This review discusses the complex nature of the primary nonstarch polysaccharide (NSP) in corn with respect to the merit of debranching enzymes. Celluloses, hemicelluloses, and pectins comprise the 3 major categories of NSP that make up nearly 90% of plant cell walls. Across cereals, the hemicellulose arabinoxylan exists as the primary NSP, followed by cellulose, glucans, and others. Differences in arabinoxylan structure among cereals and cereal fractions are facilitated by cereal type, degree and pattern of substitution along the xylan backbone, phenol content, and cross-linkages. In particular, arabinoxylan (also called glucuronoarabinoxylan) in corn is heavily fortified with substituents, being more populated than in wheat and other cereal grains. Feed-grade xylanases – almost solely of the glycoside hydrolase (GH) 10 and GH 11 families – require at least 2 or 3 contiguous xylose units to be free of attachments to effectively attack the xylan chain. This canopy of attachments, along with a high phenol content and the insoluble nature of corn glucuronoarabinoxylan, confers a significant resistance to xylanase attack. Both in vitro and in vivo studies demonstrate that debranching enzymes appreciably increase xylanase access and fiber degradability by removing these attachments and breaking phenolic linkages. The enzymatic degradation of the highly branched arabinoxylan can facilitate disassembly of other fibers by increasing exposure to pertinent carbohydrases. For cereals, the arabinofuranosidases, a-glucuronidases, and esterases are some of the more germane debranching enzymes. Enzyme composites beyond the simple core mixes of xylanases, cellulases, and glucanases can exploit synergistic benefits generated by this class of enzymes. A broad scope of enzymatic activity in customized mixes can more effectively target the resilient NSP construct of cereal grains in commercial poultry diets, particularly those in corn-based feeds.
Key words: enzyme, debranching enzyme, nonstarch polysaccharide, corn, arabinoxylan.
Adebowale, T. O., K. Yao, and A. O. Oso. 2019. Major cereal carbohydrates in relation to intestinal health of monogastric animals: a review. Anim. Nutr. 5:331–339.
Agger, J., A. Viksø-Nielsen, and A. S. Meyer. 2010. Enzymatic xylose release from pretreated corn bran arabinoxylan: differential effects of deacetylation and deferuloylation on insoluble and soluble substrate fractions. J. Agric. Food Chem. 58:6141–6148.
Allerdings, E., J. Ralph, H. Steinhart, and M. Bunzel. 2006. Isolation and structural identification of complex feruloylated heteroxylan side-chains from maize bran. Phytochemistry 67:1276–1286.
Appeldoorn, M. M., M. A. Kabel, D. Van Eylen, H. Gruppen, and
H. A. Schols. 2010. Characterization of oligomeric xylan structures from corn fiber resistant to pretreatment and simultaneous saccharification and fermentation. J. Agric. Food Chem. 58:11294–
11301.
Bach Knudsen, K. E. 1997. Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed Sci. Tech. 67:319–338.
Bach Knudsen, K. E. 2014. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poult. Sci.
93:2380–2393.
Bach Knudsen, K. E. 2018. Non-Starch Polysaccharides and Fibers:
From Direct to Indirect Effect on Global Digestibility. PSA Symp,
San Antonio, TX.
Bajaj, P., and R. Mahajan. 2019. Cellulase and xylanase synergism in industrial biotechnology. Appl. Microbiol. Biotech. 103:8711–
8724.
Banerjee, G., J. S. Scott-Craig, and J. D. Walton. 2010. Improving enzymes for biomass conversion: a basic research perspective.
Bioenerg. Res. 3:82–92.
Beaugrand, J., G. Chambat, V. W. Wong, F. Goubet, C. Remond, and
G. Paes. 2004. Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carb. Res. 339:2529–2540.
Bedford, M. R. 1995. Mechanism of action and potential environmental benefits from the use of feed enzymes. Anim. Feed Sci.
Tech. 53:145–155.
Bi, R., J. Berglund, F. Vilaplana, L. S. McKee, and
G. Henriksson. 2016. The degree of acetylation affects the microbial degradability of mannans. Poly. Degrad. Stab. 133:38–46.
