Author details:
A g u e r r e M.J., C a p o z z o l o M.C., L e n c i o n i P., C a b r a l C., Wa t t i a u x M.A. (2016). Effect of quebracho-chestnut tannin extracts at 2 dietary crude protein levels on performance, rumen fermentation and nitrogen partitioning in dairy cows. J. Dairy Sci., 99: 4476–4486.
A r a g o n a K.M., C h a p m a n C.E., P e r e i r a A.B.D., I s e n b e r g B.J., S t a n d i s h R.B.,
M a u g e r i C.J., C a b r a l R.G., E r i c k s o n P.S. (2016). Prepartum supplementation of nicotinic acid: effects on health of the dam, colostrum quality and acquisition of immunity in the calf. J. Dairy
Sci., 99: 3529–3538.
Á v i l a S.C., K o z l o s k i G.V., O r l a n d i T., M e z z o m o M.P., S t e f a n e l l o S. (2015). Impact of a tannin extract on digestibility, ruminal fermentation and duodenal flow of amino acids in steers fed maize silage and concentrate containing soybean meal or canola meal as protein source. J. Agric.
Sci., 153: 943–953.
B a r r e i r a J.C.M., F e r r e i r a I.C.F.R., O l i v e i r a M.B.P.P., P e r e i r a J.A. (2008). Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food. Chem., 107: 1106–1113.
B i o n a z M., T r e v i s i E., C a l a m a r i L., L i b r a n d i F., F e r r a r i A., B e r t o n i G. (2007).
Plasma paraoxonase, health, inflammatory conditions and liver function in transition dairy cows.
J. Dairy Sci., 90: 1740–1750.
B r s c i c M., C o z z i G., L o r a I., S t e f a n i L.A., C o n t i e r o B., R a v a r o t t o L., G o t t a r - d o F. (2015). Short communication: Reference limits for blood analytes in Holstein late-pregnant heifers and dry cows: Effects of parity, days relative to calving, and season. J. Dairy Sci., 98:
7886–7892.
C a o Y., Z h a n g J., Ya n g W., X i a C., Z h a n g H-Y., Wa n g Y-H., X u C. (2017). Predictive value of plasma parameters in the risk of postpartum ketosis in dairy cows. J. Vet. Res., 61: 91–95.
C i e s l a k A., S z u m a c h e r - S t r a b e l M., S t o c h m a l A., O l e s z e k W. (2013). Plant components with specific activities against rumen methanogens. Animal, 7: 253–265.
C o n n e e l y M., B e r r y D.P, S a y e r s R., M u r p h y J.P., L o r e n z I., D o h e r t y M.L., K e n -n e d y E. (2013). Factors associated with the concentration of immunoglobulin G in the colostrum of dairy cows. Animal, 7: 1824–1832.
C o s t a L.G., G i o r d a n o G., F u r l o n g C.E. (2011). Pharmacological and dietary modulators of paraoxonase 1 (PON1) activity and expression: the hunt goes on. Biochem. Pharmacol., 81:
337–344.
D e v a n t M., A n g l a d a A., B a c h A. (2007). Effects of plant extract supplementation on rumen fermentation and metabolism in young Holstein bulls consuming high levels of concentrate. Anim.
Feed. Sci. Technol., 137: 46–57.
D s c h a a k C.M., W i l l i a m s C.M., H o l t M.S., E u n J.S., Yo u n A.J., M i n B.R. (2011). Effects of supplementing condensed tannin extract on intake, digestion, ruminal fermentation and milk production of lactating dairy cows. J. Dairy Sci., 94: 2508–2519.
F a r i d A.S., H o n k a w a K., F a t h E.M., N o n a k a N., H o r i i Y. (2013). Serum paraoxonase-1 as biomarker for improved diagnosis of fatty liver in dairy cows. BMC Vet. Res., 9: 73.
G u l l i k s e n S.M., L i e K.I., S ø l v e r ø d L., Ø s t e r ä s O. (2008). Risk factors associated with colostrum quality in Norwegian dairy cows. J. Dairy Sci., 91: 704–712.
H a s h e m i M., B a h a r i A., H a s h e m z e h i N., M o a z e n i - R o o d i A., S h a f i e i p o u r S.,
B a k h s h i p o u r A., G h a v a m i S. (2012). Serum paraoxonase and arylesterase activities in Iranian patients with non-alcoholic fatty liver disease. Pathophysiology, 19: 115–119.
