The pressure for reducing the use of antibiotic growth promoters (AGP) in livestock is an irreversible process, and several countries are adhering to the restrictions on AGP usage. Sweden was the first country that changed laws of AGP usage, and the USA is not only limiting AGP use but also moving towards a significant reduction of general antibiotics usage. The increasing pressure to prohibit the use of these additives is based on the possibility of allergic reactions and induction of cross-resistance of pathogenic bacterial strains in people. In broiler and pig production the AGP is used with the objective of obtaining better results of weight gain and feed conversion. However, considerable variability in performance response to AGP has been observed, contingent on genetic potential, phase of rearing, as well as hygiene and management practices. It is clear that AGP restrictions in the production of animal food are a growing process and therefore its consequences must be evaluated, including its effect on animal performance and the economic results of such restriction. Noting these considerations, the purpose of this review is to disseminate relevant information about the use of antibiotic growth promoters in broiler and pig production.
Keywords: additive, biosafety, feed conversion, nutrition, performance.
Albino, L. F. T., Feres, F. A., Dionizio, M. A., Rostagno, H. S., Vargas Júnior G, J., Carvalho C,O, D., Gomes, P. C., & Costa, C. H. (2006). Uso de prebióticos à base de mananoligossacarídeo em rações para frangos de corte. Revista Brasileira de Zootecnia, 35(3), 742–749.
Andersen, J. (2018). Astrid lindgren: The woman behind pippi longstocking. Yale University Press.
Aristides, L. G. A., Paiao, F. G., Murate, L. S., & Oba, A. (2012). The effects of biotic additives on growth performance and meat qualities in broiler chickens. International Journal of Poultry Science, 11(9), 599–604.
Attia, Y. A., Zeweil, H. S., Alsaffar, A. A., & El-Shafy, A. S. (2011). Effect of non-antibiotic feed additives as an alternative to flavomycin on productivity, meat quality and blood parameters in broilers. Archives Geflügelk, 75, 40–48.
Baurhoo, B., Phillip, L., & Ruiz-Feria, C. A. (2007). Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poultry Science, 86(6), 1070–1078.
Begley, M., Hill, C., & Gahan, C. G. M. (2006). Bile salt hydrolase activity in probiotics. Applied and Environmenatal Microbiology, 72(3), 1729–1738.
Bresslau, S. (2017) Plano de Ação Nacional para Prevenção e Controle da Resistência aos Antimicrobianos.www.agricultura.gov.br/../SUZANA.MAPACPRASeminrioSMCBPAsuinocultur amar. Acessed on 9 August 2019.
Cardinal, K. M., Kipper, M., Andretta, I., & Ribeiro, A. L. M. (2019). Withdrawal of antibiotic growth promoters from broiler diets: performance indexes and economic impact. Poultry Science, 98(12), 6659–6667.
Cardoso, M. (2019). Antimicrobial use, resistance and economic benefits and costs to livestock producers in Brazil. OECD Food, Agriculture and Fisheries Papers, 135, 1–44.
Castanon, J. I. R. (2017). History of the use of antibiotic as growth promoters in European poultry fees. Journal of Poultry Science, 86, 2466–2471. https://doi.org/http://dx.doi.org/10.3382/ps.2007-00249.
Cho, J. H., Zhang, Z. F., & Kim, I. H. (2013). Effects of single or combined dietary supplementation of β-glucan and kefir on growth performance, blood characteristics and meat quality in broilers. British Poultry Science, 54(2), 216–221.
Cravens, R. L., Goss, G. R., Chi, F., De Boer, E. D., Davis, S. W., Hendrix, S. M., Richardson, J. A., & Johnston, S. L. (2013). The effects of necrotic enteritis, aflatoxin B1, and virginiamycin on growth performance, necrotic enteritis lesion scores, and mortality in young broilers. Poultry Science, 92(8), 1997–2004.
