The role of acids in pig feed strategies has changed from feed acidifier and preservative to growth promoter and antibiotics substitute. Since the 2006 European banning of growth promoters in the livestock sector, several feed additives have been tested with the goal of identifying molecules with the greatest beneficial antimicrobial, growth-enhancing, or disease-preventing abilities. These properties have been identified among various acids, ranging from inexpensive inorganic acids to organic and fatty acids, and these have been widely used in pig production. Acids are mainly used during the weaning period, which is considered one of the most critical phases in pig farming, as well as during gestation, lactation, and fattening. Such supplementation generally yields improved growth performance and increased feed efficiency; these effects are the consequences of different modes of action acting on the microbiome composition, gut mucosa morphology, enzyme activity, and animal energy metabolism.
Abstract: Reduction of antibiotic use has been a hot topic of research over the past decades. The European ban on growth-promoter use has increased the use of feed additivities that can enhance animal growth performance and health status, particularly during critical and stressful phases of life. Pig farming is characterized by several stressful periods, such as the weaning phase, and studies have suggested that the proper use of feed additives during stress could prevent disease and enhance performance through modulation of the gastrointestinal tract mucosa and microbiome. The types of feed additive include acids, minerals, prebiotics, probiotics, yeast, nucleotides, and phytoproducts. This review focuses on commonly used acids, classified as inorganic, organic, and fatty acids, and their beneficial and potential effects, which are widely reported in the bibliography. Acids have long been used as feed acidifiers and preservatives, and were more recently introduced into feed formulated for young pigs with the goal of stabilizing the stomach pH to offset their reduced digestive capacity. In addition, some organic acids represent intermediary products of the tricarboxylic acid cycle (TCA), and thus could be considered an energy source. Moreover, antimicrobial properties have been exploited to modulate microbiota populations and reduce pathogenic bacteria. Given these potential benefits, organic acids are no longer seen as simple acidifiers, but rather as growth promoters and potential antibiotic substitutes owing to their beneficial action on the gastrointestinal tract (GIT).
Keywords: acids; feed additives; pig health.
1. European Parliament and the Council of the European Union Regulation (EC) No 1831/2003. Off. J. Eur. Union
2003, 4, 29–43. Available online: http://eur-lex.europa.eu/legal-content/PT/TXT/?uri=celex:32003R1831 (accessed on 18 September 2020).
2. Suiryanrayna, M.V.A.N.; Ramana, J.V. A review of the effects of dietary organic acids fed to swine. J. Anim.
Sci. Biotechnol. 2015, 6, 1–11. [CrossRef] [PubMed]
3. Liu, Y.; Espinosa, C.D.; Abelilla, J.J.; Casas, G.A.; Lagos, L.V.; Lee, S.A.; Kwon, W.B.; Mathai, J.K.;
Navarro, D.M.D.L.; Jaworski, N.W.; et al. Non-antibiotic feed additives in diets for pigs: A review.
Anim. Nutr. 2018, 4, 113–125. [CrossRef] [PubMed]
4. Rossi, R.; Pastorelli, G.; Cannata, S.; Corino, C. Recent advances in the use of fatty acids as supplements in pig diets: A review. Anim. Feed Sci. Technol. 2010, 162, 1–11. [CrossRef]
5. Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [CrossRef]
6. Kim, Y.Y.; Kil, D.Y.; Oh, H.K.; Han, I.K. Acidifier as an alternative material to antibiotics in animal feed.
Asian-Australas. J. Anim. Sci. 2005, 18, 1048–1060. [CrossRef]
7. Mroz, Z. Organic Acids as Potential Alternatives to Antibiotic Growth Promoters for Pigs. Adv. Pork Prod.
2005, 16, 169–182.
8. Sun, Y.; O’Riordan, M.X.D. Regulation of Bacterial Pathogenesis by Intestinal Short-Chain Fatty Acids, 1st ed.;
Elsevier Inc.: Amsterdam, The Netherlands, 2013; Volume 85, ISBN 9780124076723.
9. Kil, D.Y.; Piao, L.G.; Long, H.F.; Lim, J.S.; Yun, M.S.; Kong, C.S.; Ju, W.S.; Lee, H.B.; Kim, Y.Y. Effects of organic or inorganic acid supplementation on growth performance, nutrient digestibility and white blood cell counts in weanling pigs. Asian-Australas. J. Anim. Sci. 2005, 19, 252–261. [CrossRef]
10. Patience, J.F.; Chaplin, R.K. The Relationship among Dietary Undetermined Anion, Acid-Base Balance, and Nutrient Metabolism in Swine. J. Anim. Sci. 1997, 75, 2445. [CrossRef]
