]
5. Noy, Y.; Sklan, D. Posthatch development in poultry. J. Appl. Poult. Res. 1997, 6, 344–354. [CrossRef]
6. Lilburn, M.S. Practical aspects of early nutrition for poultry. J. Appl. Poult. Res. 1998, 7, 420–424. [CrossRef]
7. Sell, J.L. Physiological limitations and potential for improvements in gastrointestinal tract function of poultry. J. Appl. Poult. Res. 1996, 5, 96–101. [CrossRef]
8. Jin, S.-H.; Corless, A.; Sell, J.L. Digestive system development in post-hatch poultry. Worlds Poult. Sci. J. 1998, 54, 335–345. [CrossRef]
9. Sklan, D. Development of the digestive tract of poultry. Worlds Poult. Sci. J. 2001, 57, 415–428. [CrossRef]
10. Dibner, J.J.; Richards, J.D. The digestive system: Challenges and opportunities. J. Appl. Poult. Res. 2004, 13, 86–93. [CrossRef]
11. Uni, Z.; Ferket, R.P. Methods for early nutrition and their potential. Worlds Poult. Sci. J. 2004, 60, 101–111. [CrossRef]
12. Wijtten, P.J.A.; Langhout, D.J.; Verstegen, M.W.A. Small intestine development in chicks after hatch and in pigs around the time of weaning and its relation with nutrition: A review. Acta Agric. Scand. Sect. A Anim. Sci. 2012, 62, 1–12. [CrossRef]
13. Schat, K.A.; Myers, T.J. Avian intestinal immunity. Crit. Rev. Poult. Biol. 1993, 3, 19–34
14. Dibner, J.J.; Knight, C.D.; Kitchell, M.L.; Atwell, C.A.; Downs, A.C.; Ivey, F.J. Early feeding and development of the immune system in neonatal poultry. J. Appl. Poult. Res. 1998, 7, 425–436. [CrossRef]
15. Panda, A.K.; Bhanja, S.K.; Sunder, G.S. Early post hatch nutrition on immune system development and function in broiler chickens. Worlds Poult. Sci. J. 2015, 71, 285–296. [CrossRef]
16. Harrow, S.A.; Ravindran, V.; Butler, R.C.; Marshall, J.; Tannock, G.W. The influence of farming practices on ileal Lactobacillus salivarius populations of broiler chickens measured by real-time quantitative PCR. Appl. Environ. Microbiol. 2007, 73, 7123–7127. [CrossRef]
17. Ewing, W.N.; Cole, D.J.A. The Living Gut—An Introduction to Microorganisms in Nutrition; Context: Galway, UK, 1994.
18. McBurney, W.; Tannock, G.; Ravindran, V. A culture-independent approach to the analysis of the gut microflora of broilers. Proc. Aust. Poult. Sci. Symp. 2003, 15, 131–134.
19. Rinttila, T.; Apajalahti, J. Intestinal microbiota and metabolites—Implications for broiler chickens. J. Appl. Poult. Res. 2013, 22, 647–658. [CrossRef]
20. Apajalahti, J.; Kettunen, A.; Graham, H. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. Worlds Poult. Sci. J. 2004, 60, 223–232. [CrossRef]
21. Oviedo-Rondon, E.O. Molecular methods to evaluate effects of feed additives and nutrients in poultry gut microflora. Rev. Bras. Zootec. 2009, 38, 209–225. [CrossRef]
22. Yadav, S.; Jha, R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol. 2019, 10, 2. [CrossRef]
23. Noble, R.C.; Cocchi, M. Lipid metabolism and the neonatal chicken. Prog. Lipid Res. 1990, 29, 107–140. [CrossRef]
24. Esteban, S.; Rayo, J.M.; Moreno, M.; Sastre, M.; Rial, R.V.; Tur, J.A. The role played by the vitelline diverticulum in the yolk sac reabsorption in young post hatched chickens. J. Comp. Physiol. B 1991, 160, 645–648. [CrossRef]
25. Chamblee, T.N.; Brake, J.D.; Schultz, C.D.; Thaxton, J.P. Yolk sac absorption and initiation of growth in broilers. Poult. Sci. 1992, 71, 1811–1816. [CrossRef]
26. Tur, J.A.; Rial, R.V.; Esteban, S.; Rayo, J.M. Ontogeny of the gastrointestinal motility in young broilers. Comp. Biochem. Physiol. 1986, 83A, 61–65. [CrossRef]
27. Nitsan, Z.; Dunnington, E.A.; Siegel, P.B. Organ growth and digestive enzyme levels to fifteen days of age in lines of chickens differing in body weight. Poult. Sci. 1991, 70, 2040–2048. [CrossRef]
28. Iji, P.A.; Saki, A.; Tivey, D.R. Body and intestinal growth of broiler chicks on a commercial starter diet. 1. Intestinal weight and mucosal development. Br. Poult. Sci. 2001, 42, 505–513. [CrossRef]
29. Murakami, H.; Akiba, Y.; Horiguchi, M. Growth and utilization of nutrients in newly hatched chick with or without removal of residual yolk. Growth Dev. Ageing 1992, 56, 75–84.