H a s s a n a t F., B e n c h a a r C. (2013). Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J. Sci. Food Agric., 93: 332–339.
H u a n g Q., X i u l i L., G u o q i Z., T i a n m i n g H.U., Yu x i W. (2018). Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr., 4:
137–150.
J a f a r i H., F a t a h n i a F., K h a t i b j o o A., T a a s o l i G., F a z a e l i H. (2018). Effect of oak acorn level on colostrum composition and plasma immunoglobulin G of late-pregnant goats and their kids.
Animal, 12: 2300–2309.
J a y a n e g a r a A., G o e l G., M a k k a r H.P.S., B e c k e r K. (2015). Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol., 209: 60–68.
K e h o e S.I., H e i n r i c h s A.J., M o o d y M.L., J o n e s C.M., L o n g M.R. (2011). Comparison of immunoglobulin G concentrations in primiparous and multiparous bovine colostrum. PAS, 27:
176–180.
Klimes J., Bouska J., Bouda J., Dostálová M., Toth J. (1989). The effect of subclinical ketosis in dry cows on the composition of the colostrum and on health indicators in newborn calves.
Vet. Med. (Praha), 34: 129–140.
L e e S.D., K i m J.H., J u n g H.J., K i m Y.H., K i m I.C., K i m S.B., L i m S.Y., J u n g W.S.,
L e e S.H., K i m Y.J. (2013). The effect of ginger extracts on the antioxidant capacity and IgG concentrations in the colostrum and plasma of neo-born piglets and sows. Livest. Sci., 154:
117–122.
L i Y., D i n g H.Y., Wa n g X.C., F e n g S.B., L i X.B., Wa n g Z., L i u G.W., L i X.W. (2016). An association between the level of oxidative stress and the concentrations of NEFA and BHBA in the plasma of ketotic dairy cows. J. Anim. Physiol. Anim. Nutr., 100: 844–851.
L i n Y., S u n X., H o u X., Q u B., G a o X., L i Q. (2016). Effects of glucose on lactose synthesis in mammary epithelial cells from dairy cow. BMC Vet. Res., 12: 81.
L i u H.W., Z h o u D.W., L i K. (2013). Effects of chestnut tannins on performance and antioxidative status of transition dairy cows. J. Dairy Sci., 96: 5901–5907.
M a k k a r H.P.S. (2003). Effects and fate of tannins in ruminant animals, adaptation to tannins and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res., 49:
241–256.
M a l i s a n F., B r i è r e F., B r i d o n J.M., H a r i n d r a n a t h N., M i l l s F.C., M a x E.E.,
B a n c h e r e a u J., M a r t i n e z - Va l d e z H. (1996). Interleukin-10 induces immunoglobulin G isotype switch recombination in human CD40-activated naive B lymphocytes. J. Exp. Med., 183:
937–947.
M a n n S., N y d a m D., O v e r t o n T. (2014). Dry cow feed strategies to control ketosis and colostrum quality. Manager. Nov.14, pp. 23–24.
M c S w e e n e y C.S., P a l m e r B., M c N e i l l D.M., K r a u s e D.O. (2001). Microbial interactions with tannins: nutritional consequences for ruminants. Anim. Feed Sci. Tech., 91: 83–93.
M o e i n i M.M., K i a n i A., M i k a e i l i E., S h a b a n k a r e h H.K. (2011). Effect of prepartum supplementation of selenium and vitamin E on serum Se, IgG concentrations and colostrum of heifers and on hematology, passive immunity and Se status of their offspring. Biol. Trace Elem. Res., 144:
529–537.
M u e l l e r - H a r v e y I. (2006). Unravelling the conundrum of tannins in animal nutrition and health.
J. Sci. Food Agr., 86: 2010–2037.
N e d i ć S., Va k a n j a c S., S a m a r d z i j a M., B o r o z a n S. (2019). Paraoxonase 1 in bovine milk and blood as marker of subclinical mastitis caused by Staphylococcus aureus. Res. Vet. Sci., 125:
323–332.
N o r o M., W i t t w e r F. (2012). Relationships between liver ureagenesis and gluconeogenesis in ruminants fed with a high nitrogen diet. Vet. Mex., 43: 143–154.