Biely, P., S. Singh, and V. Puchart. 2016. Towards enzymatic breakdown of complex plant xylan structures: state of the art.
Biotech. Adv. 34:1260–1274.
Broekaert, W. F., C. M. Courtin, K. Verbeke, T. Van de Wiele,
W. Verstraete, and J. A. Delcour. 2011. Prebiotic and other healthrelated effects of cereal-derived arabinoxylans, arabinoxylanoligosaccharides, and xylooligosaccharides. Crit. Rev. Food Sci.
Nutr. 51:178–194.
Bunzel, M., J. Ralph, J. M. Marita, R. D. Hatfield, and
H. Steinhart. 2001. Diferulates as structural components in soluble and insoluble cereal dietary fibre. J. Sci. Food Agric. 81:653–660.
Burton, R. A., and G. B. Fincher. 2014. Evolution and development of cell walls in cereal grains. Front. Plant Sci. 1:1–15.
Burton, R. A., M. J. Gidley, and G. B. Fincher. 2010. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat.
Chem. Biol. 6:732–733.
Caprita, R., A. Caprita, and C. Julean. 2010. Biochemical aspects of non-starch polysaccharides. Anim. Sci. Biotech. 43:368–375.
Carre, B., J. Gomez, and A. M. Chagneau. 1995. Contribution of oligosaccharide and polysaccharide digestion, and excreta losses of lactic acid and short chain fatty acids, to dietary metabolizable energy values in broiler chickens and adult cockerels. Br. Poult. Sci.
36:611–629.
Chanliaud, E., L. Saulnier, and J. Thibault. 1995. Alkaline extraction and characterization of heteroxylans from maize bran. J. Cereal
Sci. 21:195–203.
Chesson, A., P. T. Gardner, and T. J. Wood. 1997. Cell wall porosity and available surface area of wheat straw and wheat grain fractions. J. Sci. Food Agric. 75:289–295.
Choct, M. 2015. Feed non-starch polysaccharides for monogastric animals: classification and function. Anim. Prod. Sci. 55:1360–
1366.
Choct, M., and G. Annison. 1991. Anti-nutritive activity of wheat pentosans in broiler diets. Br. Poult. Sci. 31:812–821.
Courtin, C. M., W. F. Broekaert, K. Swennen, O. Lescroart,
O. Onagbesan, J. Buyse, E. Decuypere, T. Van De Wiele,
M. Marzorati,W. Verstraete, G. Huyghebaert, and J. Delcour. 2008.
Dietary inclusion of wheat bran arabinoxylooligosaccharides induces beneficial nutritional effects in chickens. Cereal Chem. 85:607–613.
Cowieson, A. 2010. Strategic selection of exogenous enzymes for corn/ soy-based poultry diets. J. Poult. Sci. 47:1–7.
Cozannet, P., M. T. Kidd, R. M. Neto, and P.-A. Geraert. 2017. Nextgeneration non-starch polysaccharide-degrading, multicarbohydrase complex rich in xylanase and arabinofuranosidase to enhance broiler feed digestibility. Poult. Sci. 96:2743–2750.
De Maesschalck, C., V. Eeckhaut, L. Maertens, L. De Lange,
L. Marchal, C. Nezer, S. De Baere, S. Croubels, G. Daube,
J. Dewulf, F. Haesebrouck, R. Ducatelle, B. Taminau, and
F. Van Immerseel. 2015. Effects of xylo-oligosaccharides on broiler chicken performance and microbiota. Appl. Environ.
Microbiol. 81:5880–5888. de Vries, R. P., H. C. M. Kester, C. H. Poulsen, J. A. E. Benen, and
J. Visser. 2000. Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides.
Carb. Res. 327:401–410.
Doner, L. W., D. B. Johnston, and V. Singh. 2001. Analysis and properties of arabinoxylans from discrete corn wet-milling fiber fractions. J. Agric. Food Chem. 49:1266–1269.
Glitso, L. V., G. Brunsgaard, S. Hojsgaard, B. Sandstrom, and
K. E. Bach Knudsen. 1998. Intestinal degradation in pigs of rye dietary fibre with different structural characteristics. Br. J. Nutr.
80:457–668.