30. Noy, Y.; Sklan, D. Nutrient use in chicks during the first week posthatch. Poult. Sci. 2002, 81, 391–399. [CrossRef]
31. Speake, B.K.; Murray, A.M.; Noble, R.C. Transport and transformations of yolk lipids during development of avian embryo. Prog. Lipid Res. 1998, 37, 1–32. [CrossRef]
32. Dzoma, B.M.; Dorrestein, G.M. Yolk sac retention in the ostrich (Struthia camelus): Histopathologic, anatomic, and physiologic considerations. J. Avian Med. Surg. 2001, 15, 81–89. [CrossRef]
33. Sato, M.; Tachibana, T.; Furuse, M. Heat production and lipid metabolism in broiler and layer chickens during embryonic development. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2006, 143, 382–388. [CrossRef]
34. Zelenka, J. Influence of the age of chickens on the metabolisable energy values of poultry diets. Br. Poult. Sci. 1968, 9, 135–142. [CrossRef]
35. Thomas, D.V.; Ravindran, V.; Ravindran, G. Nutrient utilisation of diets based on wheat, sorghum or maize by the newly hatched broiler chick. Br. Poult. Sci. 2008, 49, 429–435. [CrossRef] [PubMed]
36. Van der Wagt, I.; de Jong, I.C.; Mitchell, M.A.; Molenaar, R.; van den Brand, H. A review on yolk sac utilization in poultry. Poult. Sci. 2020, 99, 2162–2175. [CrossRef] [PubMed]
37. Katanbaf, M.N.; Dunnington, E.A.; Siegel, P.B. Allomorphic relationships from hatching to 56 days in parental lines and F1 crosses of chickens selected 27 generations for high or low body weight. Growth Dev. Ageing 1988, 52, 11–21.
38. Uni, Z.; Ganot, S.; Sklan, D. Posthatch development of mucosal function in the broiler small intestine. Poult. Sci. 1998, 77, 75–82. [CrossRef] [PubMed]
39. Noy, Y.; Geyra, A.; Sklan, D. The effect of early feeding on growth and small intestinal development in the posthatch poult. Poult. Sci. 2001, 80, 912–919. [CrossRef]
40. Ravindran, V.; Wu, Y.B.; Thomas, D.G.; Morel, P.C.H. Influence of whole wheat feeding on the development of digestive organs and performance of broiler chickens. Aust. J. Agric. Res. 2006, 57, 21–26. [CrossRef]
41. Singh, Y.; Amerah, A.M.; Ravindran, V. Whole grain feeding: Methodologies and effects on performance, digestive tract development and nutrient utilisation of poultry. Anim. Feed Sci. Technol. 2014, 190, 1–18. [CrossRef]
42. Pinchasov, Y. Early transition of the digestive system to exogenous nutrition in domestic post-hatch birds. Br. J. Nutr. 1995, 73, 471–478. [CrossRef]
43. Dibner, J.J.; Kitchell, M.L.; Atwell, C.A.; Ivey, F.J. The effect of dietary ingredients and age on the microscopic structure of the gastrointestinal tract in poultry. J. Appl. Poult. Res. 1996, 5, 70–77. [CrossRef]
44. Uni, Z.; Noy, Y.; Sklan, D. Posthatch changes in morphology and function of the small intestines in heavy- and light-strain chicks. Poult. Sci. 1995, 74, 1622–1629. [CrossRef] [PubMed]