N o w a k W., M i k u ł a R., K a s p r o w i c z - P o t o c k a M., I g n a t o w i c z M., Z a c h w i e j a A.,
P a c z y ń s k a K., P e c k a E. (2012). Effect of cow nutrition in the far-off period on colostrum quality and immune response of calves. Bull. Vet. Inst. Pulawy., 56: 241–246.
P a n i g r a h i B., P a n d e y N., P a t t a n i k A.K. (2004). Effect of pre-partum feeding of crossbred cows on growth performance, metabolic profile and immune status of calves. Asian-Aus. J. Anim.
Sci., 18: 661–665.
P a n t e l i ć M., J o v a n o v i ć L.J., P r o d a n o v i ć R., V u j a n a c I., Đ u r i ć M., Ć u l a f i ć T.,
V r a n j e š - Đ j u r i c S., K o r i ć a n a c G., K i r o v s k i D. (2018). The impact of the chromium supplementation on insulin signalling pathway in different tissues and milk yield in dairy cows.
J. Anim. Physiol. Anim. Nutr., 102: 41–55.
P r o d a n o v i ć R., K o r i ć a n a c G., V u j a n a c I., D j o r d j e v i ć A., P a n t e l i ć M., R o m i ć S.,
S t a n i m i r o v i ć Z., K i r o v s k i D. (2016). Obesity-driven prepartal hepatic lipid accumulation in dairy cows is associated with increased CD36 and SREBP-1 expression. Res. Vet. Sci., 107:
16–19.
Q u i r o z - R o c h a F.G., L e B l a n c J.S., D u f f i e l d F.T., Wo o d D., L e s l i e E.K., J a c o b s M.R. (2009). Reference limits for biochemical and hematological analytes of dairy cows one week before and one week after parturition. Can. Vet. J., 50: 383–388.
R e z a i F., Z a m a n i F., Va t a n k h a h M. (2012). Effect of rumen undegradable protein (RUP) on colostrum quality and growth of Lori-Bakhtiari lambs. Glob. Vet., 8: 93–100.
S e n t u r k S., C i h a n H., K a s a p S., M e c i t o g l u Z., T e m i z e l M. (2015). Effects on negative energy balance of tannin in dairy cattle. Uludag Univ. Vet. Fak. Derg., 34: 1–7.
S l i w i n s k i B.J., S o l i v a C.R., M a c h m ü l l e r A., K r e u z e r M. (2002). Efficacy of plant extracts rich in secondary constituents to modify rumen fermentation. Anim. Feed Sci. Technol., 101:
101–114.
S t o c k d a l e C.R., S m i t h C.J. (2004). Effect of energy and protein nutrition in late gestation on immunoglobulin G in the colostrum of dairy cows with varying body condition scores. Anim. Prod.,
25: 176–179.
S t o j i ć M., F r a t r i ć N., K o v a č i ć M., I l i ć V., G v o z d i ć D., S a v i ć O., Đ o k o v i ć R.,
Va l č i ć O. (2017). Brix refractometry of colostrum from primiparous dairy cows and new-born calf blood serum in the evaluation of failure of passive transfer. Acta Vet. Beograd., 67: 508–524.
T h a i p o n g K., B o o n p r a k o b U., C r o s b y K., C i s n e r o s - Z e v a l l o s L., B y r n e H.D. (2006). Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Comp. Anal., 19: 669–675.
T o g h y a n i E., M o h a r r e r y A. (2015). Effect of various levels of dietary protein in transition period on colostrum quality and serum immunoglobulin concentration in Holstein cows and their newborn calves. Ann. Anim. Sci., 15: 493–504.
W u Y., Z h o n g L., Yu Z., Q i J. (2019). Anti-neuroinflammatory effects of tannic acid against lipopolysaccharide-induced BV2 microglial cells via inhibition of NF-κB activation. Drug Dev. Res.,
80: 262–268.
Z h o n g R.Z., S u n H.X., L i u H.W., Z h o u D.W. (2014). Effects of tannic acid on Haemonchus contortus larvae viability and immune responses of sheep white blood cells in vitro. Parasite Immunol.,
36: 100–106.
Ž i v k o v i ć J., Z e k o v i ć Z., M u j i ć I., V i d o v i ć S., C v e t k o v i ć D., L e p o j e v i ć Ž.,
N i k o l i ć G., Trutić N. (2010). Scavenging capacity of superoxide radical and screening of antimicrobial activity of Castanea sativa Mill. extracts. Czech. J. Food Sci., 1: 61–68.