11. Yen, J.T.; Pond, W.G.; Prior, R.L. Calcium Chloride as a Regulator of Feed Intake and Weight Gain in Pigs1.
J. Anim. Sci. 1981, 52, 778–782. [CrossRef]
12. Mahan, N.; Cera, K.R. Effect of supplemental sodium chloride, sodium phosphate, or hydrochloric acid in starter pig diets containing dried whey. J. Anim. Sci. 1996, 74, 1217–1222. [CrossRef] [PubMed]
13. Mahan, D.C.; Wiseman, T.D.; Weaver, E.; Russell, L. Effect of supplemental sodium chloride and hydrochloric acid added to initial starter diets containing spray-dried blood plasma and lactose on resulting performance and nitrogen digestibility of 3-week-old weaned pigs. J. Anim. Sci. 1999, 77, 3016–3021. [CrossRef] [PubMed]
14. Ravindran, V.; Kornegay, E.T. Acidification of weaner pig diets: A review. J. Sci. Food Agric. 1993, 62, 313–322.
[CrossRef]
15. Giesting, D.W.; Easter, R.A. Acidification status in swine diets. Feed Manag. 1986, 37, 8–10.
16. Walsh, M.; Sholly, D.; Kelly, D.; Cobb, M.; Trapp, S. The Effects of Supplementing Weanling Pig Diets with
Organic and Inorganic Acids on Growth Performance and Microbial Shedding. Swine Res. Rep. 2003, 89–98.
17. Walsh, M.C.; Sholly, D.M.; Hinson, R.B.; Saddoris, K.L.; Sutton, A.L.; Radcliffe, J.S.; Odgaard, R.; Murphy, J.;
Richert, B.T. Effects of water and diet acidification with and without antibiotics on weanling pig growth and microbial shedding. J. Anim. Sci. 2007, 85, 1799–1808. [CrossRef]
18. Partanen, K.H.; Mroz, Z. Organic acids for performance enhancement in pig diets. Nutr. Res. Rev.
1999, 12, 117–145. [CrossRef]
19. Giang, H.H.; Viet, T.Q.; Ogle, B.; Lindberg, J.E. Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with a complex of lactic acid bacteria alone or in combination with Bacillus subtilis and Saccharomyces boulardii. Livest. Sci. 2012, 143, 132–141. [CrossRef]
20. Yang, F.; Hou, C.; Zeng, X.; Qiao, S. The use of lactic acid bacteria as a probiotic in swine diets. Pathogens
2015, 4, 34–45. [CrossRef]
21. Thaela, M.-J.; Jensen, M.; Pierzynowski, S.; Jakob, S.; Jensen, B. Effect of lactic acid supplementation on pancreatic secretion in pigs after weaning. J. Anim. Feed Sci. 1998, 7, 181–183. [CrossRef]
22. Tsiloyiannis, V.K.; Kyriakis, S.C.; Vlemmas, J.; Sarris, K. The effect of organic acids on the control of porcine post-weaning diarrhoea. Res. Vet. Sci. 2001, 70, 287–293. [CrossRef] [PubMed]
23. Kemme, P.A.; Jongbloed, A.W.; Mroz, Z.; Kogut, J.; Beynen, A.C. Digestibility of nutrients in growing-finishing pigs is affected by Aspergillus niger phytase, phytate and lactic acid levels 1. Apparent ileal digestibility of amino acids. Livest. Prod. Sci. 1999, 58, 107–117. [CrossRef]
24. Kemme, P.A.; Jongbloed, A.W.; Mroz, Z.; Kogut, J.; Beynen, A.C. Digestibility of nutrients in growing-finishing pigs is affected by Aspergillus niger phytase, phytate and lactic acid levels 2. Apparent total tract digestibility of phosphorus, calcium and magnesium and ileal degradation of phytic acid. Livest. Prod. Sci. 1999, 58, 119–127.
[CrossRef]
25. Tanaka, T.; Imai, Y.; Kumagae, N.; Sato, S. The effect of feeding lactic acid to Salmonella typhimurium experimentally infected swine. J. Vet. Med. Sci. 2010, 72, 827–831. [CrossRef]
26. Giesting, D.W.; Easter, R.A. Effect of protein source and fumaric acid supplementation on apparent ileal digestibility of nutrients by young pigs. J. Anim. Sci. 1991, 69, 2497–2503. [CrossRef]
27. Blank, R.; Mosenthin, R.; Sauer, W.C.; Huang, S. Effect of fumaric acid and dietary buffering capacity on ileal and fecal amino acid digestibilities in early-weaned pigs. J. Anim. Sci. 1999, 77, 2974–2984. [CrossRef]
28. Falkowski, J.F.; Aherne, F.X. Fumaric and Citric Acid as Feed Additives in Starter Pig Nutrition. J. Anim. Sci.
1984, 58, 935–938. [CrossRef]
29. Thacker, P.A.; Campbell, G.L.; Grootwassink, J. The effect of organic acids and enzyme supplementation on the performance of pigs fed barley-based diets. Can. J. Anim. Sci. 1992, 72, 395–402. [CrossRef]
30. Risley, C.R.; Kornegay, E.T.; Lindemann, M.D.; Weakland, S.M. Effects of organic acids with and without a microbial culture on performance and gastrointestinal tract measurements of weanling pigs.