45. Uni, Z.; Geyra, A.; Ben-Hur, H.; Sklan, D. Small intestinal development in the young chick: Crypt formation and enterocyte proliferation and migration. Br. Poult. Sci. 2000, 41, 544–551. [CrossRef] [PubMed]
46. Geyra, A.; Uni, Z.; Sklan, D. The effect of fasting at different ages on growth and tissue dynamics in the small intestine of the young chick. Br. J. Nutr. 2001, 86, 53–61. [CrossRef]
47. Yamauchi, K.; Yutaka, I. Scanning electron microscopic observations on the intestinal villi in growing white leghorn and broiler chickens from 1 to 30 days of age. Br. Poult. Sci. 1991, 32, 67–78. [CrossRef] [PubMed]
48. Yamauchi, K. Review of chicken intestinal villus histological alterations related with intestinal function. J. Poult. Sci. 2002, 39, 229–242. [CrossRef]
49. Uni, Z.; Noy, Y.; Sklan, D. Development of the small intestine in heavy and light strain chicks before and after hatching. Br. Poult. Sci. 1996, 36, 63–71. [CrossRef]
50. Dunnington, E.A.; Siegel, P.B. Enzyme activity and organ development in newly hatched chicks selected for high or low eight-week body weight. Poult. Sci. 1995, 74, 761–770. [CrossRef]
51. Uni, Z.; Platin, R.; Sklan, D. Cell proliferation in chicken intestinal epithelium occurs in the crypt and along the villus. J. Comp. Physiol. B 1998, 168, 241–247. [CrossRef]
52. Bohak, Z. Chicken pepsinogen and chicken pepsin. Methods Enzymol. 1970, 19, 347–358.
53. Mahagna, M.; Nir, I. Comparative development of digestive organs, intestinal disaccharidases and some blood metabolites in broiler and layer-type chicks after hatching. Br. Poult. Sci. 1996, 37, 359–371. [CrossRef]
54. Barua, M.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Girish, C.K.; Chrystal, P.V.; Ravindran, V. An investigation into the influence of age on the standardized amino acid digestibility of wheat and sorghum in broilers. Poult. Sci. 2021. [CrossRef]
55. Guinotte, F.; Gautron, J.; Nys, Y. Calcium solubilization and retention in the gastrointestinal tract in chicks (Gallus domesticus) as a function of gastric acid secretion, inhibition and of calcium carbonate particle size. Br. J. Nutr. 1995, 73, 125–139. [CrossRef] [PubMed]
56. Buddington, R.K. Intestinal nutrient transport during ontogeny of vertebrates. Am. J. Physiol. 1992, 32, R503–R509. [CrossRef] [PubMed]
57. Tako, E.; Ferket, P.R.; Uni, Z. Changes in chicken intestinal zinc exporter mRNA expression and small intestine functionality following intra-amniotic zinc-methionine administration. J. Nutr. Biochem. 2005, 16, 339–346. [CrossRef] [PubMed]
58. Li, H.; Gilbert, E.R.; Zhang, Y.; Crasta, O.; Emmerson, D.; Webb, K.E.; Wong, E.A. Expression profiling of the solute carrier gene family in chicken intestine from the late embryonic to early post-hatch stages. Anim. Genet. 2008, 39, 407–424. [CrossRef] [PubMed]
59. Obst, B.S.; Diamond, J. Ontogenesis of intestinal nutrient transport in domestic chicken (Gallus gallus) and its relation to growth. Auk 1992, 109, 451–464.
