Explore

Communities in English

Advertise on Engormix

Nutrient transporters and tight junction expression and cecal short-chain fatty acid profile in Eimeria-challenged broilers fed diets with different levels of xylo-oligosaccharides

Published: July 22, 2022
By: Y. Lin and O. Olukosi / University of Georgia, Athens, GA, USA.
Summary

A total of 252 Cobb 500 male broiler chicks were used in a 21-d experiment to study the possibility of xylo-oligosaccharides (XOS) helping to recover gut impairment in Eimeria-challenged broilers by regulating the expression of nutrient transporters and tight junctions, and cecal short-chain fatty acids (SCFA), which is an indicator of bacterial status. Birds were allocated to 6 treatments in a 3 × 2 factorial arrangement (3 corn-soybean diets with 0, 0.5, 1 g/kg XOS × with or without Eimeria challenge). Each treatment had 6 replicates with 7 birds per replicate. Challenged groups were inoculated with a solution containing E. maxima, E. tenella, and E. acervulina oocysts on d 15. On d 21, jejunal tissue was collected for gene expression analysis and cecal content was collected for SCFA analysis. The Eimeria × XOS interaction for tight junction claudin 1 showed that both 0.5 and 1 g/kg XOS alleviated (P < 0.05) Eimeria-induced claudin 1 upregulation. The Eimeria × XOS interaction for sugar transporters showed the extent of Eimeria-induced GLUT2 and GLUT5 downregulation was smallest in the 0.5 g/kg XOS supplemental treatment. In addition, Eimeria upregulated (P < 0.01) tight junction JAM2 and glucose transporter GLUT1 but downregulated (P < 0.01) the peptide transporter PepT1, amino acid transporters rBAT, CAT2, y+LAT2, and zinc transporter ZnT1. Eimeria decreased (P < 0.05) cecal saccharolytic SCFA acetate, butyrate and total SCFA, but increased (P < 0.05) cecal branched-chain fatty acids isobutyrate and isovalerate. The supplementation of XOS tended to decrease the concentration of isobutyrate (P = 0.080) and isovalerate (P= 0.062). In conclusion, Eimeria challenge triggered changes in expression of tight junction and nutrient transporter genes. Supplemental XOS helped reverse the gene expression changes in tight junction claudin 1 and glucose transporter GLUT2 and GLUT5, and showed the potential of alleviating the Eimeria-induced unfavorable cecal fermentation pattern.

Key Words: xylo-oligosaccharides, Eimeria, tight junction, nutrient transporter, short-chain fatty acids (SCFA).

        

Presented at the 9th Symposium on Gut Health in Production of Food Animals, St. Louis, USA, 2021. For information on the next edition, click here.

Content from the event:
Related topics:
Authors:
Yang Lin
University of Georgia
University of Georgia
Oluyinka Olukosi
University of Georgia
University of Georgia
Recommend
Comment
Share
Profile picture
Would you like to discuss another topic? Create a new post to engage with experts in the community.
Featured users in Animal Feed
Dave Cieslak
Dave Cieslak
Cargill
United States
Inge Knap
Inge Knap
DSM-Firmenich
Investigación
United States
Lester Pordesimo
Lester Pordesimo
ADM Animal Nutrition
ADM Animal Nutrition
United States
Join Engormix and be part of the largest agribusiness social network in the world.