Ammonia (NH3) concentration has seldom been used for environmental control of weaner buildings despite its impact on environment, animal welfare, and workers’ health. This paper aims to determine the effects of setpoint temperature (ST) on the daily evolution of NH3 concentration in the animal-occupied zone. An experimental test was conducted on a conventional farm, with ST between 23°C and 26°C. NH3 concentrations in the animal-occupied zone were dependent on ST insofar as ST controlled the operation of the ventilation system, which effectively removed NH3 from the building. The highest NH3 concentrations occurred at night and the lowest concentrations occurred during the daytime. Data were fitted to a sinusoidal model using the least squares setting (LSS) and fast Fourier transform (FFT), which provided R2 values between 0.71 and 0.93. FFT provided a better fit than LSS, with root mean square errors (RMSEs) between 0.09 ppm for an ST of 23°C and 0.55 ppm for an ST of 25°C. A decrease in ST caused a delay in the wave and a decrease in wave amplitude. The proposed equations can be used for modeling NH3 concentrations and implemented in conventional controllers for real-time environmental control of livestock buildings to improve animal welfare and productivity.
Keywords: ammonia daily variation; sinusoidal pattern; environmental control; animal-occupied zone; fast Fourier transform.
1. Bjerg, B.; Norton, T.; Banhazi, T.; Zhang, G.; Bartzanas, T.; Liberati, P.; Cascone, G.; Lee, B.; Marucci, A. Modelling of ammonia emissions from naturally ventilated livestock buildings. Part 1: Ammonia release modelling. Biosyst. Eng. 2013, 116, 232–245. [CrossRef]
2. Blanes–Vidal, V.; Nadimi, E.S.; Ellermann, T.; Andersen, H.V.; Løfstrøm, P. Perceived annoyance from environmental odors and association with atmospheric ammonia levels in non–urban residential communities: A cross–sectional study. Environ. Health 2012, 11, 11–27. [CrossRef]
3. Saha, C.K.; Zhang, G.; Kai, P.; Bjerg, B. Effects of a partial pit ventilation system on indoor air quality and ammonia emission from a fattening pig room. Biosyst. Eng. 2010, 105, 279–287. [CrossRef]
4. Ye, Z.; Zhang, G.; Li, B.; Strøm, J.S.; Dahl, P.J. Ammonia emissions affected by airflow in a model pig house: Effects of ventilation rate, floor slat opening, and headspace height in a manure storage pit. Trans. ASABE 2008, 51, 2113–2122. [CrossRef]
5. Ni, J.Q.; Heber, A.J.; Lim, T.T. Ammonia and hydrogen sulphide in swine production. In Air Quality and Livestock Farming; CRC Press: Florida, FA, USA, 2018; pp. 69–88.
6. Zhang, G.; Strøm, J.S.; Li, B.; Rom, H.B.; Morsing, S.; Dahl, P.; Wang, C. Emission of ammonia and other contaminant gases from naturally ventilated dairy cattle buildings. Biosyst. Eng. 2005, 92, 355–364. [CrossRef]
7. Cheng, Z.; O’Connor, E.A.; Jia, Q.; Demmers, T.G.M.; Wathes, C.M.; Wathes, D.C. Chronic ammonia exposure does not influence hepatic gene expression in growing pigs. Animal 2014, 8, 331–337. [CrossRef] [PubMed]