60. Croom, W.J.; Brake, J.; Coles, B.A.; Havenstein, G.B.; Christensen, V.L.; McBride, B.W.; Peebles, E.D.; Taylor, I.L. Intestinal absorption capacity rate-limiting for performance in Poultry? J. Appl. Poult. Res. 1999, 8, 242–252. [CrossRef]
61. Uni, Z.; Tako, E.; Gal-Garber, O.; Sklan, D. Morphological, molecular, and functional changes in the chicken small intestine of the late-term embryo. Poult. Sci. 2003, 82, 1747–1754. [CrossRef]
62. Sulistiyanto, Y.; Akiba, Y.; Sato, K. Energy utilisation of carbohydrate, fat and protein sources in newly hatched broiler chicks. Br. Poult. Sci. 1999, 40, 653–659. [CrossRef] [PubMed]
63. Sklan, D. Fat and carbohydrate use in posthatch chicks. Poult. Sci. 2003, 82, 117–122. [CrossRef]
64. Krogdahl, A. Digestion and absorption of lipid in poultry. J. Nutr. 1985, 115, 675–685. [CrossRef]
65. Tancharoenrat, P.; Ravindran, V.; Zaefarian, Z.; Ravindran, G. Digestion of fat and fatty acids along the gastrointestinal tract of broiler chickens. Poult. Sci. 2014, 93, 412–419. [CrossRef]
66. Noy, Y.; Sklan, D. Digestion and absorption in the young chick. Poult. Sci. 1995, 74, 366–373. [CrossRef]
67. Tancharoenrat, P.; Ravindran, V.; Zaefarian, F.; Ravindran, G. Apparent metabolisable energy and total tract fat digestibility of different fat sources for broiler chickens. Anim. Feed Sci. Technol. 2013, 186, 186–192. [CrossRef]
68. Moran, E.T., Jr. Digestion and absorption of carbohydrates in fowl and events through perinatal development. J. Nutr. 1985, 115, 665–674. [CrossRef] [PubMed]
69. Iji, P.A.; Saki, A.; Tivey, D.R. Body and intestinal growth of broiler chicks on a commercial starter diet. 2. Development and characteristics of intestinal enzymes. Br. Poult. Sci. 2001, 42, 514–522. [CrossRef]
70. Duke, G.E. Gastrointestinal motility and its regulation. Poult. Sci. 1982, 61, 1245–1256. [CrossRef] [PubMed]
71. Amerah, A.; Ravindran, V.; Lentle, R.G. Feed particle size: Implications on the digestion and performance in poultry. Worlds Poult. Sci. J. 2007, 63, 439–451. [CrossRef]
72. Abdollahi, M.R.; Zaefarian, F.; Ravindran, V. Feed intake response of broilers: Impact of feed processing. Anim. Feed Sci. Technol. 2018, 237, 154–165. [CrossRef]
73. Ravindran, V.; Bryden, W.L. Amino acid availability in poultry—In vitro and in vivo measurements. Aust. J. Agric. Res. 1999, 50, 889–908. [CrossRef]
74. Moran, E.T., Jr. Starch digestion in fowl. Poult. Sci. 1982, 61, 1257–1267. [CrossRef] [PubMed]
75. Svihus, B. Starch digestion capacity of poultry. Poult. Sci. 2014, 93, 2394–2399. [CrossRef]
76. Zelenka, J.; Ceresnakova, Z. Effect of age on digestibility of starch in chickens with different growth rate. Czech J. Anim. Sci. 2005, 50, 411–415. [CrossRef]
77. Reisenfeld, G.; Sklan, D.; Bar, A.; Eisner, U.; Hurwitz, S. Glucose absorption and starch digestion in the intestine of the chicken. J. Nutr. 1980, 110, 117–121. [CrossRef]
78. Zelenka, J.; Fajmonová, E.; Blažková, E. Apparent digestibility of fat and nitrogen retention in young chicks. Czech J. Anim. Sci. 2000, 45, 457–462.
79. Carew, L.B., Jr.; Machemer, R.H., Jr.; Sharp, R.W.; Foss, D.C. Fat absorption in the very young chick. Poult. Sci. 1972, 51, 738–742. [CrossRef]
80. Ravindran, V.; Tancharoenrat, P.; Zaefarian, F.; Ravindran, G. Fats in poultry nutrition: Digestive physiology and factors influencing their utilisation. Anim. Feed Sci. Technol. 2016, 213, 1–21. [CrossRef]