Grabber, J. H., J. Ralph, and R. D. Hatfield. 1998. Ferulate cross-links limit the enzymatic degradation of synthetically lignified primary walls of maize. J. Agric. Food Chem. 46:2609–2614.
Grabber, J. H., J. Ralph, C. Lapierre, and Y. Barriere. 2004. Genetic and molecular basis of grass cell wall degradability. I. Lignin-cell wall matrix interactions. C. R. Biol. 327:455–465.
Grohmann, K., D. J. Mitchell, M. E. Himmel, B. E. Dale, and
H. A. Schroeder. 1989. The role of ester groups in resistance of plant cell wall polysaccharides to enzymatic hydrolysis. Appl.
Biochem. Biotech. 20-21:45–61.
Hu, J., V. Arantes, A. Pribowo, and Saddler. Jack. 2013. The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotech.
Biofuels 6:112–124.
Huang, D., J. Liu1, Y. Qi1, K. Yang, Y. Xu, and L. Feng1. 2017.
Synergistic hydrolysis of xylan using novel xylanases, ß-xylosidases, and an a-L-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2. Appl. Microbiol. Biotech. 101:6023–6037.
Huisman, M. M. H. 2000. Elucidation of the Chemical Fine Structure of Polysaccharides from Soybean and Maize Kernel Cell Walls.
Ph.D. Thesis. Wageningen University, Wageningen, The
Netherlands.
Izydorczyk, M. S., and C. G. Biliaderis. 2007. Arabinoxylans: technologically and nutritional functional plant polysaccharides. Pages
249–290 in Functional Food Carbohydrates. C. G. Biliaderis and
M. S. Izydorczyk, eds. CRC Press, Boca Raton FL.
Jia, L., G. A. L. G. Budinovaa, Y. Takasugia, S. Nodab, T. Tanakac,
H. Ichinosed, M. Gotoa, and N. Kamiyaa. 2016. Synergistic degradation of arabinoxylan by free and immobilized xylanases and arabinofuranosidase. Biochem. Eng. J. 114:268–275.
Kiarie, E., L. F. Romero, and C. M. Nyachot. 2013. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr.
Res. Rev. 26:71–88.
Kim, G.-B., Y. M. Seo, C. H. Kim, and I. K. Paik. 2011. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult. Sci. 90:75–82.
Lei, Z., Y. Shao, X. Yin, D. Yin, Y. Guo, and J. Yuan. 2016. Combination of xylanase and debranching enzymes specific to wheat arabinoxylan improve the growth performance and gut health of broilers. Agric. Food Chem. 64:4932–4942.
Linares-Pasten, J. A., A. Aronsson, and E. N. Karlsson. 2018. Structural considerations on the use of endo-xylanases for the production of prebiotic xylooligosaccharides from biomass. Curr. Prot.
Pept. Sci. 19:48–67.
Martínez-Lopez, M. E. Carvajal-Millan, V. Micard, A. Rascon-Chu,
F.Brown-Bojorquez, N. Sotelo-Cruz, Y. Lopez-Franco, and J. LizardiMendoza. 2016. In vitro degradation of covalently cross-linked arabinoxylan hydrogels by bifidobacteria. Carb. Poly. 144:76–82.
Mathew, S., and T. E. Abraham. 2004. Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit. Rev. Biotechnol. 24:59–83.
Mathlouthi, N., L. Saulnier, B. Quemener, and M. Larbier. 2002.
Xylanase, b-glucanase, and other side enzymatic activities have greater effects on the viscosity of several feedstuffs than xylanase and b- glucanase used alone or in combination. J. Agric. Food
Chem. 50:5121–5127.
Mejia, L., D. Teige, N. E. Ward, L. Fox, and M. de Beer. 2014.
Evaluation of feeding victus, a multi-component enzyme on live performance of broilers fed a wheat-based diet and reared under commercial conditions. Poult. Sci. 93:124 (Abstr.).
Mendis, M., E. Leclerc, and S. Simsek. 2016. Arabinoxylans, gut microbiota and immunity. Carb. Poly. 139:159–166.
Meng, X., and B. A. Slominski. 2005. The nutritive value of corn, soybean meal, canola meal or peas for broiler chickens as affected by a multi-carbohydrase preparation of cell wall degrading enzymes. Poult. Sci. 84:1242–1251.