Anim. Feed Sci. Technol. 1991, 35, 259–270. [CrossRef]
31. Risley, C.R.; Kornegay, E.T.; Lindemann, M.D.; Wood, C.M.; Eigel, W.N. Effect of feeding organic acids on gastrointestinal digesta measurements at various times postweaning in pigs challenged with enterotoxigenic
Escherichia coli. Can. J. Anim. Sci. 1993, 73, 931–940. [CrossRef]
32. Upadhaya, S.D.; Lee, K.Y.; Kim, I.H. Protected organic acid blends as an alternative to antibiotics in finishing pigs. Asian-Australas. J. Anim. Sci. 2014, 27, 1600–1607. [CrossRef] [PubMed]
33. Xu, Y.T.; Liu, L.; Long, S.F.; Pan, L.; Piao, X.S. Effect of organic acids and essential oils on performance, intestinal health and digestive enzyme activities of weaned pigs. Anim. Feed Sci. Technol. 2018, 235, 110–119.
[CrossRef]
34. Gottlob, R.O.; Benz, J.M.; Groesbeck, C.N.; Sulabo, R.C.; Tokach, M.D.; Nelssen, J.L.; Goodband, R.D.;
DeRouchey, J.M.; Dritz, S.S. Effects of dietary calcium formate and malic acid on nursery pig growth performance. Kansas Agric. Exp. Stn. Res. Rep. 2006, 67–71. [CrossRef]
35. Gry, J.; Larsen, J.C. Metabolism of L(+) and D(-) tartaric acids in different animal species. Arch. Toxicol.
1978, 40, 351–353. [CrossRef]
36. Kristensen, N.B.; Jungvid, H.; Fernández, J.A.; Pierzynowski, S.G. Absorption and metabolism of
α-ketoglutarate in growing pigs. J. Anim. Physiol. Anim. Nutr. 2002, 86, 239–245. [CrossRef] [PubMed]
37. Hou, Y.; Yao, K.; Wang, L.; Ding, B.; Fu, D.; Liu, Y.; Zhu, H.; Liu, J.; Li, Y.; Kang, P.; et al. Effects of
α-ketoglutarate on energy status in the intestinal mucosa of weaned piglets chronically challenged with lipopolysaccharide. Br. J. Nutr. 2011, 106, 357–363. [CrossRef]
38. Wang, L.; Hou, Y.; Yi, D.; Li, Y.; Ding, B.; Zhu, H.; Liu, J.; Xiao, H.; Wu, G. Dietary supplementation with glutamate precursor α-ketoglutarate attenuates lipopolysaccharide-induced liver injury in young pigs.
Amino Acids 2015, 47, 1309–1318. [CrossRef]
39. Hou, Y.; Wang, L.; Ding, B.; Liu, Y.; Zhu, H.; Liu, J.; Li, Y.; Wu, X.; Yin, Y.; Wu, G. Dietary α-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids
2010, 39, 555–564. [CrossRef]
40. Chen, J.; Su, W.; Kang, B.; Jiang, Q.; Zhao, Y.; Fu, C.; Yao, K. Supplementation with α-ketoglutarate to a low-protein diet enhances amino acid synthesis in tissues and improves protein metabolism in the skeletal muscle of growing pigs. Amino Acids 2018, 50, 1525–1537. [CrossRef]
41. Chen, J.; Yang, H.; Long, L.; Zhao, Y.; Jiang, Q.; Wu, F.; Kang, B.; Liu, S.; Adebowale, T.O.; Fu, C.; et al.
The effects of dietary supplementation with α-ketoglutarate on the intestinal microbiota, metabolic profiles, and ammonia levels in growing pigs. Anim. Feed Sci. Technol. 2017, 234, 321–328. [CrossRef]
42. Boling, S.D.; Webel, D.M.; Mavromichalis, I.; Parsons, C.M.; Baker, D.H. The effects of citric acid on phytate-phosphorus utilization in young chicks and pigs. J. Anim. Sci. 2000, 78, 682–689. [CrossRef]
[PubMed]
43. Lynch, H.; Leonard, F.C.; Walia, K.; Lawlor, P.G.; Duffy, G.; Fanning, S.; Markey, B.K.; Brady, C.; Gardiner, G.E.;
Argüello, H. Investigation of in-feed organic acids as a low cost strategy to combat Salmonella in grower pigs. Prev. Vet. Med. 2017, 139, 50–57. [CrossRef] [PubMed]
44. Zhang, Y.; Wang, Y.; Chen, D.; Yu, B.; Zheng, P.; Mao, X.; Luo, Y.; Li, Y.; He, J. Dietary chlorogenic acid supplementation affects gut morphology, antioxidant capacity and intestinal selected bacterial populations in weaned piglets. Food Funct. 2018, 9, 4968–4978. [CrossRef] [PubMed]
45. Chen, J.; Li, Y.; Yu, B.; Chen, D.; Mao, X.; Zheng, P.; Luo, J.; He, J. Dietary chlorogenic acid improves growth performance of weaned pigs through maintaining antioxidant capacity and intestinal digestion and absorption function. J. Anim. Sci. 2018, 96, 1108–1118. [CrossRef]
46. Chen, J.; Yu, B.; Chen, D.; Huang, Z.; Mao, X.; Zheng, P.; Yu, J.; Luo, J.; He, J. Chlorogenic acid improves intestinal barrier functions by suppressing mucosa inflammation and improving antioxidant capacity in weaned pigs. J. Nutr. Biochem. 2018, 59, 84–92. [CrossRef]
47. Chen, J.; Xie, H.; Chen, D.; Yu, B.; Mao, X.; Zheng, P.; Yu, J.; Luo, Y.; Luo, J.; He, J. Chlorogenic Acid
Improves Intestinal Development via Suppressing Mucosa Inflammation and Cell Apoptosis in Weaned
Pigs. ACS Omega 2018, 3, 2211–2219. [CrossRef]
48. Chen, J.; Yu, B.; Chen, D.; Zheng, P.; Luo, Y.; Huang, Z.; Luo, J.; Mao, X.; Yu, J.; He, J. Changes of porcine gut microbiota in response to dietary chlorogenic acid supplementation. Appl. Microbiol. Biotechnol.