81. Tarvid, I. The development of protein digestion in poultry. Avian Poult. Biol. Rev. 1995, 6, 35–54.
82. Batal, A.B.; Parsons, C.M. Effects of age on nutrient digestibility in chicks fed different diets. Poult. Sci. 2002, 81, 400–407. [CrossRef]
83. Batal, A.B.; Parsons, C.M. Effect of fasting versus feeding oasis after hatching on nutrient utilization in chicks. Poult. Sci. 2002, 81, 853–859. [CrossRef]
84. Batal, A.B.; Parsons, C.M. Utilization of different soy products as affected by age in chicks. Poult. Sci. 2003, 82, 454–462. [CrossRef] [PubMed]
85. Barua, M.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Girish, C.K.; Chrystal, P.V.; Ravindran, V. Basal ileal endogenous amino acid flow in broiler chickens as influenced by age. Poult. Sci. 2021, 100, 101269. [CrossRef] [PubMed]
86. Thomas, D.V.; Ravindran, V. Mineral retention in newly hatched broiler chicks fed diets based on wheat, sorghum or maize. Asian-Australas. J. Anim. Sci. 2010, 23, 68–73. [CrossRef]
87. David, L.S.; Abdollahi, M.R.; Bedford, M.R.; Ravindran, V. Effect of age and dietary crude protein content on the apparent ileal calcium digestibility of limestone in broiler chickens. Anim. Feed Sci. Technol. 2020, 263, 114468. [CrossRef]
88. Khalil, M.M.; Abdollahi, M.R.; Zaefarian, F.; Chrystal, P.V.; Ravindran, V. Apparent metabolizable energy of cereal grains for broiler chickens is influenced by age. Poult. Sci. 2021, 100, 101288. [CrossRef]
89. Torok, V.A.; Allison, G.E.; Percy, N.J.; Ophel-Keller, K.; Hughes, R.J. Influence of antimicrobial feed additives on broiler commensal posthatch gut microbiota development and performance. Appl. Environ. Microbiol. 2011, 77, 3380–3390. [CrossRef] [PubMed]
90. Moran, E.T., Jr. Nutrition of the developing embryo and hatchling. Poult. Sci. 2007, 86, 1043–1049. [CrossRef]
91. Skinner, J.T.; Waldroup, P. Allometric bone development in floor-reared broilers. J. Appl. Poult. Res. 1995, 4, 265–270. [CrossRef]
92. Surai, P.F.; Sparks, N.H.C. Designer eggs: From improvement of egg composition to functional food. Trends Food Sci. Technol. 2001, 12, 7–16. [CrossRef]
93. Kidd, M.T. A treatise on chicken dam nutrition that impacts on progeny. Worlds Poult. Sci. J. 2003, 59, 475–494. [CrossRef]
94. Calini, F.; Sirri, F. Breeder nutrition and offspring performance. Braz. J. Poult. Sci. 2007, 9, 77–83. [CrossRef]
95. Cherian, G. Nutrition and metabolism in poultry: Role of lipids in early diet. J. Anim. Sci. Biotechnol. 2015, 6, 28–37. [CrossRef] [PubMed]
96. Surai, P.F. Selenium-enriched eggs and meat. In Selenium in Poultry Nutrition and Health; Surai, P.F., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018; pp. 279–307.
97. Cherian, G. Essential fatty acids and early life programming in meat-type birds. Worlds Poult. Sci. J. 2011, 67, 599–614. [CrossRef]