8. Done, S.H.; Chennells, D.J.; Gresham, A.C.J.; Williamson, S.; Hunt, B.; Taylor, L.L.; Bland, V.; Jones, P.; Armstrong, D.; White, R.P.; et al. Clinical and pathological responses of weaned pigs to atmospheric ammonia and dust. Vet. Rec. 2005, 157, 71–80. [CrossRef] [PubMed]
9. Drummond, J.G.; Curtis, S.E.; Simon, J.; Norton, H.W. Effects of aerial ammonia on growth and health of young pigs. J. Anim. Sci. 1980, 50, 1085–1091. [CrossRef]
10. Hamilton, T.D.C.; Roe, J.M.; Hayes, C.M.; Webster, A.J.F. Effects of ammonia inhalation and acetic acid pretreatment on colonization kinetics of toxigenic Pasteurella multocida within upper respiratory tracts of swine. J. Clin. Microbiol. 1998, 36, 1260–1265. [CrossRef]
11. O’Connor, E.A.; Parker, M.O.; McLeman, M.A.; Demmers, T.G.; Lowe, J.C.; Cui, L.; Davey, E.L.; Owen, R.C.; Wathes, C.M.; Abeyesinghe, S.M. The impact of chronic environmental stressors on growing pigs, Sus scrofa (Part 1): Stress physiology, production and play behaviour. Animal 2010, 4, 1899–1909. [CrossRef]
12. Parker, M.O.; O’Connor, E.A.; McLeman, M.A.; Demmers, T.G.M.; Lowe, J.C.; Owen, R.C.; Davey, E.L.; Wathes, C.M.; Abeyesinghe, S.M. The impact of chronic environmental stressors on growing pigs, Sus scrofa (Part 2): Social behaviour. Animal 2010, 4, 1910–1921. [CrossRef] [PubMed]
13. Von Borell, E.; Özpinar, A.; Eslinger, K.M.; Schnitz, A.L.; Zhao, Y.; Mitloehner, F.M. Acute and prolonged effects of ammonia on hematological variables, stress responses, performance, and behavior of nursery pigs. J. Swine Health Prod. 2007, 15, 137–145.
14. Wathes, C.M.; Demmers, T.G.M.; Teer, N.; White, R.P.; Taylor, L.L.; Bland, V.; Jones, P.; Armstrong, D.; Greshan, A.C.J.; Hartung, J.; et al. Production responses of weaned pigs after chronic exposure to airborne dust and ammonia. Anim. Sci. 2004, 78, 87–97. [CrossRef]
15. COUNCIL DIRECTIVE of 19 November 1991 laying down minimum standards for the protection of pigs (91/630/EEC). Off. J. Eur. Comm. 1991, L340, 33–38.
16. International Commission of Agricultural and Biosystems Engineering. CIGR 4th Report of working group climatization of animal houses: Heat and moisture production. In The International Commission of Agricultural Engineering, Section II; Research Centre Bygholm: Horsens, Denmark; Danish Institute of Agricultural Sciences: Tjele, Denmark, 2002.
17. Bottcher, R.; Mathis, S.; Roberts, J. Monitoring air quality with instruments. In Proceedings of the North Carolina Healthy Hogs Seminar; North Carolina Cooperative Extension Service: Raleigh, NC, USA, 2001; p. 10.
18. Cargill, C.; Murphy, T.; Banhazi, T. Hygiene and air quality in intensive housing facilities in Australia. Animal Prod. Aust. 2002, 24, 387–393.
19. Donham, K.; Thorne, P.; Breuer, G.; Powers, W.; Marquez, S.; Reynolds, S. Exposure limits related to air quality and risk assessment. In Iowa Concentrated Animal Feeding Operations Air Quality Study; Iowa State University and The University of Iowa Study Group: Ames, IA, USA, 2002; p. 164.