Dar, O. A., Hasan, R., Schlundt, J., Harbarth, S., Caleo, G., Dar, F. K., Littmann, J., Rweyemamu, M., Buckley, E. J., & Shahid, M. (2016). Exploring the evidence base for national and regional policy interventions to combat resistance. The Lancet, 387(10015), 285–295.
Dibner, J. J., & Richards, J. D. (2005). Antibiotic growth promoters in agriculture: history and mode of action. Poultry Science, 84(4), 634–643.
Dutra, M. C. (2017). Uso de antimicrobianos em suinocultura no Brasil: análise crítica e impacto sobre marcadores epidemiológicos de resistência, Tese (Doutorado em Epidemiologia Experimental Aplicada às Zoonoses) -Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo.
Finlay, M., & Marcus, A. I. (2016). “Consumer Terroists”: Battles over agricultural antibiotics in the United States and Western Europe. Agricultural History, 90(2), 146–172.
Food and Agriculture Organization of the United Nations (FAO). (2016). The FAO action plan on antimicrobial resistance 2016–2020, Food and Agriculture Organization of the United Nations Rome.
Food and Drug Administration (2017). Summary report on antimicrobials sold or distributed for use in food-producing animals. 2013. US Department of Health and Human Services.
Gaskins, H. R., Collier, C. T., & Anderson, D. B. (2002). Antibiotics as growth promotants: mode of action. Animal Biotechnology, 13(1), 29–42.
Goutard, F. L., Bordier, M., Calba, C., Erlacher-Vindel, E., Góchez, D., de Balogh, K., Benigno, C., Kalpravidh, W., Roger, F., & Vong, S. (2017). Antimicrobial policy interventions in food animal production in South East Asia. Antimicrobial Resistance in South East Asia, 358, 1–6.
Graham, J. P., Boland, J. J., & Silbergeld, E. (2007). Growth promoting antibiotics in food animal production: an economic analysis. Public Health Reports, 122(1), 79–87.
Gruys, E., Toussaint, M. J. M., Niewold, T. A., Koopmans, S. J., Van Dijk, E., & Meloen, R. H. (2006). Monitoring health by values of acute phase proteins. Acta Histochemica, 108(3), 229–232.
Guban, J., Korver, D. R., Allison, G. E., & Tannock, G. W. (2006). Relationship of dietary antimicrobial drug administration with broiler performance, decreased population levels of Lactobacillus salivarius, and reduced bile salt deconjugation in the ileum of broiler chickens. Poultry Science, 85(12), 2186–2194.
Hayes, D. J., & Jensen, H. H. (2003). Lessons from the Danish ban on feed-grade antibiotics. Choices, 18(316-2016–7167), 1–6.
Jensen, V. F., Jacobsen, E., & Bager, F. (2004). Veterinary antimicrobial-usage statistics based on standardized measures of dosage. Preventive Veterinary Medicine, 64(2–4), 201–215.
Jones, B. V, Begley, M., Hill, C., Gahan, C. G. M., & Marchesi, J. R. (2008). Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proceedings of the National Academy of Sciences, 105(36), 13580–13585.
Kahn, L. H. (2017). Perspective: The one-health way. Nature, 543(7647), S47–S47.
Kirchhelle, C. (2016). Toxic confusion: the dilemma of antibiotic regulation in West German food production (1951–1990). Endeavour, 40(2), 114–127.
Kirchhelle, C. (2018). Pharming animals: a global history of antibiotics in food production (1935–2017). Palgrave Communications, 4(1), 1–13
Knarreborg, A., Lauridsen, C., Engberg, R. M., & Jensen, S. K. (2004). Dietary antibiotic growth promoters enhance the bioavailability of α-tocopheryl acetate in broilers by altering lipid absorption. The Journal of Nutrition, 134(6), 1487–1492.
Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A., & Collins, J. J. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 130(5), 797–810.
Laanen, M., Maes, D., Hendriksen, C., Gelaude, P., De Vliegher, S., Rosseel, Y., & Dewulf, J. (2014). Pig, cattle and poultry farmers with a known interest in research have comparable perspectives on disease prevention and on-farm biosecurity. Preventive Veterinary Medicine, 115(1–2), 1–9.