98. Romanoff, A.L. The Avian Embryo: Structural and Functional Development; Macmillan: New York, NY, USA, 1960.
99. Smirnov, A.; Tako, E.; Ferket, P.R.; Uni, Z. Mucin gene expression and mucin content in the chicken intestinal goblet cells are affected by in ovo feeding of carbohydrates. Poult. Sci. 2006, 85, 669–673. [CrossRef]
100. Tako, E.; Ferket, P.R.; Uni, Z. Effects of in ovo feeding of carbohydrates and beta-hydroxybutryate—beta-methylbutryate on the development of chicken intestine. Poult. Sci. 2004, 83, 2023–2028. [CrossRef] [PubMed]
101. Foye, O.T.; Ferket, P.R.; Uni, Z. The effects of in ovo feeding arginine, B-hydroxy-B- methyl-butyrate, and protein on jejunal digestive and absorption activity in embryonic and neonatal turkey poults. Poult. Sci. 2007, 86, 2343–2349. [CrossRef]
102. Zubair, A.K.; Leeson, S. Compensatory growth in the broiler chicken: A review. Worlds Poult. Sci. J. 1996, 52, 189–201. [CrossRef]
103. Noy, Y.; Uni, Z.; Sklan, D. Utilisation of yolk in the newly-hatched chick. Br. Poult. Sci. 1996, 37, 987–996. [CrossRef]
104. Noy, Y.; Sklan, D. Metabolic responses to early nutrition. J. Appl. Poult. Res. 1998, 7, 437–451. [CrossRef]
105. Noy, Y.; Sklan, D. Different types of early feeding and performance in chicks and poults. J. Appl. Poult. Res. 1999, 8, 16–24. [CrossRef]
106. Halevy, O.; Geyra, A.; Barak, M.; Uni, Z.; Sklan, D. Early posthatch starvation decreases satellite cell proliferation and skeletal muscle growth in chicks. J. Nutr. 2000, 130, 858–864. [CrossRef] [PubMed]
107. Juul-Madsen, H.R.; Su, G.; Sorensen, P. Influence of early or late start of first feeding on growth and immune phenotype of broilers. Br. Poult. Sci. 2004, 45, 210–222. [CrossRef]
108. Willemsen, H.; Debonne, M.; Swennen, Q.; Everaert, N.; Careghi, C.; Han, H.; Bruggeman, V.; Tona, K.; Decuypere, E. Delay in feed access and spread of hatch: Importance of early nutrition. Worlds Poult. Sci. J. 2010, 66, 177–188. [CrossRef]
109. Sklan, D.; Noy, Y.; Hoyzman, A.; Rozenboim, I. Decreasing weight loss in the hatchery by feeding chicks and poults in hatching trays. J. Appl. Poult. Res. 2000, 9, 142–148. [CrossRef]
110. Deines, J.R.; Clark, F.D.; Yoho, D.E.; Bramwell, R.K.; Rochell, S.J. Effects of hatch window and nutrient access in the hatcher on performance and processing yields of broilers reared with equal hatch window representation. Animals 2021, 11, 1228. [CrossRef]
111. Van de Laar, W. The first seven days of a broiler’s life—Starting off in a high care facility. Int. Poult. Prod. 2011, 17, 7–9.
112. De Jong, I.C.; van Hartum, T.; van Riel, J.W.; De Baere, K.; Kempen, I.; Cardinaels, S.; Gunnik, H. Effects of on-farm and traditional hatching on welfare, health and performance of broiler chickens. Poult. Sci. 2020, 99, 4662–4671. [CrossRef]
113. Zentek, J.; Goodarzi Boroojeni, F. (Bio)Technological processing of poultry and pig feed: Impact on the composition, digestibility, anti-nutritional factors and hygiene. Anim. Feed Sci. Technol. 2020, 268, 114576. [CrossRef]
114. Noy, Y.; Klan, D. Energy utilization in newly hatched chicks. Poult. Sci. 1999, 78, 1750–1756. [CrossRef] [PubMed]
115. Bryden, W.L. Mycotoxin contamination of the feed supply chain: Implications for animal productivity. Anim. Feed Sci. Technol. 2012, 73, 134–158. [CrossRef]
116. Barekatain, M.R.; Swick, R.A. Composition of more specialised pre-starter and starter diets for young broiler chickens: A review. Anim. Prod. Sci. 2016, 56, 1239–1247. [CrossRef]
117. Mozdziak, P.E.; Walsh, T.J.; McCoy, D.W. The effect of early posthatch nutrition on satellite cell mitotic activity. Poult. Sci. 2002, 81, 1703–1708. [CrossRef]
118. Bhuiyan, M.M.; Gao, F.; Chee, S.H.; Iji, P.A. Minimising weight loss in new broiler hatchlings through early feeding of simple sugars. Anim. Prod. Sci. 2011, 51, 1002–1007. [CrossRef]