Meng, X., B. A. Slominski, C. M. Nyachoti, L. D. Campbell, and
D. Guenter. 2005. Degradation of cell wall polysaccharides by combinations of carbohydrase enzymes and their effect on nutrient utilization and broiler chicken performance. Poult. Sci. 84:37–47.
Moreira, L. R. S., and E. X. F. Filho. 2016. Insights into the mechanism of enzymatic hydrolysis of xylan. Appl. Microbiol. Biotech.
100:5205–5214.
Muralikrishna, G., and M. Rao. 2007. Cereal non-cellulosic polysaccharides: structure and function relationship—an overview.
Crit. Rev. Food Sci. Nutr. 47:599–610.
Ndolo, V. U., and T. Beta. 2014. Comparative studies on composition and distribution of phenolic acids in cereal grain botanical fractions. Cereal Chem. 91:522–530.
Payling, L., K. Frasera, S. M. Lovedaya, I. Simsc, N. Roya, and
W. McNabba. 2020. The effects of carbohydrate structure on the composition and functionality of the human gut microbiota.
Trends Food Sci. Technol. 97:233–248.
Pedersen, M. B. 2015. Xylanases to Improve the Nutritional Value of
High Fibre Diets Based on Corn and Wheat DDGS. Ph.D. Thesis.
Department of Animal Science, Aarhus University, Aarhus,
Denmark.
Pedersen, N. R. 2016. Xylanase studies with L-arabinofuranosidase.
Novozymes A/S, Bagsvaerd, Denmark.
Poria, V., J. K. Sainia, S. Singha, L. Nain, and R. C. Kuhad. 2020.
Arabinofuranosidases: characteristics, microbial production, and potential in waste valorization and industrial applications. Bioresour. Technol. 304:1–11.
Rahman, A. K. M., N. Sugitani, M. Hatsu, and K. Takamizawa. 2003.
A role of xylanase, L-arabinofuranosidase, and xylosidase in xylan degradation. Can. J. Microbiol. 49:58–64.
Ravn, J. L., V. Glitsø, D. Pettersson, R. Ducatelle, F. Van Immerseel, and N. R. Pedersen. 2018. Combined endo-b-1,4-xylanase and a-Larabinofuranosidase increases butyrate concentration during broiler cecal fermentation of maize glucuronoarabinoxylan. Anim.
Feed Sci. Tech. 236:159–169.
Rogowski, A., J. A. Briggs, J. C. Mortimer, T. Tryfona, N. Terrapon,
E. C. Lowe, A. Arnaud Basle, C. Morland, A. M. Aison, M. Day,
H. Zheng, T. E. Rogers, P. Thompson, A. R. Hawkins,
M. P. Yadav, B. Henrissat, E. C. Martens, P. Dupree, H. J. Gilbert, and D. N. Bolam. 2015. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Comm. 6:1–15.
Rose, D. J., and G. E. Inglett. 2011. A method for the determination of soluble arabinoxylan released from insoluble substrates by xylanases. Food Anal. Methods 4:66–72.
Rose, D. J., J. A. Patterson, and B. R. Hamaker. 2010. Structural differences among alkali-soluble arabinoxylans from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) brans influence human fecal fermentation profiles. J. Agric. Food Chem.
58:493–499.
Rytioja, J., K. Hilden, J. Yuzon, A. Hatakka, R. de Vries, and
M. M€akel€aa. 2014. Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol. Mol. Biol. Rev. 78:614–649.
Saha, B. C. 2003. Hemicellulose conversion. J. Ind. Microbiol. Biotech.
30:279–291.
Saulnier, L., P. E. Sado, G. Branlard, G. Charmet, and
F. Guillon. 2007. Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. J. Cereal
Sci. 46:261–281.
Slominski, B. A. 1994. Hydrolysis of galactooligosaccharides by commercial preparations of a-galactosidase and b-fructofuranosidase: potential for use as dietary additives. J. Sci. Food
Agric. 65:323–330.
Slominski, B. A. 2011. Recent advances in research on enzymes for poultry. Poult. Sci. 90:2013–2023.