Labro, Marie-Thérése. (2000). Interference of antibacterial agents with phagocyte functions: immunomodulation or “immuno-fairy tales”? Clinical Microbiology Reviews, 13(4), 615–650.
Labro, Marie-Thérèse. (1998). Antibacterial agents—phagocytes: new concepts for old in immunomodulation. International Journal of Antimicrobial Agents, 10(1), 11–21.
Larsson, A. E., Melgar, S., Rehnström, E., Michaëlsson, E., Svensson, L., Hockings, P., & Olsson, L. E. (2006). Magnetic resonance imaging of experimental mouse colitis and association with inflammatory activity. Inflammatory Bowel Diseases, 12(6), 478–485.
Lesch, J. E. (2007). The first miracle drugs: how the sulfa drugs transformed medicine. Oxford University Press, USA.
Li, K., Xiao, Y., Chen, J., Chen, J., He, X., & Yang, H. (2017). Microbial composition in different gut locations of weaning piglets receiving antibiotics. Asian-Australasian Journal of Animal Sciences, 30(1), 78–84.
Long, S. F., Xu, Y. T., Pan, L., Wang, Q. Q., Wang, C. L., Wu, J. Y., Wu, Y. Y., Han, Y. M., Yun, C. H., & Piao, X. S. (2018). Mixed organic acids as antibiotic substitutes improve performance, serum immunity, intestinal morphology and microbiota for weaned piglets. Animal Feed Science and Technology, 235, 23–32.
Lorençon, L., Nunes, R. V., Pozza, P. C., dos Santos Pozza, M. S., Appelt, M. D., & Silva, W. T. M. D. A. (2007). Utilização de promotores de crescimento para frangos de corte em rações fareladas e peletizadas. Acta Scientiarum. Animal Sciences, 29(2), 151–158.
MacDonald, J. M., & Wang, S.-L. (2011). Foregoing sub-therapeutic antibiotics: the impact on broiler grow-out operations. Applied Economic Perspectives and Policy, 33(1), 79–98.
Mallet, S., Delord, P., Juin, H., & Lessire, M. (2005). Effect of in feed talc supplementation on broiler performance. Animal Research, 54(6), 485–492.
MAPA. Ministério da Agricultura Pecuária e Abastecimento. (2018). PAN-BR Agro. Avilable at: http://www.agricultura.gov.br/assuntos/insumosagropecuarios/insumoshttp://www.agricultura.g ov.br/assuntos/insumos-agropecuarios/insumospecuarios/programas-especiais/resistencia-antimicrobianos/pan-br-agro Accessed on August 9th 2019.
Martin, C. (2007). Penicillin: triumph and tragedy. The Lancet Infectious Diseases, 7(8), 515.
McBride, W. D., Key, N., & Mathews Jr, K. H. (2008). Subtherapeutic antibiotics and productivity in US hog production. Review of Agricultural Economics, 30(2), 270–288.
Miller, G. Y., Algozin, K. A., McNamara, P. E., & Bush, E. J. (2003). Productivity and economic effects of antibiotics used for growth promotion in US pork production. Journal of Agricultural and Applied Economics, 35(3), 469–482.
Miller, G. Y., Liu, X., McNamara, P. E., & Bush, E. J. (2005). Farm-level impacts of banning growth-promoting antibiotic use in US pig grower/finisher operations. Journal of Agribusiness, 23(2), 147–162.
Niewold, T. A. (2007). The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poultry Science, 86(4), 605–609.
NRC. (1994). Nutrients Requirements of Poultry (9th (ed.); 7th rev.). Natl. Acad. Press, Washington, DC.
Organization, W. H. (2003). Impacts of antimicrobial growth promoter termination in Denmark: the WHO international review panel's evaluation of the termination of the use of antimicrobial growth promoters in Denmark: Foulum, Denmark 6-9 November 2002, Geneva: World Health Organization.