119. Bedford, M.R.; Partridge, G.G. (Eds.) Enzymes in Farm: Animal Nutrition; CAB International: Wallingford, UK, 2010.
120. Selle, P.H.; Ravindran, V. Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol. 2007, 135, 1–41. [CrossRef]
121. Woyengo, T.A.; Nyachoti, C.M. Review: Supplementation of phytase and carbohydrases to diets for poultry. Can. J. Anim. Sci. 2011, 91, 177–192. [CrossRef]
122. Cowieson, A.J.; Schliffka, W.; Knap, I.; Roos, F.F.; Schoop, R.; Wilson, J.W. Meta-analysis of effect of a mono-component xylanase on the nutritional value of wheat supplemented with exogenous phytase for broiler chickens. Anim. Prod. Sci. 2015, 56, 2014–2022. [CrossRef]
123. Cowieson, A.J.; Roos, F.F. Toward optimal value creation through the application of exogenous mono-component protease in the diets of non-ruminants. Anim. Feed Sci. Technol. 2016, 221, 331–340. [CrossRef]
124. Dibner, J.J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 2005, 84, 634–643. [CrossRef]
125. Bryden, W.L.; Li, X.; Ravindran, G.; Hew, L.I.; Ravindran, V. Ileal Digestible Amino Acid Values in Feedstuffs for Poultry; Rural Industries Research and Development Corporation: Canberra, Australia, 2009; p. 76. ISBN 1-741151-870-9.
126. Baker, D.H. Advances in amino acid nutrition and metabolism of swine and poultry. In Nutrient Management of Food Animals to Enhance and Protect the Environment; Kornegay, E.T., Ed.; Lewis Publishers: New York, NY, USA, 1996; pp. 41–53.
127. Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [CrossRef]
128. Wu, G. Amino Acids: Biochemistry and Nutrition; CRC Press: Boca Raton, FL, USA, 2013.
129. Wu, G.; Wu, Z.L.; Dai, Z.L. Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 2013, 44, 1107–1113. [CrossRef]
130. Tzschentke, B.; Plagemann, A. Imprinting and critical periods in early development. Worlds Poult. Sci. J. 2006, 62, 626–637. [CrossRef]
131. Dibner, J.J.; Richards, J.D.; Knight, C.D. Microbial imprinting in gut development and health. J. Appl. Poult. Res. 2008, 17, 174–178. [CrossRef]
132. Dixon, L.M.; Sparks, N.H.C.; Rutherford, K.M.D. Early experiences matter: A review of the effects of prenatal environment on offspring characteristics in poultry. Poult. Sci. 2016, 95, 489–499. [CrossRef
133. Yan, F.R.; Angel, C.; Ashwell, C.; Mitchell, A.; Christman, M. Evaluation of broiler’s ability to adapt to an early moderate deficiency of phosphorus and calcium. Poult. Sci. 2005, 84, 1232–1241. [CrossRef]
134. Mwangi, S.; Timmons, J.; Ao, T.; Paul, M.; Macalintal, L.; Pescatore, A.; Canton, A.; Ford, M.; Dawson, K.A. Effect of zinc imprinting and replacing inorganic zinc with organic zinc on early performance of broiler chicks. Poult. Sci. 2017, 96, 861–868. [CrossRef]
135. Rousseau, X.; Valable, A.S.; L’Etourneau-Montminy, P.; Meme, N.; Godet, E.; Magnin, M.; Nys, Y.; Duclos, M.J.; Narcy, A. Adaptive response of broilers to dietary phosphorus and calcium restrictions. Poult. Sci. 2016, 95, 2849–2960. [CrossRef]
136. Rubio, L.A. Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poult. Sci. 2019, 98, 695–706. [CrossRef]
137. Jurburg, S.D.; Brouwer, M.S.M.; Ceccarelli, D.; van der Goot, J.; Jansman, A.J.M.; Bossers, A. Patterns of community assembly in the developing chicken microbiome reveal rapid primary succession. Microbiology 2019, 8, e821. [CrossRef]
138. Zoetendal, E.G.; Collier, C.T.; Koike, S.; Mackie, R.I.; Gaskins, H.R. Molecular ecological analysis of the gastrointestinal microbiota: A review. J. Nutr. 2004, 134, 465–472. [CrossRef]
139. Shang, Y.; Kumar, S.; Oakley, B.; Kim, W.K. Chicken gut microbiota: Importance and detection technology. Front. Vet. Sci. 2018, 5, 254. [CrossRef]