20. Krupa, S.V. Effects of atmospheric ammonia (NH3 ) on terrestrial vegetation: A review. Environ. Pollut. 2003, 124, 179–221. [CrossRef]
21. Schauberger, G.; Piringer, M.; Mikovits, C.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Anders, I.; Andre, K.; Hennig–Pauka, I.; et al. Impact of global warming on the odour and ammonia emissions of livestock buildings used for fattening pigs. Biosyst. Eng. 2018, 175, 106–114. [CrossRef]
22. Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [CrossRef]
23. Clark, C.M.; Tilman, D. Loss of plant species after chronic low–level nitrogen deposition to prairie grasslands. Nature 2008, 451, 712–715. [CrossRef]
24. Backes, A.; Aulinger, A.; Bieser, J.; Matthias, V.; Quante, M. Ammonia emissions in Europe, part I: Development of a dynamical ammonia emission inventory. Atmos. Environ. 2016, 131, 55–66. [CrossRef]
25. Backes, A.M.; Aulinger, A.; Bieser, J.; Matthias, V.; Quante, M. Ammonia emissions in Europe, part II: How ammonia emission abatement strategies affect secondary aerosols. Atmos. Environ. 2016, 126, 153–161. [CrossRef]
26. Hendriks, C.; Kranenburg, R.; Kuenen, J.; van Gijlswijk, R.; Kruit, R.W.; Segers, A.; van der Gon, H.D.; Schaap, M. The origin of ambient particulate matter concentrations in the Netherlands. Atmos. Environ. 2013, 69, 289–303. [CrossRef]
27. Geels, C.; Andersen, H.V.; Ambelas, S.C.; Christensen, J.H.; Ellermann, T.; Løfstrøm, P.; Gyldenkærne, S.; Brandt, J.; Hansen, J.B.; Frohn, L.M.; et al. Improved modelling of atmospheric ammonia over Denmark using the coupled modelling system DAMOS. Biogeosciences 2012, 9, 2625–2647. [CrossRef]
28. Kryza, M.; Dore, A.J.; Bla´s, M.; Sobik, M. Modelling deposition and air concentration of reduced nitrogen in Poland and sensitivity to variability in annual meteorology. J. Environ. Manag. 2011, 92, 1225–1236. [CrossRef] [PubMed]
29. Xu, W.; Zheng, K.; Liu, X.; Meng, L.; Huaitalla, R.M.; Shen, J.; Hartung, E.; Gallmann, E.; Roelcke, M.; Zhang, F. Atmospheric NH3 dynamics at a typical pig farm in China and their implications. Atmos. Pollut. Res. 2014, 5, 455–463. [CrossRef]
30. Webb, J.; Menzi, H.; Pain, B.F.; Misselbrook, T.H.; Dämmgen, U.; Hendriks, H.; Döhler, H. Managing ammonia emissions from livestock production in Europe. Environ. Pollut. 2005, 135, 399–406. [CrossRef] [PubMed]
31. Schauberger, G.; Piringer, M.; Petz, E. Diurnal and annual variation of odour emission from animal houses: A model calculation for fattening pigs. J. Agric. Eng. Res. 1999, 74, 251–259. [CrossRef]
32. Wang, K.; Wei, B.; Zhu, S.; Ye, Z. Ammonia and odor emitted from deep litter and fully slatted floor systems for growing–finishing pigs. Biosyst. Eng. 2011, 109, 203–210. [CrossRef]
33. Heber, A.J.; Tao, P.C.; Ni, J.Q.; Lim, T.T.; Schmidt, A.M. Air emissions from two swine finishing building with flushing: Ammonia characteristics. In Livestock Environment VII; American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 2005; pp. 436–443.
34. Koerkamp, P.G.; Metz, J.H.M.; Uenk, G.H.; Phillips, V.R.; Holden, M.R.; Sneath, R.W.; Short, J.L.; White, R.P.; Hartung, J.; Seedorf, J.; et al. Concentrations and emissions of ammonia in livestock buildings in Northern Europe. J. Agric. Eng. Res. 1998, 70, 79–95. [CrossRef]
35. Zong, C.; Li, H.; Zhang, G. Ammonia and greenhouse gas emissions from fattening pig house with two types of partial pit ventilation systems. Agric. Ecosyst. Environ. 2015, 208, 94–105. [CrossRef]
36. Raynor, P.C.; Engelman, S.; Murphy, D.; Ramachandran, G.; Bender, J.B.; Alexander, B.H. Effects of gestation pens versus stalls and wet versus dry feed on air contaminants in swine production. J. Agromed. 2018, 23, 40–51. [CrossRef] [PubMed]
37. Banhazi, T.; Seedorf, J.; Rutley, D.; Pitchford, W. Identification of risk factors for sub-optimal house conditions in Australian piggeries: Part 2. Airborne Pollutants. J. Agric. Saf. Health 2008, 14, 21–39. [CrossRef] [PubMed]
38. Banhazi, T.M. Seasonal, diurnal and spatial variations of environmental variables in Australian livestock buildings. Aust. J. Multi Discip. Eng. 2013, 10, 60–69. [CrossRef]
39. Le Dividich, J.; Herpin, P. Effects of climatic conditions on the performance, metabolism and health–status of weaned piglets: A review. Livestock Prod. Sci. 1994, 38, 79–90. [CrossRef]
40. Müirhead, M.R.; Alexander, T.J.L. Managing health and disease. In Managing Pig Health and de Treatment of Disease: A Reference for the Farm; 5M Enterprises: Sheffield, UK, 1997; pp. 55–104.