2019, 103, 8157–8168. [CrossRef]
49. Wu, Y.; Liu, W.; Li, Q.; Li, Y.; Yan, Y.; Huang, F.; Wu, X.; Zhou, Q.; Shu, X.; Ruan, Z. Dietary chlorogenic acid regulates gut microbiota, serum-free amino acids and colonic serotonin levels in growing pigs.
Int. J. Food Sci. Nutr. 2017, 69, 566–573. [CrossRef]
50. Wang, Y.; Chiba, L.I.; Huang, C.; Torres, I.M.; Wang, L.; Welles, E.G. Effect of diet complexity, multi-enzyme complexes, essential oils, and benzoic acid on weanling pigs. Livest. Sci. 2018, 209, 32–38. [CrossRef]
51. Zhai, H.; Luo, Y.; Ren, W.; Schyns, G.; Guggenbuhl, P. The effects of benzoic acid and essential oils on growth performance, nutrient digestibility, and colonic microbiota in nursery pigs. Anim. Feed Sci. Technol.
2020, 262, 114426. [CrossRef]
52. Diao, H.; Gao, Z.; Yu, B.; Zheng, P.; He, J.; Yu, J.; Huang, Z.; Chen, D.; Mao, X. Effects of benzoic acid (VevoVitall®) on the performance and jejunal digestive physiology in young pigs. J. Anim. Sci. Biotechnol.
2016, 7, 32. [CrossRef] [PubMed]
53. Diao, H.; Zheng, P.; Yu, B.; He, J.; Mao, X.B.; Yu, J.; Chen, D.W. Effects of dietary supplementation with benzoic acid on intestinal morphological structure and microflora in weaned piglets. Livest. Sci. 2014, 167, 249–256.
[CrossRef]
54. Sauer, W.; Cervantes, M.; Yanez, J.; Araiza, B.; Murdoch, G.; Morales, A.; Zijlstra, R.T. Effect of dietary inclusion of benzoic acid on mineral balance in growing pigs. Livest. Sci. 2009, 122, 162–168. [CrossRef]
55. Shu, Y.; Yu, B.; He, J.; Yu, J.; Zheng, P.; Yuan, Z.; Chen, D.; Mao, X. Excess of dietary benzoic acid supplementation leads to growth retardation, hematological abnormality and organ injury of piglets.
Livest. Sci. 2016, 190, 94–103. [CrossRef]
56. Kunavue, N.; Lien, T.F. Effects of fulvic acid and probiotic on growth performance, nutrient digestibility, blood parameters and immunity of pigs. J. Anim. Sci. Adv. 2012, 2, 711–721.
57. Wang, Q.; Chen, Y.J.; Yoo, J.S.; Kim, H.J.; Cho, J.H.; Kim, I.H. Effects of supplemental humic substances on growth performance, blood characteristics and meat quality in finishing pigs. Livest. Sci. 2008, 117, 270–274.
[CrossRef]
58. Chang, Q.; Lu, Z.; He, M.; Gao, R.; Bai, H.; Shi, B.; Shan, A. Effects of dietary supplementation of fulvic acid on lipid metabolism of finishing pigs. J. Anim. Sci. 2014, 92, 4921–4926. [CrossRef]
59. Bai, H.X.; Chang, Q.F.; Shi, B.M.; Shan, A.S. Effects of fulvic acid on growth performance and meat quality in growing-finishing pigs. Livest. Sci. 2013, 158, 118–123. [CrossRef]
60. Písaˇríková, B.; Zralý, Z.; Herzig, I. The effect of dietary sodium humate supplementation on nutrient digestibility in growing pigs. Acta Vet. Brno 2010, 79, 349–353. [CrossRef]
61. Ji, F.; McGlone, J.J.; Kim, S.W. Effects of dietary humic substances on pig growth performance, carcass characteristics, and ammonia emission. J. Anim. Sci. 2006, 84, 2482–2490. [CrossRef]
62. Ponce, C.H.; Arteaga, C.; Flores, A. 1016 Effects of humic acid supplementation on pig growth performance,
Nitrogen digestibility, odor, and ammonia emission. J. Anim. Sci. 2016, 94, 486. [CrossRef]