Page, S. W. (2006). Current use of antimicrobial growth promoters in food animals: The benefits. Wageningen Academic Publishers, 136, 19–51.
Peng, Q. Y., Li, J. D., Li, Z., Duan, Z. Y., & Wu, Y. P. (2016). Effects of dietary supplementation with oregano essential oil on growth performance, carcass traits and jejunal morphology in broiler chickens. Animal Feed Science and Technology, 214, 148–153.
Raqib, R., & Cravioto, A. (2009). Nutrition, immunology, and genetics: future perspectives. Nutrition Reviews, 67(suppl_2), S227–S236.
Roca, I., Akova, M., Baquero, F., Carlet, J., Cavaleri, M., Coenen, S., Cohen, J., Findlay, D., Gyssens, I., & Heure, O. E. (2015). The global threat of antimicrobial resistance: science for intervention. New Microbes and New Infections, 6, 22–29.
Rosen, G. D. (1995). Antibacterials in poultry and pig nutrition. Biotechnology in Animal Feeds and Animal Feeding, 172, 143.
Ryan, M. (2019). Evaluating the economic benefits and costs of antimicrobial use in food-producing animals. Food, Agriculture and Fisheries Papers, 132, 39.
Santana, M. B., Melo, A. D. B., Cruz, D. R., Garbossa, C. A. P., Andrade, C. de, Cantarelli, V. de S., & Costa, L. B. (2015). Alternatives to antibiotic growth promoters for weanling pigs. Ciência Rural, 45(6), 1093–1098.
Silva, G. V., Machado, N. J. B., Freitas, L. W., Lima, M. F., & Luchese, R. H. (2018). Performance and carcass yield of female broilers fed with diets containing probiotics and symbiotics as an alternative to growth enhancers. Acta Scientiarum. Animal Sciences, 40(e39916), 1–6
Smith-Howard, K. (2017). Healing animals in an antibiotic age: Veterinary drugs and the professionalism crisis, 1945–1970. Technology and Culture, 58(3), 722–748.
Smith, K., Zeng, X., & Lin, J. (2014). Discovery of bile salt hydrolase inhibitors using an efficient high-throughput screening system. PLoS One, 9(1), e85344.
Tayeri, V., Seidavi, A., Asadpour, L., & Phillips, C. J. C. (2018). A comparison of the effects of antibiotics, probiotics, synbiotics and prebiotics on the performance and carcass characteristics of broilers. Veterinary Research Communications, 42(3), 195–207.
Tessari, A., & Godley, A. (2014). Made in Italy. Made in Britain. Quality, brands and innovation in the European poultry market, 1950–80. Business History, 56(7), 1057–1083.
USDA, 2010 United States National Residue Program for Meat, Poultry and Egg Products: 2010 Residue Sample Results
Valchev, G., Popova-Ralcheva, S., Bonovska, M., Zaprianova, I., & Gudev, D. (2009). Effect of dietary supplements of herb extracts on performance in growing pigs. Biotechnology in Animal Husbandry, 25(5-6–2), 859–870.
Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654.
Walsh, T. R., & Wu, Y. (2016). China bans colistin as a feed additive for animals. The Lancet Infectious Diseases, 16(10), 1102–1103.
Wierup, M. (2001). The Swedish experience of the 1986 year ban of antimicrobial growth promoters, with special reference to animal health, disease prevention, productivity, and usage of antimicrobials. Microbial Drug Resistance, 7(2), 183–190.
Yoon, J. H., Ingale, S. L., Kim, J. S., Kim, K. H., Lee, S. H., Park, Y. K., Lee, S. C., Kwon, I. K., & Chae, B. J. (2014). Effects of dietary supplementation of synthetic antimicrobial peptide-A3 and P5 on growth performance, apparent total tract digestibility of nutrients, fecal and intestinal microflora and intestinal morphology in weanling pigs. Livestock Science, 159, 53–60.