41. Rinaldo, D.; Le Dividich, J. Assessment of optimal temperature for performance and chemical body composition of growing pigs. Livest. Prod. Sci. 1991, 29, 61–75. [CrossRef]
42. Van Wagenberg, A.V.; Metz, J.H.M.; den Hartog, L.A. Methods for evaluation of the thermal environment in the animal–occupied zone for weaned piglets. Trans. ASABE 2005, 48, 2323–2332. [CrossRef]
43. Park, J.H.; Peters, T.M.; Altmaier, R.; Sawvel, R.A.; Renée Anthony, T. Simulation of air quality and cost to ventilate swine farrowing facilities in winter. Comput. Electron. Agric. 2013, 98, 136–145. [CrossRef]
44. Van Ransbeeck, N.; Van Langenhove, H.; Van Weyenberg, S.; Maes, D.; Demeyer, P. Typical indoor concentrations and emission rates of particulate matter at building level: A case study to setup a measuring strategy for pig fattening facilities. Biosyst. Eng. 2012, 111, 280–289. [CrossRef]
45. Hamon, L.; Andrès, Y.; Dumont, E. Aerial pollutants in swine buildings: A review of their characterization and methods to reduce them. Environ. Sci. Technol. 2012, 46, 12287–12301. [CrossRef]
46. Blanes–Vidal, V.; Hansen, M.N.; Pedersen, S.; Rom, H.B. Emissions of ammonia, methane and nitrous oxide from pig houses and slurry: Effects of rooting material, animal activity and ventilation flow. Agric. Ecosyst. Environ. 2008, 124, 237–244. [CrossRef]
47. Calvet, S.; Cambra–López, M.; Estellés, F.; Torres, A.G. Characterization of the indoor environment and gas emissions in rabbit farms. World Rabbit. Sci. 2011, 19, 49–61. [CrossRef]
48. Calvet, S.; Cambra–López, M.; Estellés, F.; Torres, A.G. Characterization of gas emissions from a Mediterranean broiler farm. Poult. Sci. 2011, 90, 534–542. [CrossRef] [PubMed]
49. Philippe, F.X.; Cabaraux, J.F.; Nicks, B. Ammonia emissions from pig houses: Influencing factors and mitigation techniques. Agric. Ecosyst. Environ. 2011, 141, 245–260. [CrossRef]
50. Saha, C.K.; Ammon, C.; Berg, W.; Fiedler, M.; Loebsin, C.; Sanftleben, P.; Brunsch, R.; Amon, T. Seasonal and diel variations of ammonia and methane emissions from a naturally ventilated dairy building and the associated factors influencing emissions. Sci. Total Environ. 2014, 468, 53–62. [CrossRef]
51. Takai, H.; Nimmermark, S.; Banhazi, T.; Norton, T.; Jacobson, L.D.; Calvet, S.; Hassouna, M.; Bjerg, B.; Zhang, G.Q.; Pedersen, S.; et al. Airborne pollutant emissions from naturally ventilated buildings: Proposed research directions. Biosyst. Eng. 2013, 116, 214–220. [CrossRef]
52. García-Ramos, F.J.; Aguirre, A.J.; Barreiro, P.; Horcas, E.; Boné, A.; Vidal, M. Applicability of Ammonia Sensors for Controlling Environmental Parameters in Accommodations for Lamb Fattening. J. Sens. 2018, 8. [CrossRef]
53. MeteoGalicia. Available online: https://www.meteogalicia.gal/observacion/estacions/estacions.action? request_locale=gl# (accessed on 8 January 2019).
54. Andersson, M. Performance of bedding materials in affecting ammonia emissions from pig manure. J. Agric. Eng. Res. 1996, 65, 213–222. [CrossRef]