63. Taylor, S.A.; St. Andrews, F.R.S. Bibliographical Notices Medical Jurisprudence. Bost. Med. Surg. J. 1861, 65, 334.
[CrossRef]
64. Hou, Y.; Wu, G. l-Glutamate nutrition and metabolism in swine. Amino Acids 2018, 50, 1497–1510. [CrossRef]
[PubMed]
65. Hou, Y.; Wang, L.; Ding, B.; Liu, Y.; Zhu, H.; Liu, J.; Li, Y.; Kang, P.; Yin, Y.; Wu, G. Alpha-ketoglutarate and intestinal function. Front. Biosci. 2011, 16, 1186. [CrossRef] [PubMed]
66. Prandini, A.; Morlacchini, M.; Sigolo, S.; Fiorentini, L.; Gallo, A. Anticatabolic activity of alpha-ketoglutaric acid in growing rats. Ital. J. Anim. Sci. 2012, 11, e52. [CrossRef]
67. Liu, S.; He, L.; Jiang, Q.; Duraipandiyan, V.; Al-Dhabi, N.A.; Liu, G.; Yao, K.; Yin, Y. Effect of dietary
α-ketoglutarate and allicin supplementation on the composition and diversity of the cecal microbial community in growing pigs. J. Sci. Food Agric. 2018, 98, 5816–5821. [CrossRef]
68. Mao, X.; Yang, Q.; Chen, D.; Yu, B.; He, J. Benzoic acid used as food and feed additives can regulate gut functions. Biomed Res. Int. 2019, 2019, 5721585. [CrossRef]
69. Papatsiros, V.G.; Tassis, P.D.; Tzika, E.D.; Papaioannou, D.S.; Petridou, E.; Alexopoulos, C.; Kyriakis, S.C.
Effect of benzoic acid and combination of benzoic acid with a probiotic containing Bacillus Cereus var. toyoi in weaned pig nutrition. Pol. J. Vet. Sci. 2011, 14. [CrossRef]
70. Partanen, K.; Siljander-Rasi, H.; Alaviuhkola, T.; Suomi, K.; Fossi, M. Performance of growing-finishing pigs fed medium- or high-fibre diets supplemented with avilamycin, formic acid or formic acid-sorbate blend.
Livest. Prod. Sci. 2002, 73, 139–152. [CrossRef]
71. Luise, D.; Motta, V.; Salvarani, C.; Chiappelli, M.; Fusco, L.; Bertocchi, M.; Mazzoni, M.; Maiorano, G.;
Costa, L.N.; Van Milgen, J.; et al. Long-term administration of formic acid to weaners: Influence on intestinal microbiota, immunity parameters and growth performance. Anim. Feed Sci. Technol. 2017, 232, 160–168.
[CrossRef]
72. Blank, R.; Naatjes, M.; Baum, C.; Köhling, K.; Ader, P.; Roser, U.; Susenbeth, A. Effects of formic acid and phytase supplementation on digestibility and use of phosphorus and zinc in growing pigs. J. Anim. Sci.
2012, 90, 212–214. [CrossRef] [PubMed]
73. Gerritsen, R.; van Dijk, A.J.; Rethy, K.; Bikker, P. The effect of blends of organic acids on apparent faecal digestibility in piglets. Livest. Sci. 2010, 134, 246–248. [CrossRef]
74. Gabert, V.M.; Sauer, W.C.; Schmitz, M.; Ahrens, F.; Mosenthin, R. The effect of formic acid and buffering capacity on the ileal digestibilities of amino acids and bacterial populations and metabolites in the small intestine of weanling pigs fed semipurified fish meal diets. Can. J. Anim. Sci. 1995, 75, 615–623. [CrossRef]
75. Siljander-Rasi, H.; Alaviuhkola, T.; Suomi, K. Carbadox, formic acid and potato fibre as feed additives for growing pigs. J. Anim. Feed Sci. 1998, 7, 205–209. [CrossRef]
76. Boyen, F.; Haesebrouck, F.; Vanparys, A.; Volf, J.; Mahu, M.; Van Immerseel, F.; Rychlik, I.; Dewulf, J.;
Ducatelle, R.; Pasmans, F. Coated fatty acids alter virulence properties of Salmonella Typhimurium and decrease intestinal colonization of pigs. Vet. Microbiol. 2008, 132, 319–327. [CrossRef]
77. Valencia, Z.; Chavez, E.R. Phytase and acetic acid supplementation in the diet of early weaned piglets:
Effect on performance and apparent nutrient digestibility. Nutr. Res. 2002, 22, 623–632. [CrossRef]
78. Bosi, P.; Messori, S.; Nisi, I.; Russo, D.; Casini, L.; Coloretti, F.; Schwarzer, K.; Trevisi, P. Effect of different butyrate supplementations on growth and health of weaning pigs challenged or not with E. coli K88.
Ital. J. Anim. Sci. 2009, 8, 268–270. [CrossRef]
79. Gálfi, P.; Bokori, J. Feeding trial in pigs with a diet containing sodium n-butyrate. Acta Vet. Hung. 1990, 38, 3–17.