Sluis, M. K., R. Saller, N. E. Ward, and N. R. Pedersen. 2017.
Debranching enzymes in Victus act in synergy with xylanases to degrade corn arabinoxylan in vitro. Poult. Sci. 96:292 (Abstr).
Snelders, J., H. Olaerts, E. Dornez, T. van de Wiele, A.-M. Aura,
L. Vanhaecke, J. Delcour, and C. Courtin. 2014. Structural features and feruloylation modulate the fermentability and evolution of antioxidant properties of arabinoxylooligosaccharides during in vitro fermentation by human gut derived microbiota. J. Funct.
Foods 10:1–12.
Sorensen, H. R., S. Pedersen, and A. S. Meyer. 2007. Synergistic enzyme mechanisms and effects of sequential enzyme additions on degradation of water insoluble wheat arabinoxylan. Enzyme
Microb. Technol. 40:908–918.
Sun, F. F., J. Hong, J. Hu, J. N. Saddlet, X. Fang, Z. Zhang, and
S. Shen. 2015. Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass.
Enzyme Microb. Technol. 79-80:42–48.
Thanabalan, A., M. Mohammadigheisar, N. E. Ward, A. Cowieson, and E. Kiarie. 2018. Effects of multi-enzyme composite on energy utilization in full fat soybean processed by roasting or extrusion and fed to broiler chickens. Poult. Sci. 97:355 (Abstr.). van Laere, K., G. Beldman, and A. A. Voragen. 1997. A new arabinofuranohydrolase from Bifidobacterium adolescentis able to remove arabinosyl residues from double-substituted xylose units in arabinoxylan. Appl. Microbiol. Biotech. 47:231–235.
Ward, N. E. 2019. Debranching enzymes: a modern strategy for feed enzymes. Feedstuffs 91.
Ward, N. E., M. de Beer, L. Mejia, G. Mathis, and B. Lumpkins. 2014.
Efficacy of Victus enzyme product for broilers fed a corn/soybean meal-based diet over a 49-day period. Poult. Sci. 93(E-Suppl.
1):157 (Abstr.).
Ward, N. E., J. Kessler, D. Teige, A. Levy, and A. Cowieson. 2017. A meta-analysis of the effect of Victus broiler under commercial and experimental conditions. Poult. Sci. 96(E-Suppl. 1):157 (Abstr.).
Ward, N. E., and S. Kuhnel. 2016. Debranching enzymes enhance corn/soybean meal diets. Feedstuffs 88.
Ward, N. E., B. A. Slominski, and S. R. Fernandez. 2008. Nonstarch polysaccharide content of corn grain. Poult. Sci. 87:91 (Abstr.).
Wilkens, C. S. Andersen, C. Dumon, J.-G. Berrin, and
B. Svensson. 2017. GH62 arabinofuranosidases: structure, function and applications. Biotech. Adv. 35:792–804.
Wong, D. W. S., V. J. Chan, and H. Liao. 2019. Metagenomic discovery of feruloyl esterases from rumen microflora. Appl. Microbiol. Biotech. 103:8449–8457.
Xue, Y., X. Cui, Z. Zhang, T. Zhou, R. Gao, Y. Li, and X. Ding. 2020.
Effect of ß-endoxylanase and a-arabinofuranosidase enzymatic hydrolysis on nutritional and technological properties of wheat brans. Food Chem. 302:1–10.
Yadav, M. P., R. A. Moreau, and K. B. Hicks. 2007. Phenolic acids, lipids, and proteins associated with purified corn fiber arabinoxylans. J. Agric. Food Chem. 55:943–947.
Yegani, M., and D. R. Korver. 2013. Effects of corn source and exogenous enzymes on growth performance and nutrient digestibility in broiler chickens. Poult. Sci. 92:1208–1220.
Yoshimi, Y. K. Y., S. Tsumuraya, and T. Kotake. 2017. Properties of two fungal endo-B1,3-galactanases and their synergistic action with an exo-B-1,3-galactanase in degrading arabinogalactan proteins. Carb. Res. 453-454:26–35.
Zhang, Z., C. Smith, and W. Li. 2014. Extraction and modification technology of arabinoxylans from cereal by-products: a critical review. Food Res. Intern. 65:423–436.