Explore

Communities in English

Advertise on Engormix

Draft Genome Sequence of Enterococcus casseliflavus PAVET15 Obtained from the Oviduct Infection of the Cattle Tick (Rhipicephalus microplus) in Jiutepec, Morelos, Mexico

Published: July 19, 2018
By: R. Cossío-Bayúgar 1, E. Miranda-Miranda 1, C. A. Arreguín-Pérez 1, L. Lozano 2, D. Peréz de la Rosa 3, M. K. Rocha-Martínez 3, M. A. Bravo-Díaz 3, B. Sachman-Ruiz 1. / 1 Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Morelos, Mexico; 2 Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Morelos; 3 Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos.
Summary

ABSTRACT

Enterococcus spp. are Gram-positive lactic acid-producing bacteria found in the intestinal tracts of animals, like mammals, birds, and arthropods. Enterococcus spp. may cause oportunistic infections in vertebrate and invertebrate hosts. We report here the draft genome sequence of Enterococcus casseliflavus PAVET15 containing 3,722,480 bp, with 80 contigs, an N50 of 179,476 bp, and 41.93% GC content.

Enterococcal bacteria are found in several ecosystems and are useful as a fecal indicator for water quality and models of infection involving core and variable genetics elements that are not fully understood (1). Bacteria belonging to the genus Enterococcus are part of the microbiome of the cattle tick gut and may be found in female, male, and egg samples (2); additionally, several isolates of Enterococcus species bacteria from actual infections in engorged female ticks were obtained (3, 4).
Here, we present the draft genome sequence of Enterococcus casseliflavus PAVET15, obtained from an engorged female tick that showed symptoms of bacterial infection, such as the presence of an exudate at the genital orifice. This strain was grown overnight in Trypticase soy agar (TSA; Difco-BD) medium at 37°C, and the genomic DNA was extracted using the Wizard genomic purification kit (Promega). The sequence genome was obtained using 454 FLX pyrosequencing (Roche) by building DNA fragment libraries, according to the manufacturer’s recommendations. The genome was assembled using Newbler version 2.8, obtaining a total of 3,722,480 bp, 80 contigs, an N50 of 179,476 bp, average contig size of 46,531 bp, and largest contig of 349,357 bp. Genome sequence annotation was made by RAST [http://rast.nmpdr.org (5)]. The resulting genome comprises 3,594 coding proteins, 58 rRNAs, 50 tRNAs, and 41.93% GC content. We found 93.58% identity with E. casseliflavus and high synteny. For phylogenetic species differentiation, we used rpoB and tufA genes (data not shown). The virulent genes found in the strain PAVET15 could be relevant in the effort to find a biocontrol in the integral strategy to control the cattle tick.
Accession number(s). This whole-genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession no. MUBE00000000. The version described in this paper is version MUBE01000000.
ACKNOWLEDGMENTS
This project has been funded in part with the projects CONACyT 248049 and INIFAP 1322633028.
 
This article was originally published in Genome Announcements, 5:e00196-17. https://doi.org/10.1128/genomeA.00196-17. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
 
REFERENCES
1. Palmer KL, Carniol K, Manson JM, Heiman D, Shea T, Young S, Zeng Q, Gevers D, Feldgarden M, Birren B, Gilmore MS. 2010. High-quality draft genome sequences of 28 Enterococcus sp. isolates. J Bacteriol 192: 2469 –2470. https://doi.org/10.1128/JB.00153-10.
2. Andreotti R, Perez de Leon AA, Dowd SE, Guerrero FD, Bendele KG, Scoles GA. 2011. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol 11:6. https://doi.org/10.1186/1471-2180-11-6.
3. Arreguín-Pérez CA, Sachman-Ruiz B, Miranda-Miranda E, Aguilar Díaz H, Fernández Ruvalcaba M, Cossío-Bayúgar R. 2016. Caracterización de aislados bacterianos derivados de una infecciónnatural de la garrapata del ganado Rhipicephalus microplus ACARI: IXODIDAE en el periodo 2010 –2015. Entomol Mex 51–57.
4. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam A, Xia F, Stevens R. 2014. The SEED and the Rapid annotation of microbial genomes using subsystems technology RAST. Nucleic Acids Res 42:D206 –D214. https:// doi.org/10.1093/nar/gkt1226.
5. Sachman-Ruiz B, Reynaud E, Miranda-Miranda E, Cossío-Bayúgar R. 2014. Aislamiento y ribotipificación bacteriana, durante la infección de la garrapata de ganado Rhipicephalus Boophilus microplus. Entomol Mex 1:38 – 42.
Related topics:
Authors:
Bernardo Sachman Ruiz
INIFAP México
INIFAP México
Recommend
Comment
Share
Profile picture
Would you like to discuss another topic? Create a new post to engage with experts in the community.
Featured users in Dairy Cattle
Jim Quigley
Jim Quigley
Cargill
Technical Lead - Calf & Heifer at Cargill
United States
Pietro Celi
Pietro Celi
DSM-Firmenich
DSM-Firmenich
United States
Todd Bilby, Ph.D.
Todd Bilby, Ph.D.
MSD - Merck Animal Health
Dairy Technical Services Manager
United States
Join Engormix and be part of the largest agribusiness social network in the world.