80. Piva, A.; Morlacchini, M.; Casadei, G.; Gatta, P.P.; Biagi, G.; Prandini, A. Sodium butyrate improves growth performance of weaned piglets during the first period after weaning. Ital. J. Anim. Sci. 2002, 1, 35–41.
[CrossRef]
81. Hou, Y.; Wang, L.; Yi, D.; Ding, B.; Chen, X.; Wang, Q.; Zhu, H.; Liu, Y.; Yin, Y.; Gong, J.; et al.
Dietary supplementation with tributyrin alleviates intestinal injury in piglets challenged with intrarectal administration of acetic acid. Br. J. Nutr. 2014, 111, 1748–1758. [CrossRef]
82. Mosenthin, R.; Sauer, W.C.; Ahrens, F.; de Lange, C.F.M.; Bornholdt, U. Effect of dietary supplements of propionic acid, siliceous earth or a combination of these on the energy, protein and amino acid digestibilities and concentrations of microbial metabolites in the digestive tract of growing pigs. Anim. Feed Sci. Technol.
1992, 37, 245–255. [CrossRef]
83. Thomas, L.L.; Woodworth, J.C.; Tokach, M.D.; Dritz, S.S.; DeRouchey, J.M.; Goodband, R.D.; Williams, H.E.;
Hartman, A.R.; Mellick, D.J.; McKilligan, D.M.; et al. Evaluation of different blends of medium-chain fatty acids, lactic acid, and monolaurin on nursery pig growth performance1,2. Transl. Anim. Sci. 2020, 4, 548–557.
[CrossRef] [PubMed]
84. Mohana Devi, S.; Kim, I.H. Effect of medium chain fatty acids (MCFA) and probiotic (Enterococcus faecium) supplementation on the growth performance, digestibility and blood profiles in weanling pigs. Vet. Med.
2014, 59, 527–535. [CrossRef]
85. Cera, K.R.; Mahan, D.C.; Reinhart, G.A. Postweaning Swine Performance and Serum Profile Responses to
Supplemental Medium-Chain Free Fatty Acids and Tallow. J. Anim. Sci. 1989, 67, 2048. [CrossRef]
86. López-Colom, P.; Castillejos, L.; Rod Ríguez-Sorrento, A.; Puyalto, M.; Mallo, J.J.; Martín-Orúe, S.M. Efficacy of medium-chain fatty acid salts distilled from coconut oil against two enteric pathogen challenges in weanling piglets. J. Anim. Sci. Biotechnol. 2019, 10, 89. [CrossRef] [PubMed]
87. Marounek, M.; Skˇrivanová, E.; Skˇrivanová, V. A note on the effect of caprylic acid and triacylglycerols of caprylic and capric acid on growth rate and shedding of coccidia oocysts in weaned piglets. J. Anim. Feed Sci.
2004, 13, 269–274. [CrossRef]
88. Zentek, J.; Ferrara, F.; Pieper, R.; Tedin, L.; Meyer, W.; Vahjen, W. Effects of dietary combinations of organic acids and medium chain fatty acids on the gastrointestinal microbial ecology and bacterial metabolites in the digestive tract of weaning piglets. J. Anim. Sci. 2013, 91, 3200–3210. [CrossRef]
89. Han, Y.S.; Tang, C.H.; Zhao, Q.Y.; Zhan, T.F.; Zhang, K.; Han, Y.M.; Zhang, J.M. Effects of dietary supplementation with combinations of organic and medium chain fatty acids as replacements for chlortetracycline on growth performance, serum immunity, and fecal microbiota of weaned piglets. Livest. Sci.
2018, 216, 210–218. [CrossRef]
90. Lei, X.J.; Park, J.W.; Baek, D.H.; Kim, J.K.; Kim, I.H. Feeding the blend of organic acids and medium chain fatty acids reduces the diarrhea in piglets orally challenged with enterotoxigenic Escherichia coli K88.
Anim. Feed Sci. Technol. 2017, 224, 46–51. [CrossRef]
91. Lei, X.J.; Lee, S.I.; Lee, K.Y.; Nguyen, D.H.; Kim, I.H. Effects of a blend of organic acids and medium-chain fatty acids with and without enterococcus faecium on growth performance, nutrient digestibility, blood parameters, and meat quality in finishing pigs. Can. J. Anim. Sci. 2018, 98, 852–859. [CrossRef]
92. Casellas, J.; Casas, X.; Piedrafita, J.; Manteca, X. Effect of medium- and long-chain triglyceride supplementation on small newborn-pig survival. Prev. Vet. Med. 2005, 67, 213–221. [CrossRef] [PubMed]
93. Jean, K.B.; Chiang, S.H. Increased survival of neonatal pigs by supplementing medium-chain triglycerides in late-gestating sow diets. Anim. Feed Sci. Technol. 1999, 76, 241–250. [CrossRef]
94. Gatlin, L.A.; Odle, J.; Soede, J.; Hansent, J.A. Dietary medium- or long-chain triglycerides improve body condition of lean-genotype sows and increase suckling pig growth. J. Anim. Sci. 2002, 80, 38–44. [CrossRef]
[PubMed]
95. Crenshaw, J.D.; Peo, E.R.; Lewis, A.J.; Schneider, N.R. The effects of sorbic acid in high moisture sorghum grain diets on performance of weanling swine. J. Anim. Sci. 1986, 63, 831–837. [CrossRef] [PubMed]
96. Luo, Z.F.; Fang, X.L.; Shu, G.; Wang, S.B.; Zhu, X.T.; Gao, P.; Chen, L.L.; Chen, C.Y.; Xi, Q.Y.; Zhang, Y.L.; et al.
Sorbic acid improves growth performance and regulates insulin-like growth factor system gene expression in swine. J. Anim. Sci. 2011, 89, 2356–2364. [CrossRef]
97. Grilli, E.; Tugnoli, B.; Passey, J.L.; Stahl, C.H.; Piva, A.; Moeser, A.J. Impact of dietary organic acids and botanicals on intestinal integrity and inflammation in weaned pigs. BMC Vet. Res. 2015, 11, 96. [CrossRef]
98. Øverland, M.; Kjos, N.P.; Borg, M.; Sørum, H. Organic acids in diets for entire male pigs. Livest. Sci.
2007, 109, 170–173. [CrossRef]
99. Otten, W.; Wirth, C.; Iaizzo, P.A.; Eichinger, H.M. A high omega 3 fatty acid diet alters fatty acid composition of heart, liver, kidney, adipose tissue and skeletal muscle in swine. Ann. Nutr. Metab. 1993, 37, 134–141.
[CrossRef]
100. Fritsche, K.L.; Huang, S.C.; Cassity, N.A. Enrichment of omega-3 fatty acids in suckling pigs by maternal dietary fish oil supplementation. J. Anim. Sci. 1993, 71, 1841–1847. [CrossRef]
101. Brazle, A.E.; Johnson, B.J.; Webel, S.K.; Rathbun, T.J.; Davis, D.L. Omega-3 fatty acids in the gravid pig uterus as affected by maternal supplementation with omega-3 fatty acids. J. Anim. Sci. 2009, 87, 994–1002.
[CrossRef]
102. Eastwood, L.; Leterme, P.; Beaulieu, A.D. Changing the omega-6 to omega-3 fatty acid ratio in sow diets alters serum, colostrum, and milk fatty acid profiles, but has minimal impact on reproductive performance.
J. Anim. Sci. 2014, 92, 5567–5582. [CrossRef] [PubMed]
103. Posser, C.J.M.; Almeida, L.M.; Moreira, F.; Bianchi, I.; Gasperin, B.G.; Lucia, T. Supplementation of diets with omega-3 fatty acids from microalgae: Effects on sow reproductive performance and metabolic parameters.
Livest. Sci. 2018, 207, 59–62. [CrossRef]
104. Moran, C.A.; Morlacchini, M.; Keegan, J.D.; Fusconi, G. Dietary supplementation of finishing pigs with the docosahexaenoic acid-rich microalgae, Aurantiochytrium limacinum: Effects on performance, carcass characteristics and tissue fatty acid profile. Asian-Australas. J. Anim. Sci. 2018, 31, 712–720. [CrossRef]
[PubMed]
105. Upadhaya, S.D.; Li, T.S.; Kim, I.H. Effects of protected omega-3 fatty acid derived from linseed oil and
Vitamin E on growth performance, apparent digestibility, blood characteristics and meat quality of finishing pigs. Anim. Prod. Sci. 2017, 57, 1085–1090. [CrossRef]
106. Turek, J.J.; Schoenlein, I.A.; Clark, L.K.; Van Alstine, W.G. Dietary polyunsaturated fatty acid effects on immune cells of the porcine lung. J. Leukoc. Biol. 1994, 56, 599–604. [CrossRef]
107. Marriott, N.G.; Garrett, J.E.; Sims, M.D.; Abril, J.R. Performance characteristics and fatty acid composition of pigs fed a diet with docosahexaenoic acid. J. Muscle Foods 2002, 13, 265–277. [CrossRef]
108. Bontempo, V.; Sciannimanico, D.; Pastorelli, G.; Rossi, R.; Rosi, F.; Corino, C. Dietary Conjugated Linoleic
Acid Positively Affects Immunologic Variables in Lactating Sows and Piglets. J. Nutr. 2004, 134, 817–824.
[CrossRef]
109. Corino, C.; Pastorelli, G.; Rosi, F.; Bontempo, V.; Rossi, R. Effect of dietary conjugated linoleic acid supplementation in sows on performance and immunoglobulin concentration in piglets1. J. Anim. Sci.
2009, 87, 2299–2305. [CrossRef]
110. Patterson, R.; Connor, M.L.; Krause, D.O.; Nyachoti, C.M. Response of piglets weaned from sows fed diets supplemented with conjugated linoleic acid (CLA) to an Escherichia coli K88+ oral challenge. Animal
2008, 2, 1303–1311. [CrossRef]
111. Lai, C.; Yin, J.; Li, D.; Zhao, L.; Chen, X. Effects of dietary conjugated linoleic acid supplementation on performance and immune function of weaned pigs. Arch. Anim. Nutr. 2005, 59, 41–51. [CrossRef]
112. Changhua, L.; Jindong, Y.; Defa, L.; Lidan, Z.; Shiyan, Q.; Jianjun, X. Conjugated Linoleic Acid Attenuates the Production and Gene Expression of Proinflammatory Cytokines in Weaned Pigs Challenged with
Lipopolysaccharide. J. Nutr. 2005, 135, 239–244. [CrossRef] [PubMed]
113. Bassaganya-Riera, J.; Pogranichniy, R.M.; Jobgen, S.C.; Halbur, P.G.; Yoon, K.-J.; O’Shea, M.; Mohede, I.;
Hontecillas, R. Conjugated Linoleic Acid Ameliorates Viral Infectivity in a Pig Model of Virally Induced
Immunosuppression. J. Nutr. 2003, 133, 3204–3214. [CrossRef]
114. Bassaganya-Riera, J.; Hontecillas-Magarzo, R.; Bregendahl, K.; Wannemuehler, M.J.; Zimmerman, D.R. Effects of dietary conjugated linoleic acid in nursery pigs of dirty and clean environments on growth, empty body composition, and immune competence. J. Anim. Sci. 2001, 79, 714–721. [CrossRef] [PubMed]
115. Reilly, P.; Sweeney, T.; O’Shea, C.; Pierce, K.M.; Figat, S.; Smith, A.G.; Gahan, D.A.; O’Doherty, J.V.
The effect of cereal-derived beta-glucans and exogenous enzyme supplementation on intestinal microflora, nutrient digestibility, mineral metabolism and volatile fatty acid concentrations in finisher pigs. Anim. Feed
Sci. Technol. 2010, 158, 165–176. [CrossRef]
116. O’Connell, J.M.; Callan, J.J.; O’Doherty, J.V. The effect of dietary crude protein level, cereal type and exogenous enzyme supplementation on nutrient digestibility, nitrogen excretion, faecal volatile fatty acid concentration and ammonia emissions from pigs. Anim. Feed Sci. Technol. 2006, 127, 73–88. [CrossRef]
117. Carneiro, M.S.C.; Lordelo, M.M.; Cunha, L.F.; Freire, J.P.B. Effects of dietary fibre source and enzyme supplementation on faecal apparent digestibility, short chain fatty acid production and activity of bacterial enzymes in the gut of piglets. Anim. Feed Sci. Technol. 2008, 146, 124–136. [CrossRef]
118. Dierick, N.A.; Decuypere, J.A.; Molly, K.; Van Beek, E.; Vanderbeke, E. The combined use of triacylglycerols containing medium-chain fatty acids (MCFAs) and exogenous lipolytic enzymes as an alternative for nutritional antibiotics in piglet nutrition. I. In vitro screening of the release of MCFAs from selected fat sources by. Livest. Prod. Sci. 2002, 75, 129–142. [CrossRef]
119. Zentek, J.; Buchheit-Renko, S.; Ferrara, F.; Vahjen, W.; Van Kessel, A.G.; Pieper, R. Nutritional and physiological role of medium-chain triglycerides and medium-chain fatty acids in piglets. Anim. Health Res. Rev.
2011, 12, 83–93. [CrossRef]
120. Hanczakowska, E. The Use of Medium-Chain Fatty Acids in Piglet Feeding—A Review. Ann. Anim. Sci.
2017, 17, 967–977. [CrossRef]
121. Wieland, T.M.; Lin, X.; Odle, J. Utilization ofmedium-chain triglycerides by neonatal pigs: Effects of emulsification and dose delivered. J. Anim. Sci. 1993, 71, 1863–1868. [CrossRef]
122. Peffer, P.L.; Lin, X.; Odle, J. Hepatic β-oxidation and carnitine palmitoyltransferase I in neonatal pigs after dietary treatments of clofibric acid, isoproterenol, and medium-chain triglycerides. Am. J. Physiol.-Regul.
Integr. Comp. Physiol. 2005, 288, 1518–1524. [CrossRef] [PubMed]
123. Traul, K.A.; Driedger, A.; Ingle, D.L.; Nakhasi, D. Review of the toxicologic properties of medium-chain triglycerides. Food Chem. Toxicol. 2000, 38, 79–98. [CrossRef]
124. Szostak, A.; Ogłuszka, M.; Te Pas, M.F.W.; Poławska, E.; Urba ´nski, P.; Juszczuk-Kubiak, E.; Blicharski, T.;
Pareek, C.S.; Dunkelberger, J.R.; Horba ´nczuk, J.O.; et al. Effect of a diet enriched with omega-6 and omega-3 fatty acids on the pig liver transcriptome. Genes Nutr. 2016, 11, 9. [CrossRef] [PubMed]
125. Estienne, M.J.; Harper, A.F.; Estienne, C.E. Effects of dietary supplementation with omega-3 polyunsaturated fatty acids on some reproductive characteristics in gilts. Reprod. Biol. 2006, 6, 231–241.